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Majorization-Minimization

Consider the following presumably difficult optimization problem:

minimize
x

f (x)
subject to x ∈ X ,

with X being the feasible set and f (x) being continuous.
Idea: successively minimize a more managable surrogate function u(x, xk):

xk+1 = arg min
x∈X

u(x, xk),

hoping the sequence of minimizers {xk} will converge to optimal x⋆.
Question: how to construct u(x, xk)?
Answer: that’s more like an art (Sun et al. 2017)1.

1Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms in signal processing,
communications, and machine learning,” IEEE Trans. Signal Processing, vol. 65, no. 3, pp. 794–816, 2017.
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Iterative algorithm

x(k)x(k)

f (x)f (x)

u(x; x(k))u(x; x(k))
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Iterative algorithm

x(k)x(k) x(k+1)x(k+1)

f (x)f (x)

u(x; x(k))u(x; x(k))
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Iterative algorithm

x(k)x(k) x(k+1)x(k+1) x(k+2)x(k+2)

f (x)f (x)

u(x; x(k))u(x; x(k))

u(x; x(k+1))u(x; x(k+1))
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Surrogate/majorizer
Construction rule of the majorizing function:

u (y, y) = f (y) , ∀y ∈ X (A1)
u (x, y) ≥ f (x) , ∀x, y ∈ X (A2)
u′ (x, y; d)

∣∣
x=y = f ′ (y; d) , ∀d with y + d ∈ X (A3)

u (x, y) is continuous in x and y (A4)

x(k)x(k) x(k+1)x(k+1) x(k+2)x(k+2)

f (x)f (x)

u(x; x(k))u(x; x(k))

u(x; x(k+1))u(x; x(k+1))
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Algorithm

Algorithm MM
Set k = 0 and initialize with a feasible point x0 ∈ X .
repeat

xk+1 = arg minx∈X u(x, xk)
k← k + 1

until convergence
return xk

Property of MM: {f (xk)} is nonincreasing, i.e., f (xk+1) ≤ f (xk).
That means that {f (xk)} → p⋆, but what about the convergence of the iterates {xk}?
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Technical preliminaries
Distance from a point to a set:

d (x,S) = inf
s∈S
∥x− s∥ .

Limit point: x̄ is a limit point of {xk} if there exists a subsequene of {xk} that converges
to x̄. Note that every bounded sequence in Rn has a limit point (or convergent
subsequence).
Directional derivative: Let f : X → R be a function, where X ⊆ Rm is a convex set.
The directional derivative of f at point x in the direction d is defined by

f ′ (x; d) ≜ lim inf
λ↓0

f (x + λd)− f (x)
λ

.

Stationary point: x ∈ X is a stationary point of f if
f ′ (x; d) ≥ 0, ∀d such that x + d ∈ X .

A stationary point may be a local min, a local max., or a saddle point.
If X = Rn and f is differentiable, then stationarity means ∇f (x).
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Convergence
The following gives the convergence of the MM algorithm to a stationary point (Razaviyayn et
al. 2013)2.

Theorem
Suppose X is convex. Under assumptions A1-A4, every limit point of the sequence {xk} is a
stationary point of the original problem.

If we further assume that the level set X 0 =
{
x|f (x) ≤ f

(
x0)} is compact, then

lim
k→∞

d
(
xk,X ⋆

)
= 0,

where X ⋆ is the set of stationary points.
The case of nonconvex X has to be considered on a case by case basis (and it is usually
manageable).

2M. Razaviyayn, M. Hong, and Z. Luo, “A unified convergence analysis of block successive minimization
methods for nonsmooth optimization,” SIAM J. Optim., vol. 23, no. 2, pp. 1126–1153, 2013.
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Nonnegative Least Squares

Consider the following nonnegative LS problem:

minimize
x≥0

∥Ax− b∥22

where b ∈ Rm
+, b ̸= 0, and A ∈ Rm×n

++ .

Observe that this problem cannot be solved with the conventional LS solution
x = (ATA)−1ATb due to the nonnegativity constraints.
The problem is a convex quadratic problem, so one could use some QP solver; however,
we will develop a simple iterative algorithm based on MM.
The critical step in the application of MM is to find a convenient majorizer of the
function ∥Ax− b∥22.

