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Introduction (I)

• Communication networks which are ubiquitous in modern society.

• We need to design and optimize network. How?

• Two extreme approaches naturally arise:

– competitive networks: game-theoretic approach (distributed algo-

rithms but not the best of the network)

– cooperative networks: global optimization problem (best of the

network but centralized algorithms).

• We want both features: i) best of the network and ii) distributed

algorithms. Can we achieve that?
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Introduction (II): NUM

• To design the network as a whole:

– we will measure the “happiness” of a user through a utility function

of the optimization variables: Ui (xi)

– we will measure the “happiness” of the network with the aggregate

utility:
∑
iUi (xi)

• We will formulate the design of the network as the maximization of

the aggregate utility of the users subject to a variety of constraints:

Network Utility Maximization (NUM)
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Introduction (III)

Base 

Station

Wireless 

Users

• Consider the uplink problem formulation

maximize
{ri,pi}

∑
iUi (ri)

subject to ri ≤ log (1 + gipi)

pi ≤ Pi.
∀i

• It naturally decouples into parallel subproblems for each of the users,

with solution: r?i = log (1 + giPi).
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Introduction (IV)

Base 

Station

Wireless 

Users

• Consider now the downlink problem formulation

maximize
{ri,pi}

∑
iUi (ri)

subject to ri ≤ log (1 + gipi)∑
i pi ≤ PT .

∀i

• It does not decouple into parallel subproblems because of the cou-

pling constraint:
∑
i pi ≤ PT .
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Introduction (V)

• Real problems do not decouple naturally.

• Centralized algorithms are theoretically possible but not desirable

in practice (not scalable, not robust, too much signalling, not

adaptive).

• Can we still obtain distributed algorithms to solve such coupled

problems?

• The classical approach is to use a dual-decomposition to obtain a

distributed solution.

• However, there are many other alternatives and we can obtain a

variety of distributed implementations.
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Introduction: Historical Perspective on NUM

• Multicommodity problems: design of algorithms for (fixed wireline)

networks is old and goes back to the 1960s [FordFulkerson62] (see

also [BertsekasGallager87][BertsekasTsitsiklis89]).

• From linear to convex utilities (fueled by recent developments in con-

vex optim., e.g., Karmakar 1984, Nesterov&Nemirovsky 1988,1994).

• Recent renewed interest in this problem due to:

i) existence of wireless networks with nonfixed structure possibly

time-varying, which requires efficient and highly distributed algo-

rithms

ii) introduction of additional variables such as the power allocation

in wireless networks (responsible for the “elastic” link capacities)
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iii) reverse engineering of existing networks: interpretation of cur-

rently working algorithms as distributed algorithms that solve

some NUM. Paradigmatic example is the interpretation of TCP

congestion algorithms in the Internet as (approximate) distributed

primal-dual algorithms [Low2002].

• Main ingredient to obtain alternative distributed algorithms can be

found in the so-called decomposition techniques, widely used in

optimization theory [Lasdon70][BertsekasTsitsiklis89].

• Dual decomposition methods (among all the possibilities) seem to

have enjoyed a far wider application.
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Motivation: Basic NUM

• Basic NUM formulation:

maximize
x≥0

∑
sUs (xs)

subject to
∑
s:l∈L(s) xs ≤ cl ∀l

• Typically solved with a classical dual decomposition technique:

– each source solves:

x?s (λ
s) = argmax

xs≥0
[Us (xs)− λsxs] ∀s

– each link updates prices:

λl (t+ 1) =

λl (t)− α
cl − ∑

s:l∈L(s)

x?s(λ
s (t))

+

∀l.
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Motivation: NUM for QoS Rate Allocation

• Consider a NUM problem with different QoS classes (new coupling):

maximize
x,y(1),y(2)≥0

∑
sUs (xs)

subject to
∑
s∈Si:l∈L(s) xs ≤ y

(i)
l ∀l, i = 1, 2

y(1) + y(2) ≤ c

c
(i)
min ≤ y(i) ≤ c

(i)
max

where y
(i)
l is aggregate rate of class i along lth link.

