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© Problem Statement



Classification Problem

@ A set of input points with binary labels: x; e R — y; € {-1,1},i=1,...,N

@ How to classify the x;'s?
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Classification Problem

@ Separate the two classes using a linear model:
- T
y=p"x+po
@ We can classify as follows:

predict “Pos Class”, if sign (7) = +1
predict “Neg Class”, if sign (g) = —1

@ Thus, misclassification happens if sign (3) # y!
o Note that then the decision boundary is the hyperplane 87x + 5y = 0
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Classification Problem

@ Then our goal is to minimize the number of misclassifications:

C N
minimize >i=1 Ysign(a) v}

subjectto  ¢; = B x; + Bo, Vi

@ However, the objective loss function is nonconvex and nondifferentiable
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e What could we do?
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© Warm Up: Linear/Logistic Regression



© Warm Up: Linear/Logistic Regression
@ Linear Regression



Classification as Linear Regression

@ A straightforward idea is to do linear regression, i.e., replacing the misclassification loss
with the residual sum of squares loss:

C N . 2
minimize Y (U — vy
Bo,8,{9:} Zl_l (yz yZ)
subjectto  ¢; = BT x; + Bo, Vi

o Note that (9; — v:)* = (4: — v:)* - v? = (1 — witii)*.
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From s Function Point of View

o Misclassification loss 1 gy ()-y}: Squared error loss (f — v)? = (1 — yiii)?
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Decision Boundary
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© Warm Up: Linear/Logistic Regression

@ Regression with Huberized Loss



e Can we do better?
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@ Some idea?

Loss

— Misclassification
= = -Linear Reg: Squared Error

@ Can we find some better loss function approximation?
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Famous Huber Loss

@ Huber Loss (with parameter M):

[P ol < M
o) = {M<2 ol = 2) |a] > M

@ Select M = 2, define loss as ¢pup (1 — yy):

— Misclassification
= = -Linear Reg: Squared Error
—— Huber Loss

Loss
4 v e o o v @ w

Y. Feng and D. Palomar SVM 16 / 77



Famous Huber Loss

@ Actually, we don't need to penalize when yy > 0!
@ Define
¢hub (m) x>0

Qshubipos (l‘) = 0 <0

o Select M = 2, define loss as dpup_pos (1 — y7):

Misclassification
oF N = = -Linear Reg: Squared Error
M —— Class Huber

Loss
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Minimize the “Huberized’ Loss

@ Then, we take the “"Huberized" loss as the approximation and intend to minimize it:

L N N
minimize > ie1 Phub_pos (1 — yili)

subjectto §; = BYx; + By, Vi

where ¢nub pos () with M = 2 looks like:
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Decision Boundary
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© Warm Up: Linear/Logistic Regression

@ Logistic Regression



@ Can we find more approximations?
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Logistic Model

e Given a data point x € R™, model the probability of label y € {—1,+1} as (recall that

§=B"x+ bo): .
P(Y = = —
¥ =yh) = 1
@ Here, the function g (z) = H% is called logistic function:

logistic function
T T
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Logistic Model

@ The above probability formula amounts to modeling the log-odds ratio as linear model :

P (Y =1|x) L+ev T
1 :l — = =
BPY = 1) Bl ITRxE

o Classification rule:

predict “Pos Class”, if sign (g) = +1
predict “Neg Class”, if sign (g) = —1

@ The above classification rule is exactly the same as we wanted before!
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Negative Log-likelihood as Loss

@ Armed with logistic model, we can have the likelihood function:

N

,8750 HP —yz|Xz _H1_|_el—yi~?%

=1

@ The loss function can be defined as negative log-likelihood:

Loss (8, fo) = — log LH (B, fo) = Zlog( +e—yz"@i)
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Logistic Regression

@ Now, minimize the loss function (i.e., maximize the likelihood):
minimize Zf\il log (1 + e*yi-ﬁi)

Bo.B{9:}
subjectto ¢; = BYx; + Bo, Vi
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From Loss Function Point of View

o Misclassification loss 14y (5)-£y}: Squared error loss (§ — y)2; Class Huber
Ghub_pos (1 — yi)); Negative log-likelihood log (1 + e V)

—— Misclassification
= = -Linear Reg: Squared Error}{
—— Huber Class

= - Logistic Reg: neg log-LH ||

Loss
)
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Decision Boundary
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© Support Vector Machine (SVM)



© Support Vector Machine (SVM)
@ Linearly Separable SVM



Optimal Separating Hyperplane

@ So many hyperplanes can separate the two classes
e BUT, what is the optimal separating hyperplane?