D. Palomar (HKUST) Algorithms: MM 15 / 75



Nonnegative Least Squares

Consider the following quadratic majorizer of f (x) = 1
2∥Ax− b∥22:

u(x, xk) = f (xk) +∇f (xk)T(x− xk) + 1
2(x− xk)TΦ(xk)(x− xk)

where Φ(xk) = Diag
(

[ATAxk]1
xk

1
, . . . , [ATAxk]n

xkn

)
.

Note that u(x, xk) is a valid majorizer because it’s continuous, u(xk, xk) = f (xk),
∇u(xk, xk) = ∇f (xk), and it is an upper-bound u(x, xk) ≥ f (x) since it has a higher
curvature:

Φ(xk) ⪰ ATA.

Now that we have the majorizer, we can formulate the problem to be solved at each
iteration k = 0, 1, . . . as

minimize
x≥0

u(x, xk)
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Nonnegative Least Squares

Since this problem is convex, we can set the gradient to zero (ignoring for a moment the
constraint):

∇f (xk) + Φ(xk)(x− xk) = 0

which leads to x = xk −Φ(xk)−1∇f (xk).
Now using ∇f (xk) = ATAxk − ATb, we can finally write the MM iterate as

xk+1 = xk − Diag
(

xk
1

[ATAxk]1
, . . . ,

xk
n

[ATAxk]n

)
(ATAxk − ATb)

= Diag
(

xk
1

[ATAxk]1
, . . . ,

xk
n

[ATAxk]n

)
ATb

= ck ⊙ xk

where ck
i = [ATb]i

[ATAxk]i .
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Nonnegative Least Squares
Example of the convergence of the MM iterative algorithm

xk+1 = ck ⊙ xk k = 0, 1, . . .

D. Palomar (HKUST) Algorithms: MM 18 / 75



Sparse regression: Reweighted ℓ1-norm minimization
Consider the following NP-hard sparse signal recovery problem:

minimize
x

∥x∥0
subject to Ax = b.

One common way to deal with it is with the ℓ1-norm approximation:
minimize

x
∥x∥1

subject to Ax = b.

For a better fit to the indicator function in ∥x∥0, consider a concave and nondecreasing
penalty function ϕ (t). For example, ϕ (t) = log(1 + t/ε):

||x||0

||x||1

log(1 + |x|/ε)
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Sparse regression: Reweighted ℓ1-norm minimization

However, the resulting problem with such ϕ (t) is nonconvex:

minimize
x

∑n
i=1 ϕ (|xi|)

subject to Ax = b.

We can then use MM by finding a majorizer of ϕ (t).
The function ϕ (t) = log(1 + t/ε), for t ≥ 0, is concave and is majorized at t = t0 by its
linearization:

ϕ(t) ≤ ϕ(t0) + ϕ(t0)′(t− t0) = ϕ(t0) + 1
ε + t0

(t− t0)

Thus, the function ϕ (|xi|) is majorized at xk
i (up to an irrelevant constant) by wk

i |xi| with
wk

i = ϕ′ (t)|t=|xk
i | = 1

ε+|xk
i | .
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Sparse regression: Reweighted ℓ1-norm minimization

Summarizing, at each iteration k = 1, 2, . . ., the problem is:

minimize
x

∑wk
i |xi|

subject to Ax = b

where wk
i = 1

ε+|xk
i | .

More details in (Candes et al. 2008)3.

3E. J. Candes, M. Wakin, and S. Boyd, “Enhancing sparsity by reweighted l1 minimization,” J. Fourier Anal.
Appl., vol. 14, no. 5-6, pp. 877–905, 2008.
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Reweighted LS for ℓ1-norm minimization

Consider the following convex problem:

minimize
x

∥Ax− b∥1

If instead we had the ℓ2-norm, then it would be an LS with solution x = (ATA)−1ATb.
The problem is convex and can be rewritten as a linear program (LP), so one could use
some LP solver; however, we will develop a simple iterative algorithm based on MM.
The critical step in the application of MM is to find a convenient majorizer of the
function ∥Ax− b∥1, where ∥x∥1 =

∑n
i=1 |xi|.
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Reweighted LS for ℓ1-norm minimization
Consider the following quadratic majorizer of f (t) = |t| for t ̸= 0 (for simplicity we ignore
this case):

u(t, tk) = 1
2|tk|

(t2 + (tk)2).

