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Classification Problem

A set of input points with binary labels: xi ∈ Rn → yi ∈ {−1, 1}, i = 1, . . . , N

How to classify the xi’s?
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Classification Problem

Separate the two classes using a linear model:

ŷ = βTx+ β0

We can classify as follows:{
predict “PosClass”, if sign (ŷ) = +1

predict “NegClass”, if sign (ŷ) = −1

Thus, misclassification happens if sign (ŷ) 6= y!
Note that then the decision boundary is the hyperplane βTx+ β0 = 0
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Classification Problem

Then our goal is to minimize the number of misclassifications:

minimize
β0,β,{ŷi}

∑N
i=1 1{sign(ŷi)6=yi}

subject to ŷi = βTxi + β0, ∀i

However, the objective loss function is nonconvex and nondifferentiable
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What could we do?
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Classification as Linear Regression

A straightforward idea is to do linear regression, i.e., replacing the misclassification loss
with the residual sum of squares loss:

minimize
β0,β,{ŷi}

∑N
i=1 (ŷi − yi)

2

subject to ŷi = βTxi + β0, ∀i

Note that (ŷi − yi)2 = (ŷi − yi)2 · y2i = (1− yiŷi)2.
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From Loss Function Point of View

Misclassification loss 1{sign(ŷ) 6=y}; squared error loss (ŷ − y)2 = (1− yiŷi)2
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Decision Boundary
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Can we do better?
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Some idea?
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L
o

s
s

 

 

Misclassification

Linear Reg: Squared Error

Can we find some better loss function approximation?
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Famous Huber Loss

Huber Loss (with parameter M):

φhub (x) =

{
|x|2 |x| < M

M (2 |x| −M) |x| ≥M

Select M = 2, define loss as φhub (1− yŷ):
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Famous Huber Loss

Actually, we don’t need to penalize when yŷ > 0!
Define

φhub_pos (x) =

{
φhub (x) x ≥ 0

0 x < 0

Select M = 2, define loss as φhub_pos (1− yŷ):
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Minimize the “Huberized” Loss

Then, we take the “Huberized” loss as the approximation and intend to minimize it:

minimize
β0,β,{ŷi}

∑N
i=1 φhub_pos (1− yiŷi)

subject to ŷi = βTxi + β0, ∀i

where φhub_pos (x) with M = 2 looks like:
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Decision Boundary
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Can we find more approximations?
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Logistic Model

Given a data point x ∈ Rn, model the probability of label y ∈ {−1,+1} as (recall that
ŷ = βTx+ β0):

P (Y = y|x) = 1

1 + e−y·ŷ

Here, the function g (z) = 1
1+e−z is called logistic function:
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Logistic Model

The above probability formula amounts to modeling the log-odds ratio as linear model ŷ:

log
P (Y = 1|x)
P (Y = −1|x)

= log
1 + eŷ

1 + e−ŷ
= ŷ = βTx+ β0

Classification rule: {
predict “PosClass”, if sign (ŷ) = +1

predict “NegClass”, if sign (ŷ) = −1

The above classification rule is exactly the same as we wanted before!
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Negative Log-likelihood as Loss

Armed with logistic model, we can have the likelihood function:

LH (β, β0) =

N∏
i=1

P (Y = yi|xi) =
N∏
i=1

1

1 + e−yi·ŷi

The loss function can be defined as negative log-likelihood:

Loss (β, β0) = − logLH (β, β0) =

N∑
i=1

log
(
1 + e−yi·ŷi

)
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Logistic Regression

Now, minimize the loss function (i.e., maximize the likelihood):

minimize
β0,β,{ŷi}

∑N
i=1 log

(
1 + e−yi·ŷi

)
subject to ŷi = βTxi + β0, ∀i
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From Loss Function Point of View

Misclassification loss 1{sign(ŷ) 6=y}; squared error loss (ŷ − y)2; Class Huber
φhub_pos (1− yŷ); Negative log-likelihood log

(
1 + e−y·ŷ

)
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Decision Boundary
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Optimal Separating Hyperplane

So many hyperplanes can separate the two classes
BUT, what is the optimal separating hyperplane?
Optimal separating hyperplane should:

separate the two classes, and
maximize the distance to the closest point from either class.
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Signed Distance

β

||β||

x0

x

βT
x+ β0 = 0

1
||β|| β

T (x− x0)

decision boundary:

βTx+ β0 = 0

signed distance

1

‖β‖
βT (x− x0)