@ Optimal separating hyperplane should:

o separate the two classes, and
e maximize the distance to the closest point from either class.
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Signed Distance

Y. Feng and D. Palomar

@ decision boundary:
BTx+ By =0
@ signed distance
1
— BT (x—x
[

1
:m (IBTX + 50)
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Maximize the Margin

@ Then the "margin” is defined as

1 T
By (8% + o)

o Now, maximize the distance to the closest point from either class

maximize M
Bo,B,M

subject to T yi (B7x; + Bo) > M, Vi
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Support Vector Machine

@ For any B and 3y satisfying these inequalities, any positively scaled multiple satisfies them

too, then arbitrarily set
1

181 = o

@ The above problem amounts to

minimize || 3|
0>

subjectto ; (,BTXZ- + Bo) >1, Vi
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Boundary and Support Vectors
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© Support Vector Machine (SVM)

@ Linearly Nonseparable SVM



@ The case we considered before is linearly separable

@ What if it's linearly nonseparable?
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Linearly Nonseparable Case
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Linearly Nonseparable Case

@ Relax the constraints by introducing positive slack variables &;'s:

yi (BTxi+ Bo) >1-&

@ And then penalize ), &; in the objective function:

m(inimi;}e % ||[5’H2 + Czi]\il &i

subjectto & >0, y; (B7x; + Bo) > 1 - &, Vi

@ Linearly separable case corresponds to C' = oo
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The SVM as a Penalization Method

@ Revisit the primal problem:

L. 1 2 N
minimize 5 +C> L&
ninimize }19]° + C T, ¢
subjectto & >0, y; (B7x; + fo) > 1—&, Vi

@ Consider the optimization problem:

inimi N A1F A 2
minimize =yl + 58
Bo.B, {5} 2=t [ =yl + 5 118
subjectto §;i = B7x; + fo, Vi

where loss is Zfil [1 — ;%] (called hinge loss)

@ Two problems are equivalent with A = 1/C (linearly separable case corresponds to A = 0)
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From Loss Function Point of View

o Misclassification loss 1 gy ()-y}: Squared error loss (7 — y)?; Class Huber
Ghub_pos (1 — y); Negative log-likelihood loss log (1 + e~¥7); Hinge loss [1 — y;§] "

— Misclassification

- - -Linear Reg: Squared Error}
—— Class Huber
== Logistic Reg: neg log-LH ||

—— SVM: hinge loss

Loss
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Solving SVM |

@ The Lagrange function is
1 N
L (B, Bo, &is i, i) =3 18]1* + C’Z&
i=1

N N
— Zm& - Z o [y (B'xi + Bo) — (1 - &)]
i1 i—1

where a; > 0 and p; > 0, Vi, are dual variables
@ Setting derivatives w.r.t. 3, o, {&;} to zero

N N
B=> aiixi, 0= awi, o=C—p Vi
i=1 i=1
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Solving SVM |1

@ Dual function:

g (aiuui) = inf L (/6 B07§’Laa’uu’b)

7ﬁ07{£1}
N
77220"%%%" XJJFCZ& > (ai+ i) &
i=1 j=1 i—1
_ Zzaza]ylij Xj — BgZa,yl -1-2%
1j=1
N HR
Z 7722‘%%9@%" X
=1 i=1 j=1
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Solving SVM I

@ Dual problem:

.. N 1 N N T
maximize Y ., oy — 3 doict Zj:1 Q0 Yy X, X

{ei}

subjectto 0< a; < C, Vi
Ei]\i1 o;y; = 0.

@ Dual problem is a QP! (well, of course...)

@ Vector-matrix representation of the objective:

1
1'a — Sa (Diag (y) X' XDiag (y))
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KKT Conditions

@ KKT equations characterize the solution to the primal and dual problems

& >0, y; (B7%; + Bo) > 1— &, Vi

N
0=> aiy, 0<a; <C, Vi
i=1
N
B =) aiixi, s =C — p, Vi
i=1

0= &, a; [yi (BT +Bo) —(1—&)] =0, Vi
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Finding Decision Boundary

o Given optimal dual a]'s, we have:

N

* *

B ZE ;Y.
i1

@ Support Vectors: those observations i with nonzero o
o Forany 0 < aj < C, we have §; =0, and y;, (Zfil aryixIx; + 5()) =1, hence we can
solve for /3

@ Decision function becomes:

N
D (x) = sign (7) = sign (8*Tx + 5) = sign (Z atyxlx + 53)

=1

@ Observation: in the dual problem and the above decision function, the only operation on
X;'s is the inner product!