It is a valid majorizer since it is continuous, u(t, tk) ≥ f (t), u(tk, tk) = f (t), and
d
dtu(tk, tk) = d

dt f (tk).
Now we can apply it to the ℓ1-norm: a quadratic majorizer of f (x) = ∥Ax− b∥1 is

u(x, xk) =
n∑

i=1

1
2|[Axk − b]i|

([Ax− b]2i + ([Axk − b]i)2).

Now that we have the majorizer, we can write the MM iterative algorithm for k = 0, 1, . . .
as

minimize
x

∥(Ax− b)⊙wk∥22

where wk
i =

√
1

2|[Axk−b]i| .
D. Palomar (HKUST) Algorithms: MM 23 / 75



LASSO (ℓ2 − ℓ1 optimization) via BCD

Consider the problem

minimize
x

f (x) ≜ 1
2∥y− Ax∥22 + λ∥x∥1

We can use BCD on each element of x = (x1, . . . , xN).
The optimization w.r.t. each block xi at iteration k = 0, 1, . . . is

minimize
xi

fi(xi) ≜
1
2∥ỹ

k
i − aixi∥22 + λ|xi|

where ỹk
i ≜ y−∑j<i ajxk+1

j −
∑

j>i ajxk
j .

This leads to the iterates for k = 0, 1, . . .

xk+1
i = softλ

(
aT

i ỹk
i
)

/∥ai∥2, i = 1, . . . , N

where softλ(u) ≜ sign(u) [|u| − λ]+ is the soft-thresholding operator ([·]+ ≜ max{·, 0}).
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LASSO (ℓ2 − ℓ1 optimization) via MM

The critical step in the application of MM is to find a convenient majorizer of the
function f (x) ≜ 1

2∥y− Ax∥22 + λ∥x∥1.
Consider the following majorizer of f (x):

u(x, xk) = f (x) + dist(x, xk)

where dist(x, xk) = c
2∥x− xk∥22 − 1

2∥Ax− Axk∥22 and c > λmax(ATA).
Note that u(x, xk) is a valid majorizer because it’s continuous, it is an upper-bound
u(x, xk) ≥ f (x) with u(xk, xk) = f (xk), and ∇u(xk, xk) = ∇f (xk).
The majorizer can be rewritten in a more convenient way as

u(x, xk) = c
2∥x− x̄k∥22 + λ∥x∥1 + const.

where x̄k = 1
c AT(y− Axk) + xk.
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LASSO (ℓ2 − ℓ1 optimization) via MM

Now that we have the majorizer, we can formulate the problem to be solved at each
iteration k = 0, 1, . . .

minimize
x≥0

c
2∥x− x̄k∥22 + λ∥x∥1

This problem looks like the original one but without the matrix A mixing all the
components.
As a consequence, this problem decouples into an optimization for each element, which
solution we already known to be given by the soft-thresholding operator, leading to the
iterates for k = 0, 1, . . .

xk+1 = softλ

(
x̄k
)

,

where the soft-thresholding operator is applied elementwise.
So what’s the difference between the algorithms obtained via BCD and MM?

BCD algorithm updates each element on a successive or cyclical way;
MM algorithm updates all elements simultaneously.
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Construction of majorizers or surrogate functions

The performance of MM algorithm depends crucially on the majorizer or surrogate
function u

(
x, xk

)
.

Guideline:
on the one hand, u

(
x, xk) should be as close as possible to the original function f (x);

on the other hand, u
(
x, xk) should be easy to minimize.

Many tricks to obtain majorizers in (Sun et al. 2017)4, (Beck and Pan 2018)5.

4Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms in signal processing,
communications, and machine learning,” IEEE Trans. Signal Processing, vol. 65, no. 3, pp. 794–816, 2017.