• In absence of coupling constraint, it becomes the basic NUM.
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Building Blocks

• We will use the following fundamental building blocks:

i) primal/dual decompositions,

ii) indirect decompositions,

iii) multilevel decompositions: partial, recursive

iv) order of update: sequential, parallel

v) timescale of update: iterative, one-shot

• Standard dual-based algorithm: direct single-level full dual decom-

position.
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Review: Decomposition Techniques

• Idea: decompose original large problem into subproblems (locally

solved) and a master problem (coordinating the subproblems):

Master Problem

Subproblem 1 Subproblem N...

Original  Problem

Decomposition

...

prices/resources

• Signalling between master problem and subproblems.

• Alternative decompositions lead to different layered protocol archi-

tecture in the framework of Layering as Optimization Decomposition.
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Review: Primal/Dual Decomposition Techniques

• Two main classes of decomposition techniques: primal decomposi-

tion and dual decomposition.

• Primal decomposition: decompose original problem by optimizing

over one set of variables and then over the remaining set.

– Interpretation: master problem directly allocates the existing re-

sources to subproblems.

• Dual decomposition: decompose dual problem (obtained after a

Lagrange relaxation of the coupling constraints)

– Interpretation: master problem sets prices for the resources to

subproblems.
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Review: Dual Decomposition

• The dual of the following convex problem (with coupling constraint)

maximize
{xi}

∑
i fi (xi)

subject to xi ∈ Xi∑
ihi (xi) ≤ c

∀i,

is decomposed into subproblems:

maximize
xi

fi (xi)− λThi (xi)

subject to xi ∈ Xi.
and the master problem

minimize
λ≥0

g (λ) =
∑
i gi (λ) + λTc

where gi (λ) is the optimal value of the ith subproblem.
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• The dual decomposition is in fact solving the dual problem instead

of the original primal one.

• The dual problem is always convex but we need convexity of the

original problem to have strong duality.

• To minimize the dual function g (λ): gradient/subgradient method,

which only requires the knowledge of subgradient of each gi (λ):

si (λ) = −hi (x?i (λ)) ,

where x?i (λ) is the optimal solution of the ith subproblem for a

given λ.
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Review: Primal Decomposition

• The following convex problem (with coupling variable y)

maximize
y,{xi}

∑
i fi (xi)

subject to xi ∈ Xi
Aixi ≤ y

y ∈ Y

∀i

is decomposed into the subproblems:
maximize

xi∈Xi
fi (xi)

subject to Aixi ≤ y

and the master problem
maximize

y∈Y

∑
i f

?
i (y)

where f?i (y) is the optimal value of the ith subproblem.
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• If the original problem is convex, then the subproblems as well as

the master problem are all convex.

• To maximize
∑
i f

?
i (y): a gradient/subgradient method, which only

requires the knowledge of subgradient of each f?i (y) given by

si (y) = λ?i (y)

where λ?i (y) is the optimal Lagrange multiplier corresponding to

the constraint Aixi ≤ y in the ith subproblem.

• The global subgradient is then s (y) =
∑
i si (y) =

∑
iλ

?
i (y).

• The subproblems can be locally solved with the knowledge of y.
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Indirect Primal/Dual Decompositions (I)

• Different problem structures are more suited for primal or dual

decompositions.

• We can change the structure and use either a primal or dual

decomposition for the same problem.

• Key ingredient: introduction of auxiliary variables.

• This will lead to different algorithms for same problem.
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Indirect Primal/Dual Decompositions (II)

• Consider the problem previously decomposed with a primal decom-

position:
maximize

y,{xi}

∑
i fi (xi)

subject to xi ∈ Xi
Aixi ≤ y

y ∈ Y.

∀i
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Indirect Primal/Dual Decompositions (III)

• It can also be solved with an indirect dual decomposition by first

introducing the additional variables {yi}:

maximize
y,{yi},{xi}

∑
i fi (xi)

subject to xi ∈ Xi
Aixi ≤ yi
yi = y

y ∈ Y.

