Lagrange Duality

Prof. Daniel P. Palomar

ELEC5470/IEDA6100A - Convex Optimization
The Hong Kong University of Science and Technology (HKUST)
Fall 2019-20
Outline of Lecture

- Lagrangian
- Dual function
- Dual problem
- Weak and strong duality
- KKT conditions
- Summary

(Acknowledgement to Stephen Boyd for material for this lecture.)
Lagrangian

- Consider an optimization problem in standard form (not necessarily convex)

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0 & \quad i = 1, \ldots, m \\
& \quad h_i(x) = 0 & \quad i = 1, \ldots, p
\end{align*}
\]

with variable \(x \in \mathbb{R}^n \), domain \(\mathcal{D} \), and optimal value \(p^* \).

- The Lagrangian is a function \(L : \mathbb{R}^n \times \mathbb{R}^m \times \mathbb{R}^p \rightarrow \mathbb{R} \), with

\[
\text{dom } L = \mathcal{D} \times \mathbb{R}^m \times \mathbb{R}^p,
\]

defined as

\[
L(x, \lambda, \nu) = f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x)
\]

where \(\lambda_i \) is the Lagrange multiplier associated with \(f_i(x) \leq 0 \) and \(\nu_i \) is the Lagrange multiplier associated with \(h_i(x) = 0 \).
Lagrange Dual Function

• The *Lagrange dual function* is defined as the infimum of the Lagrangian over x: $g : \mathbb{R}^m \times \mathbb{R}^p \to \mathbb{R}$,

\[
 g(\lambda, \nu) = \inf_{x \in \mathcal{D}} L(x, \lambda, \nu)
\]

\[
= \inf_{x \in \mathcal{D}} \left(f_0(x) + \sum_{i=1}^{m} \lambda_i f_i(x) + \sum_{i=1}^{p} \nu_i h_i(x) \right)
\]

• Observe that:
 – the infimum is unconstrained (as opposed to the original constrained minimization problem)
 – g is concave regardless of original problem (infimum of affine functions)
 – g can be $-\infty$ for some λ, ν
Lower bound property: if $\lambda \geq 0$, then $g(\lambda, \nu) \leq p^*$.

Proof. Suppose \tilde{x} is feasible and $\lambda \geq 0$. Then,

$$f_0(\tilde{x}) \geq L(\tilde{x}, \lambda, \nu) \geq \inf_{x \in \mathcal{D}} L(x, \lambda, \nu) = g(\lambda, \nu).$$

Now choose minimizer of $f_0(\tilde{x})$ over all feasible \tilde{x} to get $p^* \geq g(\lambda, \nu)$.

- We could try to find the best lower bound by maximizing $g(\lambda, \nu)$. This is in fact the dual problem.
Dual Problem

- The Lagrange dual problem is defined as

\[
\begin{align*}
\text{maximize} \quad & g(\lambda, \nu) \\
\text{subject to} \quad & \lambda \geq 0.
\end{align*}
\]

- This problem finds the best lower bound on \(p^* \) obtained from the dual function.

- It is a convex optimization (maximization of a concave function and linear constraints).

- The optimal value is denoted \(d^* \).

- \(\lambda, \nu \) are dual feasible if \(\lambda \geq 0 \) and \((\lambda, \nu) \in \text{dom } g\) (the latter implicit constraints can be made explicit in problem formulation).
Example: Least-Norm Solution of Linear Equations

- Consider the problem

 \[
 \begin{align*}
 \text{minimize} & \quad x^T x \\
 \text{subject to} & \quad Ax = b.
 \end{align*}
 \]

- The Lagrangian is

 \[
 L(x, \nu) = x^T x + \nu^T (Ax - b).
 \]

- To find the dual function, we need to solve an unconstrained minimization of the Lagrangian. We set the gradient equal to zero

 \[
 \nabla_x L(x, \nu) = 2x + A^T \nu = 0 \implies x = -\frac{1}{2} A^T \nu
 \]
and we plug the solution in L to obtain g:

$$g(\nu) = L\left(-\frac{1}{2}A^T\nu,\nu\right) = -\frac{1}{4}\nu^TAA^T\nu - b^T\nu$$

• The function g is, as expected, a concave function of ν.