5A. Beck and D. Pan, “Convergence of an inexact majorization-minimization method for solving a class of
composite optimization problems,” in Large-Scale and Distributed Optimization. Lecture Notes in Mathematics,
R. A. Giselsson P., Ed., vol. 2227, Springer, Cham, 2018.
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Construction by convexity

Suppose κ (t) is convex, then

κ

(∑
i

αiti

)
≤
∑

i
αiκ (ti)

with αi ≥ 0 and ∑αi = 1.
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Construction by convexity

For example:
κ
(
wTx

)
= κ

(
wT

(
x− xk

)
+ wTxk

)
= κ

∑
i

αi

wi
(
xi − xk

i
)

αi
+ wTxk


≤
∑

i
αiκ

wi
(
xi − xk

i
)

αi
+ wTxk


If further assume that w and x are positive (αi = wixk

i /wTxk):

κ
(
wTx

)
≤
∑

i

wixk
i

wTxk κ

(
wTxk

xk
i

xi

)

The surrogate functions are separable (parallel algorithm).
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Construction by Taylor expansion

Suppose κ (x) is concave and differentiable, then

κ (x) ≤ κ
(
xk
)

+∇κ
(
xk
) (

x− xk
)

,

which is a linear upper-bound.
Suppose κ (x) is convex and twice differentiable, then

κ (x) ≤ κ
(
xk
)

+∇κ
(
xk
)T (

x− xk
)

+ 1
2
(
x− xk

)T
M
(
x− xk

)
if M−∇2κ (x) ⪰ 0,∀x.
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Construction by inequalities

Arithmetic-Geometric Mean Inequality:( n∏
i=1

xi

)1/n
≤ 1

n

n∑
i=1

xi

Cauchy-Schwartz Inequality:

∥x∥ ≥ xTxk

∥xk∥
Jensen’s Inequality:

κ (Ex) ≤ Eκ (x)

with κ (·) being convex.
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EM algorithm

Assume the complete data set {x, z} consists of observed variable x and latent variable z.
Objective: estimate parameter θ ∈ Θ from x.
Maximum likelihood estimator: θ̂ = arg minθ∈Θ− log p (x|θ)
EM (Expectation Maximization) algorithm:

E-step: evaluate p
(
z|x, θk)

“guess” z from current estimate of θ
M-step: update θ as θk+1 = arg minθ∈Θ u

(
θ, θk), where

u
(
θ, θk) = −Ez|x,θk log p (x, z|θ)

update θ from “guessed” complete dataset.
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An MM interpretation of EM

The objective function can be written as

− log p (x|θ) = − log Ez|θp (x|z, θ)

= − log Ez|θ

p
(
z|x, θk

)
p (x|z, θ)

p (z|x, θk)


= − log Ez|x,θk

( p (x|z, θ)
p (z|x, θk)p (z|θ)

)
≤ −Ez|x,θk log

( p (x|z, θ)
p (z|x, θk)p (z|θ)

)
= −Ez|x,θk log p (x, z|θ)︸ ︷︷ ︸

u(θ,θk)

+ Ez|x,θkp
(
z|x, θk

)

where the inequality follows from Jensen’s inequality.
D. Palomar (HKUST) Algorithms: MM 35 / 75



Proximal minimization

Suppose f (x) is convex. Solve minx f (x) by instead solving the equivalent problem

minimize
x∈X ,y∈X

f (x) + 1
2c ∥x− y∥2 .

Objective function is strongly convex in both x and y.
Algorithm:

xk+1 = arg min
x∈X

{
f (x) + 1

2c
∥∥∥x− yk

∥∥∥2}
yk+1 = xk+1.

An MM interpretation:

xk+1 = arg min
x∈X

{
f (x) + 1

2c
∥∥∥x− xk

∥∥∥2}
.

D. Palomar (HKUST) Algorithms: MM 36 / 75



DC programming

Consider the unconstrained problem

minimize
x∈Rn

f (x) ,

where f (x) = g (x) + h (x) with g (x) convex and h (x) concave.
DC (Difference of Convex) programming generates

{
xk
}

by solving

∇g
(
xk+1

)
= −∇h

(
xk
)

.

An MM interpretation:

xk+1 = arg min
x

{
g (x) +∇h

(
xk
)T (

x− xk
)}

.

D. Palomar (HKUST) Algorithms: MM 37 / 75
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Sparse generalized eigenvalue problem

The generalized eigenvalue problem (GEVP) can be formulated as

maximize
x

xTAx
subject to xTBx = 1.