∀i

• We have transformed the coupling variable y into a set of cou-

pling constraints yi = y which can be dealt with using a dual

decomposition.
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Indirect Primal/Dual Decompositions (IV)

• Consider now the problem previously decomposed with a dual de-

composition:

maximize
{xi}

∑
i fi (xi)

subject to xi ∈ Xi∑
ihi (xi) ≤ c.

∀i,
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Indirect Primal/Dual Decompositions (V)

• It can also be solved with an indirect primal decomposition by

introducing again additional variables {yi}:

maximize
{yi},{xi}

∑
i fi (xi)

subject to xi ∈ Xi
hi (xi) ≤ yi∑
i yi ≤ c.

∀i

• We have transformed the coupling constraint
∑
ihi (xi) ≤ c into a

coupling variable y =
[
yT1 , · · · ,yTN

]T
which can be dealt with using

a primal decomposition.
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Multilevel Primal/Dual Decompositions (I)

• Hierarchical and recursive application of primal/dual decompositions

to obtain smaller and smaller subproblems:

Master Problem

Subproblem 1

...

Secondary Master 

Problem

prices / resources

First Level

Decomposition

Second Level

Decomposition

Subproblem

Subproblem N

prices / resources

• Important technique that leads to alternatives of distributed archi-

tectures.
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Multilevel Primal/Dual Decompositions (II)

• Example: consider the following problem which includes both a

coupling variable and a coupling constraint:

maximize
y,{xi}

∑
i fi (xi,y)

subject to xi ∈ Xi∑
ihi (xi) ≤ c

Aixi ≤ y

y ∈ Y.

∀i
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Multilevel Primal/Dual Decompositions (III)

• Decomposion #1: first take a primal decomposition with respect to

the coupling variable y and then a dual decomposition with respect

to the coupling constraint
∑
ihi (xi) ≤ c. This would produce a

two-level optimization decomposition: a master primal problem, a

secondary master dual problem, and the subproblems.

• Decomposion #2: first take a dual decomposition and then a primal

one.
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Multilevel Primal/Dual Decompositions (IV)

• Example:
maximize

x
f0 (x)

subject to fi (x) ≤ 0

gi (x) ≤ 0.

∀i

• Decomposition #1 (dual-primal): first apply a full dual decomposi-

tion by relaxing both sets of constraints to obtain the dual function

g (λ,µ) and then a primal decomposition on the dual problem by

minimizing g first over µ and later over λ: minλminµ g (λ,µ).
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Multilevel Primal/Dual Decompositions (V)

min g( )

g( ) = minµ g( ,µ)

g( ,µ) = maxx L(x;( ,µ))

min
,µ g( ,µ)

g( ,µ) = maxx L(x;( ,µ))
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Multilevel Primal/Dual Decompositions (VI)

• Decomposition #2 (dual-dual): first apply a partial dual decompo-

sition by relaxing only one set of constraints, say fi (x) ≤ 0, ∀i,
obtaining the dual function g (λ) to be minimized by the master

problem. But to compute g (λ) for a given λ, the partial Lagrangian

has to be maximized subject to the remaining constraints gi (x) ≤ 0

∀i, for which yet another relaxation can be used.
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Multilevel Primal/Dual Decompositions (VII)

min g( )

g( ) = minµ g( ,µ)

g( ,µ) = maxx L(x;( ,µ))

min g( )

g( ) = max L(x; )
x:gi(x)≤0
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Order and Timescale of Updates

• Order of updates:

– Gauss-Seidel algorithm: optimize f (x1, · · · ,xN) sequentially.

– Jacobi algorithm: optimize f (x1, · · · ,xN) in parallel.

• Timescale of updates:

– Iterative update: gradient/subgradient methods

– One-shot update

– Several levels of decompositions: lowest levels updated on a faster

timescale than higher levels.
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Algorithms: Gradient/Subgradient Methods (I)

• After performing a decomposition, the objective function of the

resulting master problem may or may not be differentiable.

• For differentiable/nondifferentiable functions a gradient/subgradient

method is very convenient because of its simplicity, little require-

ments of memory usage, and amenability for parallel implementation.
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Algorithms: Gradient/Subgradient Methods (II)

• Consider
maximize

x
f0 (x)

subject to x ∈ X .