=
1

‖β‖
(
βTx+ β0

)
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Maximize the Margin

Then the “margin” is defined as

1

‖β‖
y
(
βTx+ β0

)
Now, maximize the distance to the closest point from either class

maximize
β0,β,M

M

subject to 1
‖β‖yi

(
βTxi + β0

)
≥M, ∀i
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Support Vector Machine

For any β and β0 satisfying these inequalities, any positively scaled multiple satisfies them
too, then arbitrarily set

‖β‖ = 1

M

The above problem amounts to

minimize
β0,β

‖β‖

subject to yi
(
βTxi + β0

)
≥ 1, ∀i
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Boundary and Support Vectors
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The case we considered before is linearly separable

What if it’s linearly nonseparable?
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Linearly Nonseparable Case
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Linearly Nonseparable Case

Relax the constraints by introducing positive slack variables ξi’s:

yi
(
βTxi + β0

)
≥ 1− ξi

And then penalize
∑

i ξi in the objective function:

minimize
β0,β,{ξi}

1
2 ‖β‖

2 + C
∑N

i=1 ξi

subject to ξi ≥ 0, yi
(
βTxi + β0

)
≥ 1− ξi, ∀i

Linearly separable case corresponds to C =∞
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The SVM as a Penalization Method

Revisit the primal problem:

minimize
β0,β,{ξi}

1
2 ‖β‖

2 + C
∑N

i=1 ξi

subject to ξi ≥ 0, yi
(
βTxi + β0

)
≥ 1− ξi, ∀i

Consider the optimization problem:

minimize
β0,β,{ŷi}

∑N
i=1 [1− yiŷi]

+ + λ
2 ‖β‖

2

subject to ŷi = βTxi + β0, ∀i

where loss is
∑N

i=1 [1− yiŷi]
+ (called hinge loss)

Two problems are equivalent with λ = 1/C (linearly separable case corresponds to λ = 0)
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From Loss Function Point of View

Misclassification loss 1{sign(ŷ) 6=y}; squared error loss (ŷ − y)2; Class Huber
φhub_pos (1− yŷ); Negative log-likelihood loss log

(
1 + e−y·ŷ

)
; Hinge loss [1− yiŷi]+
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Solving SVM I

The Lagrange function is

L (β, β0, ξi, αi, µi) =
1

2
‖β‖2 + C

N∑
i=1

ξi

−
N∑
i=1

µiξi −
N∑
i=1

αi
[
yi
(
βTxi + β0

)
− (1− ξi)

]
where αi ≥ 0 and µi ≥ 0, ∀i, are dual variables

Setting derivatives w.r.t. β, β0, {ξi} to zero

β =

N∑
i=1

αiyixi, 0 =

N∑
i=1

αiyi, αi = C − µi ∀i
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Solving SVM II

Dual function:

g (αi, µi) = inf
β,β0,{ξi}

L (β, β0, ξi, αi, µi)

=
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj + C

N∑
i=1

ξi −
N∑
i=1

(αi + µi) ξi

−
N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj − β0

N∑
i=1

αiyi +

N∑
i=1

αi

=

N∑
i=1

αi −
1

2

N∑
i=1

N∑
j=1

αiαjyiyjx
T
i xj
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Solving SVM III

Dual problem:

maximize
{αi}

∑N
i=1 αi −

1
2

∑N
i=1

∑N
j=1 αiαjyiyjx

T
i xj

subject to 0 ≤ αi ≤ C, ∀i∑N
i=1 αiyi = 0.

Dual problem is a QP! (well, of course...)

Vector-matrix representation of the objective:

1Tα− 1

2
αT
(
Diag (y)XTXDiag (y)

)
α
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KKT Conditions

KKT equations characterize the solution to the primal and dual problems

ξi ≥ 0, yi
(
βTxi + β0

)
≥ 1− ξi, ∀i

0 =

N∑
i=1

αiyi, 0 ≤ αi ≤ C, ∀i

β =

N∑
i=1

αiyixi, αi = C − µi, ∀i

0 = µiξi, αi
[
yi
(
βTxi + β0

)
− (1− ξi)

]
= 0, ∀i
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Finding Decision Boundary

Given optimal dual α?i ’s, we have:

β? =

N∑
i=1

α?i yixi.