The ℓ0-norm regularized generalized eigenvalue problem is

maximize
x

xTAx− ρ ∥x∥0
subject to xTBx = 1.

Replace ∥xi∥0 by some nicely behaved function gp (xi):
|xi|p , 0 < p ≤ 1
log (1 + |xi| /p) / log (1 + 1/p) , p > 0
1− e−|xi|/p, p > 0.

Take gp (xi) = |xi|p for example.

D. Palomar (HKUST) Algorithms: MM 39 / 75



Sparse generalized eigenvalue problem

Majorize gp (xi) at xk
i by quadratic function wk

i x2
i + ck

i (J. Song, Babu, et al. 2015a)6.
The surrogate function for gp (xi) = |xi|p is defined as

u
(
xi, xk

i
)

= p
2
∣∣∣xk

i
∣∣∣p−2

x2
i +

(
1− p

2

) ∣∣∣xk
i
∣∣∣p .

Solve at each iteration the following GEVP:

maximize
x

xTAx− ρxTdiag
(
wk
)

x
subject to xTBx = 1

However, as |xi| → 0, wi → +∞.

6J. Song, P. Babu, and D. P. Palomar, “Sparse generalized eigenvalue problem via smooth optimization,”
IEEE Trans. Signal Processing, vol. 63, no. 7, pp. 1627–1642, 2015.
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Sparse generalized eigenvalue problem
Smooth approximation of

gp (x) : gϵ
p (x) =

{ p
2ϵp−2x2, |x| ≤ ϵ
|x|p −

(
1− p

2
)

ϵp, |x| > ϵ

When |x| ≤ ϵ, w remains to be a constant.
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Sequence design

Complex unimodular sequence {xn ∈ C}Nn=1.
Autocorrelation: rk =

∑N
n=k+1 xnx∗

n−k = r∗
−k, k = 0, . . . , N− 1.

Integrated sidelobe level (ISL):

ISL =
N−1∑
k=1
|rk|2 .

Problem formulation:
minimize

{xn}N
n=1

ISL

subject to |xn| = 1, n = 1, . . . , N.

D. Palomar (HKUST) Algorithms: MM 42 / 75



Sequence design

By Fourier transform:

ISL ∝
2N∑

p=1

[∣∣∣aH
p x
∣∣∣2 − N

]2

with x = [x1, . . . , xN]T, ap =
[
1, ejωp , . . . , ejωp(N−1)

]T
and ωp = 2π

2N (p− 1).
Equivalent problem:

minimize
x

∑2N
p=1

(
aH

p xxHap
)2

subject to |xn| = 1, ∀n.
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Sequence design

Define A = [a1, . . . , a2N], pk =
[
|aH

1 xk|2, . . . , |aH
2Nxk|2

]T
, Ã = A

(
diag

(
pk
)
− pk

maxI
)

AH.
Quadratic surrogate function:

pk
maxxHAAHx + 2Re

(
xH
(
Ã− 2N2xk(xk)H

)
xk
)

where pk
maxxHAAHx is a constant.

Majorized problem is (J. Song, Babu, et al. 2015b)7

minimize
x

∥x− y∥2
subject to |xn| = 1, ∀n

with y = −
(
Ã− 2N2xk(xk)H

)
xk.

Closed-form solution: xn = ej arg(yn).
7J. Song, P. Babu, and D. P. Palomar, “Optimization methods for designing sequences with low

autocorrelation sidelobes,” IEEE Trans. Signal Process., vol. 63, no. 15, pp. 3998–4009, 2015.
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Sequence design
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Covariance matrix estimation

xi ∼ elliptical (0, Σ)
Fitting normalized sample si = xi

∥xi∥2
to Angular Central Gaussian distribution

f (si) ∝ det (Σ)−1/2
(
sT

i Σ−1si
)−K/2

Shrinkage penalty
h (Σ) = log det (Σ) + Tr

(
Σ−1T

)
Solve the following problem:

minimize
Σ

log det (Σ) + K
N
∑

log
(
xT

i Σ−1xi
)

+ αh (Σ)
subject to Σ ⪰ 0
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Covariance matrix estimation

At Σk, the objective function is majorized by (Sun et al. 2014)8

(1 + α) log det (Σ) + K
N

N∑
i=1

xT
i Σ−1xi

xT
i
(
Σk
)−1

xi
+ αTr

(
Σ−1T

)