Y. Feng and D. Palomar SVM 45 / 77



Decision Boundary

+ PosClass
O Neg Class

——SWM

Za -2 -1 0 1 2 3 4 5

e Large C: focus attention more on points near the boundary = small margin

@ Small C: involves data further away = large margin
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Decision Boundary: Reuvisit Linearly Separable Case
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Decision Boundary: Linearly Nonseparable Case

[1 == Logistic Reg
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© Support Vector Machine (SVM)

@ Nonlinear SVM



@ For the linearly separable/nonseparable cases, so far SVM works well!

@ But, what if the linear decision boundary doesn't work any more?
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Nonlinear Decision Surface

:
¥ ot R
+ & +~0+++4' + o+t oy
£ F
I H #+++“*++$ }H++i+ ++¢ ?+$&+ +
vor F g gt FERIE LTS 1
+ + + o+ st + +
e ot Wi S0 G tihy
4*++t++++ 0o o s oRo o0 +Ii £
0.8 . +@O©%Qoo% ++._,. é @00 | 4 l+ + 4
W 1 0,050%8 T O%é)%o% T
HHEO Fols o +"’I 3 6’00++
T o, ol o
+ o el
o7p gt oy %D%ggj 8 o o 8% oog
++ha &, B6 % folo %%o
it @0 D g P L8 ° % o °
B+ e Q%00 0 000 T, 9.88% 00
06 B $ooP 4 FiE O g
+ "y 000 © 0w #4-:*'@‘ R & CXCI P
+ +I + F o@oog ++++*i+ @,.6 50 W
+
GRS T A P A
+ + +
5F o ]
05 + "’t_g. ® &t 8 © ‘Ff“."'
+¥ oo + f % 8%
ol ooé £he 896 © 8% O g
04 | +I\ | % | **#\. I | © | +  ++ ki
“o 01 02 03 04 05 06 07 08 09 1
Y. Feng and D. Palomar SVM 52 /77



Feature Transformation

Naive method:

@ use a curve instead of a line = not efficient
Feature Transformation:

@ pre-process the data with 4 : R" — H, x +— h (x)

@ R™: input space; H: feature space
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After Feature Transformation

@ Using the features h (x) as inputs:

g=B"h(x)+ B

@ Dual problem:

magin;ize Yoy — 330 Y0 asagyayih (xi) T hi(x;)
a;

subject to Z,fil oy =0, 0<a; <C, Vi
@ The decision function:
N
D (x) =sign (87 h (x) + Bo) = sign (Z aiyih (x;)" b (x) + 50)
i=1

where 3y can be determined, as before, by solving y;1; = 1 for any x; for which
O<ao; <C
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Kernelized SVM

@ In fact, we need not specify the transformation h (x) at all, but require only knowledge of
the kernel function that computes inner products in the transformed space, i.e.:

K (xi,xj) £ h ()" h (%))
@ Dual problem:

maximize Zfil o — %Zﬁl Zjvzl a0y K (%4, %)
a;

subject to Zfil aiy; =0, 0< a; <C, Vi

@ The decision function:

—Slgn <Z o,y K Xza + BO)

where 3y can be determined, as before, by solving y;9; = 1 for any x; for which
O<a; <C
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Kernel

e K should be a symmetric positive (semi-) definite function

@ The previous linearly SVM corresponds to K (x;,%;) = xI x;
@ Popular kernels:

pth Degree polynomial: K (x;,x;) = (1 —i—szxj)p

. . . . 2
Gaussian radial kernel: K (x;,x;) = e Ix=ll /o?
Neural network: K (x;,%;) = tanh (Kzlxiij + /@2)
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Steps for Applying SVM

Steps:
@ In-sample training:
@ Select the parameter C

@ Select the kernel function K (x;,x;) and related parameters
© Solve the dual problem to obtain o

0 Compute 5, and then classify according to sign (ZZI\LI afy K (x4,%) + 55)
@ Out-of-sample testing:
@ Use the trained model to test out-of-samples

@ If the out-of-sample test is not good, adjust parameter C, or kernels, and re-train the model
until the out-of-sample result is good enough (in practice, one needs a cross-validation set)
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Deci

sion Boundary by Gaussian Radial Kern
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© Support Vector Machine (SVM)

@ Multiclass Learning



More than two classes?