Support Vectors: those observations i with nonzero α?i
For any 0 < α?j < C, we have ξj = 0, and yj

(∑N
i=1 α

?
i yix

T
i xj + β0

)
= 1, hence we can

solve for β?0
Decision function becomes:

D (x) = sign (ŷ) = sign
(
β?Tx+ β?0

)
= sign

(
N∑
i=1

α?i yix
T
i x+ β?0

)

Observation: in the dual problem and the above decision function, the only operation on
xi’s is the inner product!
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Decision Boundary
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Decision Boundary: Revisit Linearly Separable Case
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Decision Boundary: Linearly Nonseparable Case

−3 −2 −1 0 1 2 3 4 5
−6

−4

−2

0

2

4

6

 

 

Pos Class

Neg Class

Linear Reg

Reg with Huber

Logistic Reg

SVM C=10

Support Lines

Y. Feng and D. Palomar SVM 49 / 77



Outline

1 Problem Statement

2 Warm Up: Linear/Logistic Regression
Linear Regression
Regression with Huberized Loss
Logistic Regression

3 Support Vector Machine (SVM)
Linearly Separable SVM
Linearly Nonseparable SVM
Nonlinear SVM
Multiclass Learning

4 Application: Multiclass Image Classification



For the linearly separable/nonseparable cases, so far SVM works well!
But, what if the linear decision boundary doesn’t work any more?
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Nonlinear Decision Surface

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
0.4

0.5

0.6

0.7

0.8

0.9

1

Y. Feng and D. Palomar SVM 52 / 77



Feature Transformation

Naive method:
use a curve instead of a line ⇒ not efficient

Feature Transformation:
pre-process the data with h : Rn 7→ H, x 7→ h (x)

Rn: input space; H: feature space

h(x)=
[
x21 x22

]T
=============⇒
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After Feature Transformation

Using the features h (x) as inputs:

ŷ = βTh (x) + β0

Dual problem:

maximize
{αi}

∑N
i=1 αi −

1
2

∑N
i=1

∑N
j=1 αiαjyiyjh (xi)

T h (xj)

subject to
∑N

i=1 αiyi = 0, 0 ≤ αi ≤ C, ∀i

The decision function:

D (x) = sign
(
βTh (x) + β0

)
= sign

(
N∑
i=1

αiyih (xi)
T h (x) + β0

)

where β0 can be determined, as before, by solving yiŷi = 1 for any xi for which
0 < αi < C
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Kernelized SVM
In fact, we need not specify the transformation h (x) at all, but require only knowledge of
the kernel function that computes inner products in the transformed space, i.e.:

K (xi,xj) , h (xi)
T h (xj)

Dual problem:

maximize
{αi}

∑N
i=1 αi −

1
2

∑N
i=1

∑N
j=1 αiαjyiyjK (xi,xj)

subject to
∑N

i=1 αiyi = 0, 0 ≤ αi ≤ C, ∀i

The decision function:

D (x) =sign

(
N∑
i=1

αiyiK (xi,x) + β0

)
where β0 can be determined, as before, by solving yiŷi = 1 for any xi for which
0 < αi < C
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Kernel

K should be a symmetric positive (semi-) definite function
The previous linearly SVM corresponds to K (xi,xj) , xTi xj

Popular kernels:

pth Degree polynomial: K (xi,xj) =
(
1 + xTi xj

)p
Gaussian radial kernel: K (xi,xj) = e−‖xi−xj‖2/σ2

Neural network: K (xi,xj) = tanh
(
κ1x

T
i xj + κ2

)
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Steps for Applying SVM

Steps:
1 In-sample training:

1 Select the parameter C
2 Select the kernel function K (xi,xj) and related parameters
3 Solve the dual problem to obtain α?

i

4 Compute β?
0 , and then classify according to sign

(∑N
i=1 α

?
i yiK (xi,x) + β?

0

)
2 Out-of-sample testing:

1 Use the trained model to test out-of-samples
2 If the out-of-sample test is not good, adjust parameter C, or kernels, and re-train the model

until the out-of-sample result is good enough (in practice, one needs a cross-validation set)
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Decision Boundary by Gaussian Radial Kernel
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More than two classes?