• Both the gradient and subgradient projection methods generate a

sequence of feasible points {x (t)} as

x (t+ 1) = [x (t) + α (t) s (t)]X

where s (t) is a gradient/subgradient of f0 at x (t), [·]X denotes the

projection onto X , and α (t) is the stepsize.
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Algorithms: Gradient/Subgradient Methods (III)

• Many results on convergence of the gradient/subgradient method

with different choices of stepsize:

– for a diminishing stepsize rule α (t) = 1+m
t+m , where m is a fixed

nonnegative number, the algorithm is guaranteed to converge to

the optimal value (assuming bounded gradients/subgradients).

– for a constant stepsize α (t) = α, more convenient for distributed

algorithms, the gradient algorithm converges to the optimal value

provided that the stepsize is sufficiently small (assuming that the

gradient is Lipschitz), whereas for the subgradient algorithm the

best value converges to within some neighborhood of the optimal

value (assuming bounded subgradients).
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Algorithms: Gauss-Seidel and Jacobi Methods

• Gauss-Seidel algorithm (block-coordinate descent algorithm): opti-

mize f (x1, · · · ,xN) sequentially:

x
(t+1)
k = argmax

xk
f
(
x
(t+1)
1 , · · · ,x(t+1)

k−1 ,xk,x
(t)
k+1, · · · ,x

(t)
N

)
where t is the index for a global iteration.

• Jacobi algorithm: optimize f (x1, · · · ,xN) in parallel:

x
(t+1)
k = argmax

xk
f
(
x
(t)
1 , · · · ,x(t)

k−1,xk,x
(t)
k+1, · · · ,x

(t)
N

)
.

• If the mapping defined by T (x) = x− γ∇f (x) is a contraction for

some γ, then
{
x(t)
}

converges to solution x? geometrically.
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Standard Algorithm for Basic NUM

• The standard dual-based algorithm is a one-level full dual decompo-

sition.

• Network with L links, each with capacity cl, and S sources trans-

mitting at rate xs. Each source s emits one flow, using a fixed set

of links L(s) in its path, and has a utility function Us (xs):

maximize
x≥0

∑
sUs (xs)

subject to
∑
s:l∈L(s) xs ≤ cl ∀l

• This problem is solved with a single-level dual decomposition tech-

nique.
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• Lagrangian:

L (x,λ) =
∑
s

Us (xs) +
∑
l

λl

cl − ∑
s:l∈L(s)

xs


=
∑
s

[Us (xs)− λsxs] +
∑
l

λlcl

where λs =
∑
l∈L(s) λl.

• Each source maximizes its Lagrangian:

x?s (λ
s) = argmax

xs≥0
[Us (xs)− λsxs] ∀s.
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• Master dual problem:

minimize
λ≥0

g (λ) =
∑
s gs (λ) + λTc

where gs (λ) = Ls (x
?
s (λ

s) , λs). To minimize the master problem a

subgradient method can be used:

λl (t+ 1) =

λl (t)− α
cl − ∑

s:l∈L(s)

x?s(λ
s (t))

+

∀l.
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Applic. 1: Power-Constrained Rate Allocation (I)

• Basic NUM problem but with variable link capacities {cl (pl)}:

maximize
x,p≥0

∑
sUs (xs)

subject to
∑
s:l∈L(s) xs ≤ cl (pl) ∀l∑
l pl ≤ PT .

• Very simple problem, but already contains sufficient elements such

that one can try different decompositions.

• We will consider: i) a primal decomposition with respect to the

power allocation and ii) a dual decomposition with respect to the

flow constraints.
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Applic. 1: Power-Constrained Rate Allocation (II)

• Primal decomposition: fix the power allocation p, the link capaci-

ties become fixed numbers and the problem reduces to a basic NUM

solved by dual decomposition.

• Master primal problem:

maximize
p≥0

U? (p)

subject to
∑
l pl ≤ PT ,

where U? (p) is the optimal objective value for a given p.