• From the lower bound property, we have

$$p^* \geq -\frac{1}{4}\nu^TAA^T\nu - b^T\nu \text{ for all } \nu.$$

• The dual problem is the QP

$$\max_{\nu} -\frac{1}{4}\nu^TAA^T\nu - b^T\nu.$$
Example: Standard Form LP

• Consider the problem

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b, \quad x \geq 0.
\end{align*}
\]

• The Lagrangian is

\[
L(x, \lambda, \nu) = c^T x + \nu^T (Ax - b) - \lambda^T x
= (c + A^T \nu - \lambda)^T x - b^T \nu.
\]

• \(L\) is a linear function of \(x\) and it is unbounded if the term multiplying \(x\) is nonzero.
• Hence, the dual function is
\[
g(\lambda, \nu) = \inf_x L(x, \lambda, \nu) = \begin{cases} -b^T \nu & \text{if } c + A^T \nu - \lambda = 0 \\ -\infty & \text{otherwise}. \end{cases}
\]

• The function \(g \) is a concave function of \((\lambda, \nu)\) as it is linear on an affine domain.

• From the lower bound property, we have
\[
p^* \geq -b^T \nu \quad \text{if } c + A^T \nu \geq 0.
\]

• The dual problem is the LP
\[
\begin{align*}
\text{maximize} & \quad -b^T \nu \\
\text{subject to} & \quad c + A^T \nu \geq 0.
\end{align*}
\]
Example: Two-Way Partitioning

• Consider the problem

\[
\begin{align*}
\text{minimize} & \quad x^T W x \\
\text{subject to} & \quad x_i^2 = 1, \quad i = 1, \ldots, n.
\end{align*}
\]

• It is a nonconvex problem (quadratic equality constraints). The feasible set contains \(2^n\) discrete points.

• The Lagrangian is

\[
L(x, \nu) = x^T W x + \sum_{i=1}^{n} \nu_i (x_i^2 - 1)
\]

\[
= x^T (W + \text{diag}(\nu)) x - 1^T \nu.
\]

• \(L\) is a quadratic function of \(x\) and it is unbounded if the matrix \(W + \text{diag}(\nu)\) has a negative eigenvalue.
Hence, the dual function is
\[g(\nu) = \inf_x L(x, \nu) = \begin{cases} -1^T \nu & W + \text{diag}(\nu) \succeq 0 \\ -\infty & \text{otherwise}. \end{cases} \]

From the lower bound property, we have
\[p^* \geq -1^T \nu \quad \text{if} \quad W + \text{diag}(\nu) \succeq 0. \]

As an example, if we choose \(\nu = -\lambda_{\text{min}}(W) \cdot 1 \), we get the bound
\[p^* \geq n\lambda_{\text{min}}(W). \]

The dual problem is the SDP
\[
\begin{align*}
\text{maximize} \quad & -1^T \nu \\
\text{subject to} \quad & W + \text{diag}(\nu) \succeq 0.
\end{align*}
\]
Weak and Strong Duality

• From the lower bound property, we know that $g(\lambda, \nu) \leq p^*$ for feasible (λ, ν). In particular, for a (λ, ν) that solves the dual problem.

• Hence, weak duality always holds (even for nonconvex problems):

$$d^* \leq p^*.$$

• The difference $p^* - d^*$ is called duality gap.

• Solving the dual problem may be used to find nontrivial lower bounds for difficult problems.
• Even more interesting is when equality is achieved in weak duality. This is called *strong duality*:

\[d^* = p^*. \]

• Strong duality means that the duality gap is zero.

• Strong duality:
 – is very desirable (we can solve a difficult problem by solving the dual)
 – does not hold in general
 – usually holds for convex problems
 – conditions that guarantee strong duality in convex problems are called *constraint qualifications*.
Slater’s Constraint Qualification

- Slater’s constraint qualification is a very simple condition that is satisfied in most cases and ensures strong duality for convex problems.