What if there are more than TWO classes?
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Multiclass Classification Setup

Labels: {−1,+1} → {1, 2, . . . ,K}
Classification decision rule: f : x ∈ Rn 7→ {1, 2, . . . ,K}
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Multiclass Classification Methods

Main ideas:
Decompose the multiclass classification problem into multiple binary classification problems
Use the majority voting principle or a combined decision from a committee to predict the
label

Common approaches:
One-vs-Rest (One-vs-All) approach
One-vs-One (Pairwise, All-vs-All) approach
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One-vs-Rest Approach

Steps:
1 Solve K different binary problems: classify class i as +1 versus the rest classes for all
j ∈ {1, . . . ,K} \i as −1

2 Assign a test sample to the class argmaxi fi (x), where fi (x) is the solution from the i-th
problem

Properties:
Simple to implement, performs well in practice
Not optimal (asymptotically)
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One-vs-Rest Example: Step 1, training
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One-vs-Rest Example: Step 1, training...
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One-vs-Rest Example: Step 2, test

Test point x =
[
0 2

]T , by fi (x) = xTβi + βi0, we have f1 (x) = −1.0783,
f2 (x) = 0.5545, and f3 (x) = −2.2560
Assign

[
0 2

]T to class 2!
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One-vs-One Approach

Steps:

1 Solve
(
K
2

)
different binary problems: classify class i as +1 versus each class j 6= i as

−1. Each classifier is called fij
2 For prediction at a point, each classifier is queried once and issues a vote. The class with

the maximum number of votes is the winner
Properties:

Training process is efficient: small binary problems
There are too many problems when K is large (If K = 10, we need to train 45 binary
classifiers)
Simple to implement, performs competitively in practice
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One-vs-One Example: Step 1, training
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One-vs-One Example: Step 1, training...
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One-vs-One Example: Step 2, test

The same test point x =
[
0 2

]T :
f12 (x) = −0.7710 < 0, vote to class 2
f23 (x) = 1.0336 > 0, vote to class 2
f13 (x) = 0.7957 > 0, vote to class 1

Conclusion: class 2 wins!
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Application: Histogram-based Image Classification

Multiclass: air shows, bears, Arabian horses, night scenes, and several more classes not
shown here 1058 IEEE TRANSACTIONS ON NEURAL NETWORKS, VOL. 10, NO. 5, SEPTEMBER 1999

Fig. 1. Corel14: each row includes images from the following seven categories: air shows, bears, Arabian horses, night scenes, elephants, bald eagles,
cheetahs-leopards-jaguars.

Encouraged by the positive results obtained with ,
we looked at generalized forms of RBF kernels

where can be chosen to be any distance in the input
space. In the case of images as input, thenorm seems to
be quite meaningful. But as histograms are discrete densities,
more suitable comparison functions exist, especially the
function, which has been used extensively for histogram
comparisons [15]. We use here a symmetrized approximation

of

It is not known if the kernel satisfies Mercer’s condition.1

Another obvious alternative is the distance, which gives
a Laplacian RBF

1It is still possible apply the SVM training procedure to kernels that do not
satisfy Mercer’s condition. What is no longer guaranteed is that the optimal
hyperplane maximizes some margin in a hidden space.
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App: Histogram-based Image Multi-Classification, Modeling

Why not put image pixels into a vector? Drawbacks:
large size
lack of invariance with respect to translations

Histogram-based Image representation
color space: Hue-Saturation-Value (HSV)
# of bins per color component = 16

x ∈ R4096: histogram of the picture, dimension = 163 = 4096

y ∈ {airshows, bears, . . . }: the class labels
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App: Histogram-based Image Multi-Classification, SVM

Applied SVMs:
linear SVM
Poly 2: K (xi,xj) =

(
1 + xTi xj

)2
Radial basis function

K (xi,xj) = e−ρd(xi,xj)

where the distance measure d (xi,xj) can be
Gaussian: d (xi,xj) = ‖xi − xj‖2
Laplacian (`1 distance): d (xi,xj) = |xi − xj |

χ2: d (xi,xj) =
∑

k

(
x
(k)
i −x

(k)
j

)2

x
(k)
i +x

(k)
j
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App: Histogram-based Image Multi-Classification, Result

Criteria: error rate in percentage
Benchmark, K-nearest neighbor (KNN) method

Database KNN `2 KNN χ2

Corel14 47.7 26.5

Corel7 51.4 35.4

SVM

Database linear Poly 2 Radial basis function
Gaussian Laplacian χ2

Corel14 36.3 33.6 28.8 14.7 14.7

Corel7 42.7 38.9 32.2 20.5 21.6
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For Further Reading

Trevor Hastie, Robert Tibshirani, and Jerome Friedman,
The elements of statistical learning.
Springer New York, 2009.

Olivier Chapelle, Patrick Haffner, and Vladimir N. Vapnik,
“Support vector machines for histogram-based image classification,”
IEEE Transactions on Neural Networks. 10(5):1055–1044, 1999.



Thanks

For more information visit:

https://www.danielppalomar.com
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