@ What if there are more than TWO classes?
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Multiclass Classification Setup

o Labels: {-1,+1} —{1,2,..., K}
o Classification decision rule: f:x € R" — {1,2,..., K}
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Multiclass Classification Methods

@ Main ideas:
o Decompose the multiclass classification problem into multiple binary classification problems
o Use the majority voting principle or a combined decision from a committee to predict the
label
e Common approaches:

o One-vs-Rest (One-vs-All) approach
o One-vs-One (Pairwise, All-vs-All) approach
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One-vs-Rest Approach

Steps:
@ Solve K different binary problems: classify class ¢ as +1 versus the rest classes for all
je{l,...,K}\ias —1
@ Assign a test sample to the class arg max; f; (x), where f; (x) is the solution from the i-th
problem
Properties:
@ Simple to implement, performs well in practice

o Not optimal (asymptotically)
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One-vs-Rest Example: Step 1, training

Class 1 v.s. Class 283
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Class 3 v.s. Class 182
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One-vs-Rest Example: Step 2, test

o Test pointx=[0 2 ]T, by f; (x) = x'3" + Bi, we have f (x) = —1.0783,
fa (x) = 0.5545, and f3 (x) = —2.2560

@ Assign [ 0 2 ]T to class 2!

T T T T
o + Class 1
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One-vs-One Approach

Steps:

O Solve 5 > different binary problems: classify class i as +1 versus each class j # i as
—1. Each classifier is called f;;

@ For prediction at a point, each classifier is queried once and issues a vote. The class with
the maximum number of votes is the winner

Properties:
@ Training process is efficient: small binary problems

@ There are too many problems when K is large (If K = 10, we need to train 45 binary
classifiers)

@ Simple to implement, performs competitively in practice
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One-vs-One Example: Step 1, training

Class 1v.s. Class 2
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One-vs-One Example: Step 1, training...

Class 2 v.s. Class 3
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One-vs-One Example: Step 2, test

® The same test point x = [ 0 2 ]T:

e fi2(x) = —0.7710 < 0, vote to class 2
o fa3(x) =1.0336 > 0, vote to class 2
o fi3(x) =0.7957 > 0, vote to class 1

@ Conclusion: class 2 wins!

+ Class1

O Class2

* Class3
——Class 1vs 2
~——— Class 2vs 3|
——Class 1vs3
O Test Sample|
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e Application: Multiclass Image Classification



Application: Histogram-based Image Classification

@ Multiclass: air shows, bears, Arabian horses, night scenes, and several more classes not
shown here
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App: Histogram-based Image Multi-Classification, Modeling

Why not put image pixels into a vector? Drawbacks:

o large size

@ lack of invariance with respect to translations
Histogram-based Image representation

@ color space: Hue-Saturation-Value (HSV)

@ # of bins per color component = 16

o x € R*096: histogram of the picture, dimension = 163 = 4096

e y € {airshows, bears,...}: the class labels
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App: Histogram-based Image Multi-Classification, SVM

Applied SVMs:
e linear SVM
o Poly 2: K (x;,x;) = (1+ X;er)Q
e Radial basis function
K (xi,%;) = e PA(xi %)
where the distance measure d (x;,%;) can be

o Gaussian: d(x;,%;) = [|x; — xj||2
o Laplacian (¢, distance): d(x;,%;) = |x; — x|
) x93 ()
i j
o X d(xix5) =2 TP P
3 J
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App: Histogram-based Image Multi-Classification, Result

Criteria: error rate in percentage
e Benchmark, K-nearest neighbor (KNN) method

e SVM

] Database \ KNN ¢ \ KNN y?

Corel14

47.7

26.5

Corel7

51.4

35.4

’ Database ‘ linear ‘ Poly 2 ‘

Radial basis function

Gaussian | Laplacian | x?
Corel14 36.3 33.6 28.8 14.7 14.7
Corel7 42.7 38.9 32.2 20.5 21.6
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For Further Reading

¥ Trevor Hastie, Robert Tibshirani, and Jerome Friedman,
The elements of statistical learning.
Springer New York, 2009.

[@ Olivier Chapelle, Patrick Haffner, and Vladimir N. Vapnik,
“Support vector machines for histogram-based image classification,”
IEEE Transactions on Neural Networks. 10(5):1055-1044, 1999.



For more information visit:

https://www.danielppalomar.com
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