• Subgradient of U? (p) with respect to cl is given by the Lagrange

multiplier λl associated with the constraint
∑
s:l∈L(s) xs ≤ cl.
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Applic. 1: Power-Constrained Rate Allocation (III)

• Subgradient of U? (p) with respect to pl is given by λlc
′
l (pl).

• Subgradient method for the master primal problem:

p (t+ 1) =

p (t) + α

 λ?1 (p (t)) c′1 (p1 (t))
...

λ?L (p (t)) c′L (pL (t))



P

where [·]P denotes the projection onto P , {p : p ≥ 0,
∑
l pl ≤ PT},

which is a simplex.

• Due to the projection, this subgradient update cannot be performed

independently by each link and requires some centralized approach.
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Applic. 1: Power-Constrained Rate Allocation (IV)

• Projection: p = [p0]P is given by

pl =
(
p0l − γ

)+ ∀l

where waterlevel γ is chosen as the minimum nonnegative value

such that
∑
l pl ≤ PT .

• Only the computation of γ requires a central node since the update

of each power pl can be done at each link.
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Applic. 1: Power-Constrained Rate Allocation (V)

• Dual decomposition: relax the flow constraints
∑
s:l∈L(s) xs ≤

cl (pl):

maximize
x,p≥0

∑
s

[
Us (xs)−

(∑
l∈L(s) λl

)
xs

]
+
∑
l cl (pl)λl

subject to
∑
l pl ≤ PT .

• The master dual problem updates the λl’s as in the basic NUM.
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Applic. 1: Power-Constrained Rate Allocation (VI)

• The Lagrangian decomposes into one maximization for each source,

as in the basic NUM, plus the following maximization to update the

power allocation:

maximize
p≥0

∑
l λlcl (pl)

subject to
∑
l pl ≤ PT

which can be further decomposed via a second-level dual decompo-

sition yielding the following subproblems

maximize
pl≥0

λlcl (pl)− γpl
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Applic. 1: Power-Constrained Rate Allocation (VII)

with solution given by

pl = (c′l)
−1

(γ/λl)

and a secondary master dual problem that updates the dual variable

γ as

γ (t+ 1) =

[
γ (t)− α

(
PT −

∑
l

p?l (γ (t))

)]+
.
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Applic. 1: Power-Constrained Rate Allocation (VIII)

• Summary: We have obtained two different distributed algorithms

for power-constrained rate allocation NUM:

– primal-dual decomposition: master primal problem solved by a

subgradient power update, which needs a small central coordina-

tion for the waterlevel, and for each set of powers the resulting

NUM is solved via the standard dual-based decomposition.

∗ Two levels of decompositions: on the highest level there is a

master primal problem, on a second level there is a secondary

master dual problem, and on the lowest level the subproblems.
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Applic. 1: Power-Constrained Rate Allocation (IX)

– dual-dual decomposition: master dual problem solved with the

standard price update independently by each link and then, for

a given set of prices, each source solves its own subproblem and

the power allocation subproblem is solved with some central node

updating the price and each link obtaining the optimal power.

∗ Two levels of decompositions: on the highest level there is a

master dual problem, on a second level there are rate subprob-

lems and a secondary master dual problem, and on the lowest

level the power subproblems.
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Illustration of Decomp. of Network Utility Maxim.:
Cellular Downlink Power-Rate Control (I)

• Problem:
maximize
{ri,pi}

∑
iUi (ri)

subject to ri ≤ log (gipi)

pi ≥ 0∑
i pi ≤ PT .

∀i

• Decompositions: i) primal, ii) partial dual, iii) full dual.

• Many variants of full dual decomposition: the master problem is

minimize
λ≥0,γ≥0

g (λ, γ)

and can be solved as listed next.
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Illustration of Decomp. of Network Utility Maxim.:
Cellular Downlink Power-Rate Control (II)

1. Direct subgradient update of γ (t) and λ (t):

γ (t+ 1) =

[
γ (t)− α

(
PT −

∑
i

pi (t)

)]+
λ (t+ 1) = [λ (t)− α (log (gipi (t)))− ri (t)]+ .