- Strong duality holds for a convex problem

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0 \quad i = 1, \ldots, m \\
& \quad Ax = b
\end{align*}
\]

if it is strictly feasible, i.e.,

\[
\exists x \in \text{int} \mathcal{D} : \quad f_i(x) < 0 \quad i = 1, \ldots, m, \quad Ax = b.
\]
• It can be relaxed by using $\text{relint } \mathcal{D}$ (interior relative to affine hull) instead of $\text{int } \mathcal{D}$; linear inequalities do not need to hold with strict inequality, ...

• There exist many other types of constraint qualifications.
Example: Inequality Form LP

• Consider the problem

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax \leq b.
\end{align*}
\]

• The dual problem is

\[
\begin{align*}
\text{maximize} & \quad -b^T \lambda \\
\text{subject to} & \quad A^T \lambda + c = 0, \quad \lambda \geq 0.
\end{align*}
\]

• From Slater’s condition: \(p^* = d^* \) if \(A\tilde{x} < b \) for some \(\tilde{x} \).

• In this case, in fact, \(p^* = d^* \) except when primal and dual are infeasible.
Example: Convex QP

- Consider the problem (assume $P \succeq 0$)

\[
\begin{align*}
\text{minimize} & \quad x^T P x \\
\text{subject to} & \quad A x \leq b.
\end{align*}
\]

- The dual problem is

\[
\begin{align*}
\text{maximize} & \quad - (1/4) \lambda^T A P^{-1} A^T \lambda - b^T \lambda \\
\text{subject to} & \quad \lambda \geq 0.
\end{align*}
\]

- From Slater’s condition: $p^* = d^*$ if $A\tilde{x} < b$ for some \tilde{x}.

- In this case, in fact, $p^* = d^*$ always.
Example: Nonconvex QP

• Consider the problem

\[
\begin{align*}
\text{minimize} & \quad x^T Ax + 2b^T x \\
\text{subject to} & \quad x^T x \leq 1
\end{align*}
\]

which is nonconvex in general as \(A \not\succeq 0 \).

• The dual problem is

\[
\begin{align*}
\text{maximize} & \quad -b^T (A + \lambda I)^\# b - \lambda \\
\text{subject to} & \quad A + \lambda I \succeq 0 \\
& \quad b \in \mathcal{R}(A + \lambda I)
\end{align*}
\]
which can be rewritten as

\[
\begin{align*}
\text{maximize} & \quad -t - \lambda \\
\text{subject to} & \quad \begin{bmatrix} A + \lambda I & b \\ b^T & t \end{bmatrix} \succeq 0.
\end{align*}
\]

- In this case, strong duality holds even though the original problem is nonconvex (not trivial).
Complementary Slackness

- Assume strong duality holds, \(x^* \) is primal optimal and \((\lambda^*, \nu^*) \) is dual optimal. Then,

\[
f_0 (x^*) = g (\lambda^*, \nu^*) = \inf_x \left(f_0 (x) + \sum_{i=1}^m \lambda_i^* f_i (x) + \sum_{i=1}^p \nu_i^* h_i (x) \right)
\]

\[
\leq f_0 (x^*) + \sum_{i=1}^m \lambda_i^* f_i (x^*) + \sum_{i=1}^p \nu_i^* h_i (x^*)
\]

\[
\leq f_0 (x^*)
\]

- Hence, the two inequalities must hold with equality. Implications:
 - \(x^* \) minimizes \(L (x, \lambda^*, \nu^*) \)
 - \(\lambda_i^* f_i (x^*) = 0 \) for \(i = 1, \ldots, m \); this is called *complementary slackness*:
 \[
 \lambda_i^* > 0 \implies f_i (x^*) = 0, \quad f_i (x^*) < 0 \implies \lambda_i^* = 0.
 \]
Karush-Kuhn-Tucker (KKT) Conditions

KKT conditions (for differentiable f_i, h_i):

1. primal feasibility: $f_i(x) \leq 0$, $i = 1, \ldots, m$, $h_i(x) = 0$, $i = 1, \ldots, p$

2. dual feasibility: $\lambda \geq 0$

3. complementary slackness: $\lambda_i^* f_i(x^*) = 0$ for $i = 1, \ldots, m$

4. zero gradient of Lagrangian with respect to x:

$$\nabla f_0(x) + \sum_{i=1}^{m} \lambda_i \nabla f_i(x) + \sum_{i=1}^{p} \nu_i \nabla h_i(x) = 0$$
• We already known that if strong duality holds and x, λ, ν are optimal, then they must satisfy the KKT conditions.

