Algorithms Primer

Prof. Daniel P. Palomar

- Unconstrained Optimization
 - Gradient Descent Method
 - Newton's Method
- **2** Constrained Optimization
 - Equality Constrained Optimization
 - Gradient Projection Method
 - Interior-Point Methods (IPM)
- **3** Block Coordinate Algorithms
 - Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
 - Jacobi Algorithm

- 1 Unconstrained Optimization
 - Gradient Descent Method
 - Newton's Method
- Constrained Optimization
 - Equality Constrained Optimization
 - Gradient Projection Method
 - Interior-Point Methods (IPM)
- **3** Block Coordinate Algorithms
 - Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
 - Jacobi Algorithm

Unconstrained minimization

• Consider the following optimization problem:

$$\underset{\mathbf{x}}{\text{minimize}} f(\mathbf{x})$$

where f is convex and twice continuously differentiable.

- Optimization methods:
 - produce a sequence of points $\mathbf{x}^k \in \text{dom } f, k = 0, 1, \dots$ with

$$f(\mathbf{x}^k) \to p^*$$

where p^* is the optimal value;

• equivalently, can be interpreted as iterative methods to solve the optimality condition

$$\nabla f(\mathbf{x}^k) \to \mathbf{0}.$$

 Basic references: (Bertsekas 1999)¹, (Boyd and Vandenberghe 2004)², and (Nocedal and Wright 2006)³.

¹D. P. Bertsekas, *Nonlinear Programming*. Athena Scientific, 1999.

²S. P. Boyd and L. Vandenberghe, *Convex Optimization*. Cambridge University Press, 2004.

³J. Nocedal and S. J. Wright, *Numerical Optimization*. Springer Verlag, 2006.

- Unconstrained Optimization
 - Gradient Descent Method
 - Newton's Method
- Constrained Optimization
 - Equality Constrained Optimization
 - Gradient Projection Method
 - Interior-Point Methods (IPM)
- **3** Block Coordinate Algorithms
 - Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
 - Jacobi Algorithm

Descent methods

Descent methods obtain the iterates as follows:

$$\mathbf{x}^{k+1} = \mathbf{x}^k + t^k \Delta \mathbf{x}^k,$$

where Δx is the **search direction** and t is the **stepsize**, satisfying $f(x^{k+1}) < f(x^k)$.

• From convexity, the descent condition implies $\nabla f(\mathbf{x})^T \Delta \mathbf{x} < 0$.

Algorithm 1: Descent method

Set k = 0 and initialize $\mathbf{x}^0 \in \text{dom } f$ repeat

- **1** Determine a descent direction $\Delta \mathbf{x}^k$.
- 2 Line search: Choose a stepsize $t^k > 0$.
- **3** Update: $\mathbf{x}^{k+1} = \mathbf{x}^k + t^k \Delta \mathbf{x}^k$.
- $0 k \leftarrow k+1$

until convergence

return x^k

Line search types

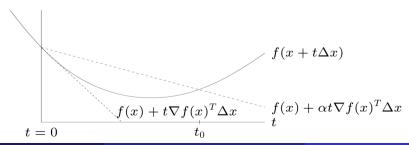
• Exact line search:

$$t = \arg\min_{t>0} f(\mathbf{x} + t\Delta\mathbf{x})$$

- Backtracking line search (parameters $\alpha \in (0, 1/2)$, $\beta \in (0, 1)$):
 - starting at t = 1, repeat $t \leftarrow \beta t$ until

$$f(\mathbf{x} + t\Delta\mathbf{x}) < f(\mathbf{x}) + \alpha t f(\mathbf{x})^T \Delta\mathbf{x}$$

ullet graphical interpretation: backtrack until $t \leq t_0$



D. Palomar (HKUST)

Algorithms Primer

7/51

Gradient descent method

Simply use the negative gradient as the direction

$$\Delta \mathbf{x} = -\nabla f(\mathbf{x})$$

in the gradient descent method, which satisfies $\nabla f(\mathbf{x})^T \Delta \mathbf{x} < 0$.

The update is then

$$\mathbf{x}^{k+1} = \mathbf{x}^k - t^k \nabla f(\mathbf{x}^k)$$

- Stopping criterion: usually of the form $\|\nabla f(\mathbf{x})\|_2 \leq \epsilon$.
- Very simple, but often very slow; rarely used in practice.