Surrogate function is convex in Σ−1.
Setting the gradient to zero leads to the weighted sample average

Σk+1 = 1
1 + α

K
N
∑ xixT

i

xT
i
(
Σk
)−1

xi
+ α

1 + α
T

8Y. Sun, P. Babu, and D. P. Palomar, “Regularized Tyler’s scatter estimator: Existence, uniqueness, and
algorithms,” IEEE Trans. Signal Processing, vol. 62, no. 19, pp. 5143–5156, 2014.
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Covariance matrix estimation
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Power control by GP
Problem: maximize system throughput. Essentially we need to solve the following
problem (Chiang et al. 2007)9:

minimize
P∈P

∑
j ̸=i GijPj+ni∑
j GijPj+ni

.

Objective function is the ratio of two posynomials.
Minorize a posynomial, denoted by g (x) =

∑
i mi (x), by the mononial

g (x) ≥
∏

i

(mi (x)
αi

)αi

where αi = mi(xk)
g(xk) . (Arithmetic-Geometric Mean Inequality)

Solution: approximate the denominator posynomial ∑j GijPj + ni by monomial.
9M. Chiang, C. W. Tan, D. Palomar, D. O’Neill, and D. Julian, “Power control by geometric programming,”

IEEE Trans. Wireless Commun, vol. 6, no. 7, pp. 2640–2651, 2007.
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Successive Convex Approximation (SCA)
Consider the following problem:

minimize
x

f (x)
subject to x ∈ X

where X is a closed and convex set.
The idea of SCA is to iteratively approximate the problem by a simpler one (like in MM).
SCA approximates f by a strongly convex function g(x | xk) satisfying the property that
∇g(xk | xk) = ∇f (xk).
At iteration k = 0, 1, . . . the surrogate problem is (Scutari et al. 2014)10

minimize
x

g(x | xk) + τ
2 (x− xk)TQ(xk)(x− xk)

subject to x ∈ X

where Q(xk) ≻ 0.
10G. Scutari, F. Facchinei, P. Song, D. P. Palomar, and J.-S. Pang, “Decomposition by partial linearization:

Parallel optimization of multi-agent systems,” IEEE Trans. Signal Processing, vol. 62, no. 3, pp. 641–656, 2014.
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MM vs SCA

Surrogate function:

MM requires the surrogate function to be a global upper-bound (which can be too
demanding in some cases), albeit not necessarily convex.
SCA relaxes the upper-bound condition, but it requires the surrogate to be strongly
convex.

D. Palomar (HKUST) Algorithms: MM 52 / 75



MM vs SCA

Constraint set:
In principle, both SCA and MM require the feasible set X to be convex.
MM can be easily extended to nonconvex X on a case by case basis; for example: (J.
Song, Babu, et al. 2015a)11, (Kumar et al. 2019)12, (Kumar et al. 2020)13.
SCA can be extended to convexify the constraint functions, but cannot deal with a
nonconvex X directly, which limits its applicability in many real-world applications.

11J. Song, P. Babu, and D. P. Palomar, “Sparse generalized eigenvalue problem via smooth optimization,”
IEEE Trans. Signal Processing, vol. 63, no. 7, pp. 1627–1642, 2015.

12S. Kumar, J. Ying, J. V. de M. Cardoso, and D. P. Palomar, “Structured graph learning via laplacian
spectral constraints,” in Proc. Advances in Neural Information Processing Systems (NeurIPS), Vancouver,
Canada, 2019.

13S. Kumar, J. Ying, J. V. de M. Cardoso, and D. P. Palomar, “A unified framework for structured graph
learning via spectral constraints,” Journal of Machine Learning Research (JMLR), pp. 1–60, 2020.
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MM vs SCA

Schedule of updates:

MM updates the whole variable x at each iteration (so in principle no distributed
implementation).
If the majorizer in MM happens to be block separable in x = (x1, . . . , xN), then one can
have a parallel update.
Block MM updates each block of x = (x1, . . . , xN) sequentially.
SCA, on the other hand, naturally has a parallel update (assuming the constraints are
separable), which can be useful for distributed implementation.
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Feasible Cartesian product structure
Consider a general optimization problem

minimize
x

f (x)
subject to x ∈ X

where the optimization variable can be separated into N blocks

x = (x1, . . . , xN)

and the feasible set has a Cartesian product structure

X =
N∏

i=1
Xi.