• What about the opposite statement?

• If x, λ, ν satisfy the KKT conditions for a convex problem, then they are optimal.

Proof. From complementary slackness, $f_0 (x) = L (x, \lambda, \nu)$ and, from 4th KKT condition and convexity, $g (\lambda, \nu) = L (x, \lambda, \nu)$. Hence, $f_0 (x) = g (\lambda, \nu)$.

Theorem. *If a problem is convex and Slater’s condition is satisfied, then x is optimal if and only if there exists λ, ν that satisfy the KKT conditions.*
Example: Waterfilling Solution

- Consider the maximization of the mutual information in a MIMO channel under Gaussian noise:

\[
\begin{align*}
\text{maximize} & \quad \log \det \left(\mathbf{R}_n + \mathbf{H} \mathbf{Q} \mathbf{H}^\dagger \right) \\
\text{subject to} & \quad \text{Tr} (\mathbf{Q}) \leq P \\
& \quad \mathbf{Q} \succeq 0.
\end{align*}
\]

- This problem is convex: the logdet function is concave, the trace constraint is just a linear constraint, and the positive semidefiniteness constraint is an LMI.

- Hence, we can use a general-purpose method such as an interior-point method to solve it in polynomial time.
• However, this problem admits a closed-form solution as can be derived from the KKT conditions.

• The Lagrangian is

\[L(Q; \mu, \Psi) = -\log \det (R_n + HQH^\dagger) + \mu (\text{Tr}(Q) - P) - \text{Tr}(\Psi Q). \]

• The gradient of the Lagrangian is

\[\nabla_Q L = -H^\dagger (R_n + HQH^\dagger)^{-1} H + \mu I - \Psi. \]
The KKT conditions are

\[\text{Tr} (Q) \leq P, \quad Q \succeq 0 \]
\[\mu \geq 0, \quad \Psi \succeq 0 \]
\[H^\dagger (R_n + HQH^\dagger)^{-1} H + \Psi = \mu I \]
\[\mu (\text{Tr} (Q) - P) = 0, \quad \Psi Q = 0. \]

Can we find a \(Q \) that satisfies the KKT conditions (together with some dual variables)?
• First, let’s simplify the KKT conditions by defining the so-called whitened channel: \(\tilde{H} = R_n^{-1/2}H \).

• Then, the third KKT condition becomes:

\[
\tilde{H}^\dagger \left(I + \tilde{H}Q\tilde{H}^\dagger \right)^{-1} \tilde{H} + \Psi = \mu I.
\]

• To simplify even further, let’s write the SVD of the channel matrix as \(\tilde{H} = U\Sigma V^\dagger \) (denote the eigenvalues \(\sigma_i \)), obtaining:

\[
\Sigma^\dagger \left(I + \Sigma\tilde{Q}\Sigma^\dagger \right)^{-1} \Sigma + \tilde{\Psi} = \mu I.
\]

where \(\tilde{Q} = V^\dagger QV \) and \(\tilde{\Psi} = V^\dagger \Psi V \).
- The KKT conditions are:

\[\text{Tr}(\tilde{Q}) \leq P, \quad \tilde{Q} \succeq 0 \]
\[\mu \geq 0, \quad \tilde{\Psi} \succeq 0 \]
\[\Sigma^\dagger \left(I + \Sigma \tilde{Q} \Sigma^\dagger \right)^{-1} \Sigma + \tilde{\Psi} = \mu I \]
\[\mu \left(\text{Tr}(\tilde{Q}) - P \right) = 0, \quad \tilde{\Psi} \tilde{Q} = 0. \]

- At this point, we can make a guess: perhaps the optimal \(\tilde{Q} \) and \(\tilde{\Psi} \) are diagonal? Let’s try ...
• Define $\tilde{Q} = \text{diag}(p)$ (p is the power allocation) and $\tilde{\Psi} = \text{diag}(\psi)$.