2. Optimization of dual function g (λ, γ) with a Gauss-Seidel method

optimizing λ→ γ → λ→ γ → · · · (each λi is computed locally at

each subnode in parallel):

λi = U ′i (log (giλi/γ)) and γ =
∑
i

λi/PT .
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Illustration of Decomp. of Network Utility Maxim.:
Cellular Downlink Power-Rate Control (III)

3. Similar to 2), but optimizing λ1 → γ → λ2 → γ → · · · (λi’s are

not updated in parallel but sequentially).

4. Use an additional primal decomposition to minimize g (λ, γ) (mul-

tilevel decomposition): minimize g (γ) = infλ≥0 g (λ, γ) via a sub-

gradient algorithm (again, the λi’s are computed locally and in

parallel).

5. Similar to 4), but changing the order of minimization: minimize

g (λ) = infγ≥0 g (λ, γ) via a subgradient algorithm.
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Illustration of Decomp. of Network Utility Maxim.:
Cellular Downlink Power-Rate Control (IV)

6. Similarly to 5), but with yet another level of decomposition on top

of the primal decomposition of 5) (triple multilevel decomposition):

minimize g (λ) sequentially (Gauss-Seidel fashion) λ1 → λ2 → · · ·
(λi’s are updated sequentially).

7. Similar to 5) and 6), but minimizing g (λ) with in a Jacobi fashion

λ → λ → · · · (λi’s are updated in parallel). λ
(k+1)
i is obtained by

solving for λi in the following fixed-point equation:

giλi

exp
(
U ′−1i (λi)

) = γ − λ
(k)
i

PT
+
λi
PT
.
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Numerical Results

• Downlink power/rate control problem with 6 nodes with utilities

with utilities Ui (ri) = βi log ri. Evolution of λ4 for all 7 methods:

5 10 15 20 25 30 35 40 45 50
0

2

4

6

8

10

12

14

16

18

Evolution of λ
4
 for all methods

iteration

Method 1 (subgradient)
Method 2 (Gauss−Seidel for all lambdas and gamma)
Method 3 (Gauss−Seidel for each lambda and gamma sequentially)
Method 4 (subgradient for gamma and exact for all inner lambdas)
Method 5 (subgradient for all lambdas and exact for inner gamma)
Method 6 (Gauss−Seidel for all lambdas and exact for inner gamma)
Method 7 (Jacobi for all lambdas and exact for inner gamma)
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Applic. 2: QoS Rate Allocation (I)

• Consider a NUM problem with different QoS classes:

maximize
x,y(1),y(2)≥0

∑
sUs (xs)

subject to
∑
s∈Si:l∈L(s) xs ≤ y

(i)
l ∀l, i = 1, 2

y(1) + y(2) ≤ c

c
(i)
min ≤ y(i) ≤ c

(i)
max

• We will consider:

i) primal decomp. with respect to aggregate rate of each class

ii) dual decomp. with respect to total aggregate rate constraints of

each class.
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Applic. 2: QoS Rate Allocation (II)

• Primal-Dual Decomposition: fix aggregate rates y(1) and y(2)

and problem becomes two basic NUMs, for i = 1, 2:

maximize
x≥0

∑
s∈Si Us (xs)

subject to
∑
s∈Si:l∈L(s) xs ≤ y

(i)
l ∀l

where the fixed aggregate rates y
(i)
l play the role of the fixed link

capacities in the basic NUM.

• Set of differential prices for each QoS class i: λ(i).
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Applic. 2: QoS Rate Allocation (III)

• The master primal problem is

maximize
y(1),y(2)≥0

U?1
(
y(1)

)
+ U?2

(
y(2)

)
subject to y(1) + y(2) ≤ c

c
(i)
min ≤ y(i) ≤ c

(i)
max i = 1, 2

where U?i
(
y(i)
)

is the optimal objective value of the problem for

the ith class for a given y(i).