The problem can be written as
minimize

x
f (x1, . . . , xN)

subject to xi ∈ Xi i = 1, . . . , N.
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Preliminary: Block Coordinate Descent (BCD)

The Block Coordinate Descent (BCD) algorithm, also called nonlinear Gauss-Seidel
algorithm, optimizes f (x1, . . . , xN) sequentially.
At iteration k, for i = 1, . . . , N:

xk+1
i = arg min

xi∈Xi
f
(
xk+1

1 , . . . , xk+1
i−1 , xi, xk

i+1 . . . , xk
N+1

)
Observe that at each iteration k the blocks are optimized sequentially.
Merits of BCD:

1 each subproblem may be much easier to solve, or even may have a closed-form solution;
2 the objective value is nonincreasing along the BCD updates;
3 it allows parallel or distributed implementations.

D. Palomar (HKUST) Algorithms: MM 57 / 75



Preliminary: Block Coordinate Descent (BCD)

Algorithm: BCD
Initialize x0 ∈ X and set k = 0.
repeat

1 k← k + 1, i = (k mod n) + 1
2 xk

i = arg minxi∈Xi f
(
xi, xk−1

−i
)

3 xk
i ← xk−1

i , ∀k ̸= i
until convergence
return xk
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Preliminary: Convergence of BCD

Suppose that i) f (·) is continuously differentiable over X and ii) each block optimization
is strictly convex. Then, every limit point of the sequence {xk} is a stationary point
(Bertsekas 1999)14, (Bertsekas and Tsitsiklis 1997)15.
If X is convex, then the strict convexity of each block optimization can be relaxed to
simply having a unique solution.
Convergence generalizations: it converges in any of the following cases (Grippo and
Sciandrone 2000)16:

the two-block case N = 2;
f (·) is component-wise strictly quasi-convex w.r.t. N− 2 components;
f (·) is pseudo-convex.

14D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
15D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods. Athena

Scientific, 1997.
16L. Grippo and M. Sciandrone, “On the convergence of the block nonlinear Gauss–Seidel method under

convex constraints,” Oper. Res. Lett., vol. 26, no. 3, pp. 127–136, 2000.
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Block Majorization-Minimization

Combination of MM and BCD (Razaviyayn et al. 2013)17.

Algorithm: Block MM
Initialize x0 ∈ X and set k = 0.
repeat

1 k← k + 1, i = (k mod N) + 1
2 xk as + ith block: xk

i ∈ arg minxi∈Xi ui
(
xi, xk−1

)
+ other blocks: xk

i ← xk−1
i , ∀k ̸= i

until convergence
return xk

17M. Razaviyayn, M. Hong, and Z. Luo, “A unified convergence analysis of block successive minimization
methods for nonsmooth optimization,” SIAM J. Optim., vol. 23, no. 2, pp. 1126–1153, 2013.
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Convergence

Suppose surrogate function ui (·, ·) satisfies the following assumptions:

ui (yi, y) = f (y) , ∀y ∈ X , ∀i (B1)

ui (xi, y) ≥ f (y1, . . . , yi−1, xi, yi+1, . . . , yn)
∀xi ∈ Xi, ∀y ∈ X , ∀i (B2)

u′
i (xi, y; di)|xi=yi

= f ′ (y; d) ,

∀d = (0, . . . , di, . . . , 0) such that yi + di ∈ Xi,∀i
(B3)

ui (xi, y) is continuous in (xi, y) , ∀i (B4)

In short, ui(xi, xk) majorizes f (x) on the ith block.
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Convergence

The following gives the convergence of the MM algorithm to a stationary point (Razaviyayn et
al. 2013)18.

Theorem
Suppose X is convex. Under assumptions B1-B4 (for simplicity assume that f is continuously
differentiable):

if ui (xi, y) is quasi-convex in xi, each subproblem minxi∈Xi ui(xi, xk−1) has a unique
solution for any xk−1 ∈ X , then every limit point of {xk} is a stationary point.
if the level set X 0 =

{
x|f (x) ≤ f

(
x0)} is compact, each subproblem minxi∈Xi ui(xi, xk−1)

has a unique solution for any xk−1 ∈ X for at least m− 1 blocks, then
limk→∞ d(xk,X ⋆) = 0.