• The KKT conditions become:

$$\sum_i p_i \leq P, \quad p_i \geq 0$$

$$\mu \geq 0, \quad \psi_i \geq 0$$

$$\frac{\sigma_i^2}{1 + \sigma_i^2 p_i} + \psi_i = \mu$$

$$\mu \left(\sum_i p_i - P \right) = 0, \quad \psi_i p_i = 0.$$

• Let’s now look into detail at the KKT conditions.
• First of all, observe that $\mu > 0$, otherwise we would have $\frac{\sigma_i^2}{1+\sigma_i^2p_i} + \psi_i = 0$ which cannot be satisfied.

• Let’s distinguish two cases in the power allocation:

- if $p_i > 0$, then $\psi_i = 0 \implies \frac{\sigma_i^2}{1+\sigma_i^2p_i} = \mu \implies p_i = \mu^{-1} - 1/\sigma_i^2$ (also note that $\mu = \frac{\sigma_i^2}{1+\sigma_i^2p_i} < \sigma_i^2$)

- if $p_i = 0$, then $\sigma_i^2 + \psi_i = \mu$ (note that $\mu = \sigma_i^2 + \psi_i \geq \sigma_i^2$).

• Equivalently,

- if $\sigma_i^2 > \mu$, then $p_i = \mu^{-1} - 1/\sigma_i^2$

- if $\sigma_i^2 \leq \mu$, then $p_i = 0$.

• More compactly, we can write the well-known *waterfilling solution:*

\[p_i = (\mu^{-1} - 1/\sigma_i^2)^+ \]

where \(\mu^{-1} \) is called water-level and is chosen to satisfy \(\sum_i p_i = P \) (so that all the KKT conditions are satisfied).

• Therefore, the optimal solution is given by

\[Q^* = V \text{diag} (p) V^\dagger \]

where

– the optimal transmit directions are matched to the channel matrix
– the optimal power allocation is the waterfilling.
Perturbation and Sensitivity Analysis

- Recall the original (unperturbed) optimization problem and its dual:

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq 0 \quad \forall i \\
& \quad h_i(x) = 0 \quad \forall i \\
\text{maximize} & \quad g(\lambda, \nu) \\
\text{subject to} & \quad \lambda \geq 0
\end{align*}
\]

- Define the perturbed problem and dual as

\[
\begin{align*}
\text{minimize} & \quad f_0(x) \\
\text{subject to} & \quad f_i(x) \leq u_i \quad \forall i \\
& \quad h_i(x) = v_i \quad \forall i \\
\text{maximize} & \quad g(\lambda, \nu) - u^T\lambda - v^T\nu \\
\text{subject to} & \quad \lambda \geq 0
\end{align*}
\]

- x is primal variable and u, v are parameters
- Define $p^*(u, v)$ as the optimal value as a function of u, v.
• **Global sensitivity:** Suppose strong duality holds for unperturbed problem and \(\lambda^*, \nu^* \) are dual optimal for unperturbed problem. Then, from weak duality:

\[
p^*(u, v) \geq g(\lambda^*, \nu^*) - u^T \lambda^* - v^T \nu^*
\]

\[
= p^*(0, 0) - u^T \lambda^* - v^T \nu^*
\]

• Interpretation:

 – if \(\lambda_i^* \) large: \(p^* \) increases a lot if we tighten constraint \(i \) \((u_i < 0) \)

 – if \(\lambda_i^* \) small: \(p^* \) does not decrease much if we loosen constraint \(i \) \((u_i > 0) \)

 – if \(\nu_i^* \) large and positive: \(p^* \) increases a lot if we take \(v_i < 0 \)

 – if \(\nu_i^* \) large and negative: \(p^* \) increases a lot if we take \(v_i > 0 \)

 – etc.
• **Local sensitivity:** Suppose strong duality holds for unperturbed problem, λ^*, ν^* are dual optimal for unperturbed problem, and $p^*(u, v)$ is differentiable at $(0, 0)$. Then,

$$\frac{\partial p^*(0, 0)}{\partial u_i} = -\lambda^*_i, \quad \frac{\partial p^*(0, 0)}{\partial v_i} = -\nu^*_i$$

Proof. (for λ^*_i) From the global sensitivity result, we have

$$\frac{\partial p^*(0, 0)}{\partial u_i} = \lim_{\epsilon \downarrow 0} \frac{p^*(te_i, 0) - p^*(0, 0)}{t} \geq \lim_{\epsilon \downarrow 0} \frac{-t\lambda^*_i}{t} = -\lambda^*_i$$

$$\frac{\partial p^*(0, 0)}{\partial u_i} = \lim_{\epsilon \uparrow 0} \frac{p^*(te_i, 0) - p^*(0, 0)}{t} \leq \lim_{\epsilon \uparrow 0} \frac{-t\lambda^*_i}{t} = -\lambda^*_i.$$

Hence, the equality. \square
Duality and Problem Reformulations

• Equivalent formulations of a problem can lead to very different duals.