• Each link updates locally the aggregate rates y(i) and the prices λ(i)

(subgradient algorithm).
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Applic. 2: QoS Rate Allocation (IV)

• Master primal problem can now be solved with a subgradient method

by updating the aggregate rates as[
y(1) (t+ 1)

y(2) (t+ 1)

]
=

[[
y(1) (t)

y(2) (t)

]
+ α

[
λ?(1)

(
y(1) (t)

)
λ?(2)

(
y(2) (t)

) ]]
Y

where [·]Y denotes the projection onto the feasible convex set

Y ,
{ (

y(1),y(2)
)
: y(1) + y(2) ≤ c, c

(i)
min ≤ y(i) ≤ c

(i)
max i = 1, 2

}
.

• This feasible set decomposes into a Cartesian product for each

of the links: Y = Y1 × · · · × YL. Subgradient update can be

performed independently by each link simply with the knowledge of

its corresponding Lagrange multipliers λ
(1)
l and λ

(2)
l .
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Applic. 2: QoS Rate Allocation (V)

• Partial Dual Decomposition: dual decomposition by relaxing only

the flow constraints
∑
s∈Si:l∈L(s) xs ≤ y

(i)
l :

maximize
x,y(1),y(2)≥0

∑
s∈S1

[
Us (xs)−

(∑
l∈L(s) λl

)
xs

]
+
∑
s∈S2

[
Us (xs)−

(∑
l∈L(s) λl

)
xs

]
+λ(1)Ty(1) + λ(2)Ty(2)

subject to y(1) + y(2) ≤ c

c
(i)
min ≤ y(i) ≤ c

(i)
max i = 1, 2.

• Master dual problem updates the prices as usual (subgradient).
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Applic. 2: QoS Rate Allocation (VI)

• This problem decomposes into:

– one maximization for each source as in the basic NUM

– following maximization to update the aggregate rates:

maximize
y(1),y(2)≥0

λ(1)Ty(1) + λ(2)Ty(2)

subject to y(1) + y(2) ≤ c

c
(i)
min ≤ y(i) ≤ c

(i)
max i = 1, 2

which can be solved independently by each link.
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Applic. 2: QoS Rate Allocation (VII)

• Summary: We have obtained two different distributed algorithms

for rate allocation among QoS classes:

– primal-dual decomposition: master primal problem solved with

the subgradient update for the aggregate rate carried out indepen-

dently by each of the links and then, for a given set of aggregate

rates, the two resulting basic NUMs are independently solved via

the standard dual-based decomposition.

∗ Two levels of decompositions: on the highest level there is a

master primal problem, on a second level there is a secondary

master dual problem, and on the lowest level the subproblems.

There is no explicit signaling required.
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Applic. 2: QoS Rate Allocation (VIII)

– partial dual decomposition: master dual problem is solved

with the standard price update for each class which is carried

out independently by each link and then, for a given set of

prices, each source solves its own subproblem as in the canonical

NUM and subproblem for the aggregate rate of each class solved

independently by each link.

∗ Only one level of decomposition and no explicit signaling is

required.
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Applic. 2: Numerical Results QoS Rate Alloc. (I)

• Example with two classes (class 1 is aggressive U1 (x) = 12 log (x)

and U2 (x) = 10 log (x) and class 2 not aggressive U3 (x) = 2 log (x)

and U4 (x) = log (x)):

Source 1

Source 2

Source 3

Source 4

Class 1

Class 2

Destination
 5

3

2

3

2
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Applic. 2: Numerical Results QoS Rate Alloc. (II)
• With no QoS control, class 1 gets 4.5 out of the total available rate

of 5, leaving class 2 only with a rate of 0.5. This is precisely the

kind of unfair behavior that can be avoided with QoS control.

• We limit the rate of each class to 3.

0 50 100 150 200 250
0

1

2

3

4

5

6

7

8
Evolution of source rates with the primal−based algorithm with QoS

iteration

ra
te

Total
Class 1
Class 2
Source 1
Source 2
Source 3
Source 4
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Summary

• We have considered the design of networks based on general network

utility maximization.

• We have developed a systematic approach to obtain different dis-

tributed algorithms for network utility maximization.

• Each distributed algorithm has different characteristics in terms of

signalling, speed of convergence, complexity, robustness.

• For each particular application, we can compare the different possi-

bilities and choose the most convenient.
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