18M. Razaviyayn, M. Hong, and Z. Luo, “A unified convergence analysis of block successive minimization
methods for nonsmooth optimization,” SIAM J. Optim., vol. 23, no. 2, pp. 1126–1153, 2013.
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Alternating proximal minimization

Consider the problem
minimize

x
f (x1, . . . , xm)

subject to xi ∈ Xi,

with f (·) being convex in each block.
The convergence of BCD is not easy to establish since each subproblem may have
multiple solutions.
Alternating Proximal Minimization solves

minimize
xi

f
(
xk

1, . . . , xk
i−1, xi, xk

i+1, . . . , xk
m
)

+ 1
2c

∥∥∥xi − xk
i
∥∥∥2

subject to xi ∈ Xi

Strictly convex objective → unique minimizer.
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Proximal splitting algorithm

Consider the following problem

minimize
x

∑m
i=1 fi (xi) + fm+1 (x1, . . . , xm)

subject to xi ∈ Xi, i = 1, . . . , m

with fi convex and lower semicontinuous, fm+1 convex and

∥∇fm+1 (x)−∇fm+1 (y)∥ ≤ βi ∥xi − yi∥ .

Cyclically update:
xk+1

i = proxγfi

(
xk

i − γ∇xifm+1
(
xk
))

,

with the proximity operator defined as

proxf (x) = arg min
y∈X

f (y) + 1
2 ∥x− y∥2 .
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Proximal splitting algorithm

Block MM interpretation:

ui
(
xi, xk

)
= fi (xi) + 1

2γ

∥∥∥xi − xk
i
∥∥∥2

+∇xifm+1
(
xk
)T (

xi − xk
i
)

+
∑
j ̸=i

fj
(
xk

j
)

+ fm+1
(
xk

−i, xi
)
.

Check:

fm+1
(
xk
)

+ 1
2γ

∥∥∥xi − xk
i
∥∥∥2

+∇xifm+1
(
xk
)T (

xi − xk
i
)

≥ fm+1
(
xk
)

+ βi
2
∥∥∥xi − xk

i
∥∥∥2

+∇xifm+1
(
xk
)T (

xi − xk
i
)

≥ fm+1
(
xk

−i, xi
)

with γ ∈ [ϵi, 2/βi − ϵi] and ϵi ∈ (0, min {1, 1/βi}).
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Robust estimation of mean and covariance matrix

xt ∼ elliptical (µ, Σ)
Fitting {xt} to a Cauchy distribution with pdf (Sun et al. 2015)19

f (x) ∝ det (Σ)−1/2
(
1 + (x− µ)T Σ−1 (x− µ)

)−(N+1)/2

Solve the following problem:

minimize
µ,Σ⪰0

log det (Σ) + N+1
T
∑T

t=1 log
(
1 + (xt − µ)T Σ−1 (xt − µ)

)

19Y. Sun, P. Babu, and D. P. Palomar, “Regularized robust estimation of mean and covariance matrix under
heavy-tailed distributions,” IEEE Trans. Signal Processing, vol. 63, no. 12, pp. 3096–3109, 2015.

D. Palomar (HKUST) Algorithms: MM 69 / 75



Robust estimation of mean and covariance matrix

Block MM algorithm update:

µk+1 =
∑T

t=1 wt(µk, Σk)xt∑T
t=1 wt(µk, Σk)

Σk+1 = N + 1
T

T∑
t=1

wt(µk+1, Σk)(xt − µk+1)(xt − µk+1)T

where
wt(µ, Σ) = 1

1 + (xt − µ)TΣ−1(xt − µ)
.
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Robust estimation of mean and covariance matrix

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15
2000

2500

3000

3500

4000

4500

5000

Iterations

O
bj

ec
tiv

e 
fu

nc
tio

n 
va

lu
e

 

 

D. Palomar (HKUST) Algorithms: MM 71 / 75



Thanks

For more information visit:

https://www.danielppalomar.com
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