• Reformulating the primal problem can be useful when the dual is difficult to derive or uninteresting.

• Common tricks:
 – introduce new variables and equality constraints
 – make explicit constraints implicit or vice-versa
 – transform objective or constraint functions (e.g., replace $f_0(x)$ by $\phi(f_0(x))$ with ϕ convex and increasing).
Example: Introducing New Variables

• Consider the problem

\[
\min_x \|Ax - b\|_2.
\]

• We can rewrite it as

\[
\min_{x,y} \|y\|_2 \\
\text{subject to } y = Ax - b.
\]

• We can then derive the dual problem:

\[
\max_{\nu} \ b^T \nu \\
\text{subject to } A^T \nu = 0, \quad \|\nu\|_2 \leq 1.
\]
Example: Implicit Constraints

• Consider the following LP with box constrains:

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad Ax = b \\
& \quad -1 \leq x \leq 1
\end{align*}
\]

• The dual problem is

\[
\begin{align*}
\text{maximize} & \quad -b^T \nu - 1^T \lambda_1 - 1^T \lambda_2 \\
\text{subject to} & \quad c + A^T \nu + \lambda_1 - \lambda_2 = 0 \\
& \quad \lambda_1 \geq 0, \quad \lambda_2 \geq 0,
\end{align*}
\]

which does not give much insight.
• If, instead, we rewrite the primal problem as

\[
\begin{align*}
\text{minimize} & \quad f_0(x) = \begin{cases}
 c^T x & \quad -1 \leq x \leq 1 \\
 \infty & \quad \text{otherwise}
\end{cases} \\
\text{subject to} & \quad Ax = b
\end{align*}
\]

then the dual becomes way more insightful:

\[
\begin{align*}
\text{maximize} & \quad -b^T \nu - \| A^T \nu + c \|_1
\end{align*}
\]
Duality for Problems with Generalized Inequalities

• The Lagrange duality can be naturally extended to generalized inequalities of the form

\[f_i(x) \preceq_{K_i} 0 \]

where \(\preceq_{K_i} \) is a generalized inequality on \(\mathbb{R}^{k_i} \) with respect to the cone \(K_i \).

• The corresponding dual variable has to satisfy

\[\lambda_i \succeq_{K_i^*} 0 \]

where \(K_i^* \) is the dual cone of \(K_i \).
Semidefinite Programming (SDP)

- Consider the following SDP \((F_i, G \in \mathbb{R}^{k \times k})\):

\[
\begin{align*}
\text{minimize} & \quad c^T x \\
\text{subject to} & \quad x_1 F_1 + \cdots + x_n F_n \preceq G.
\end{align*}
\]

- The Lagrange multiplier is a matrix \(\Psi \in \mathbb{R}^{k \times k}\) and the Lagrangian

\[
L(x, \Psi) = c^T x + \text{Tr}(\Psi (x_1 F_1 + \cdots + x_n F_n - G))
\]

- The dual problem is

\[
\begin{align*}
\text{maximize} & \quad -\text{Tr}(\Psi G) \\
\text{subject to} & \quad \text{Tr}(\Psi F_i) + c_i = 0, \; i = 1, \ldots, n \\
& \quad \Psi \succeq 0.
\end{align*}
\]
Summary

• We have introduced the Lagrange duality theory: Lagrangian, dual function, and dual problem.

• We have developed the optimality conditions for convex problems: the KKT conditions.

• We have illustrated the use of the KKT conditions to find the closed-form solution to a problem.

• We have overviewed some additional concepts such as duals of reformulations of problems, sensitivity analysis, generalized inequalities, and SDP.
References

Chapter 5 of