Gradient descent method

Algorithm 2: Gradient descent method

Set k = 0 and initialize $\mathbf{x}^0 \in \text{dom } f$.

repeat

- **①** Compute the negative gradient as descent direction: $\Delta \mathbf{x}^k = -\nabla f(\mathbf{x}^k)$
- 2 Line search: Choose a stepsize $t^k > 0$ via exact or bracktracking line search.
- **1** Update: $\mathbf{x}^{k+1} = \mathbf{x}^k t^k \nabla f(\mathbf{x}^k)$
- $0 k \leftarrow k+1$

until convergence

return x^k

Convergence of gradient descent method*

• If the exact line search or backtracking line search is used, then every limit point of $\{\mathbf{x}^k\}$ is a stationary point and $f(\mathbf{x}^k) - p^* \le c^k (f(\mathbf{x}^0) - p^*)$ (Boyd and Vandenberghe 2004)⁴.

- Other simpler choices for the computation of the stepsize include:
 - constant stepsize: $t^k = t$, k = 0, 1, ...
 - dimishing stepsize rule: $t^k \to 0$ with $\sum_{k=0}^{\infty} t^k = \infty$.
- Other convergence results (Bertsekas 1999)⁵:
 - For the gradient descent with a sufficiently small constant stepsize, every limit point of $\{x^k\}$ is a stationary point.
 - For the dimishing stepsize rule, every limit point of $\{\mathbf{x}^k\}$ is a stationary point.

D. Palomar (HKUST)

Algorithms Primer

10 / 51

⁴S. P. Boyd and L. Vandenberghe, *Convex Optimization*. Cambridge University Press, 2004.

⁵D. P. Bertsekas, *Nonlinear Programming*. Athena Scientific, 1999.

Example: Quadratic function

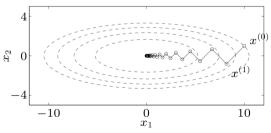
Consider

$$f(\mathbf{x}) = \frac{1}{2} (x_1^2 + \gamma x_2^2)$$
 $(\gamma > 0)$

with exact line search, starting at $\mathbf{x}^0 = (\gamma, 1)$:

$$x_1^k = \gamma \left(\frac{\gamma - 1}{\gamma + 1}\right)^k, \qquad x_2^k = \left(-\frac{\gamma - 1}{\gamma + 1}\right)^k$$

- Very slow if $\gamma \gg 1$ or $\gamma \ll 1$.
- Example for $\gamma = 10$:

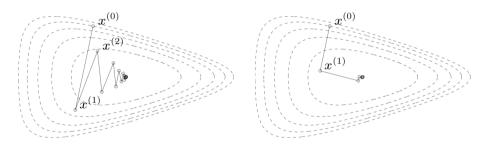


D. Palomar (HKUST) Algorithms Primer 11/51

Example: Non-quadratic function

Consider

$$f(\mathbf{x}) = e^{x_1 + 3x_2 - 0.1} + e^{x_1 - 3x_2 - 0.1} + e^{-x_1 - 0.1}$$



backtracking line search

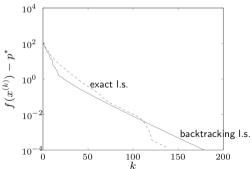
exact line search

Exact vs backtraking line search

• Consider a big problem in \mathbb{R}^{100} :

$$f(\mathbf{x}) = \mathbf{c}^T \mathbf{x} - \sum_{i=1}^{500} \log(b_i - \mathbf{a}_i^T \mathbf{x})$$

• Both exact line search and backtraking line search achieve a similar linear convergence (i.e., straight line on a semilog plot):



D. Palomar (HKUST) Algorithms Primer 13 / 51

- Unconstrained Optimization
 - Gradient Descent Method
 - Newton's Method
- Constrained Optimization
 - Equality Constrained Optimization
 - Gradient Projection Method
 - Interior-Point Methods (IPM)
- **3** Block Coordinate Algorithms
 - Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
 - Jacobi Algorithm

Newton step

Newton's method uses the following direction:

$$\Delta \mathbf{x}_{\mathsf{nt}} = -\nabla^2 f(\mathbf{x})^{-1} \nabla f(\mathbf{x}),$$

where $\nabla^2 f(\mathbf{x})$ is the Hessian of f, which satisfies the descent condition $\nabla f(\mathbf{x})^T \Delta \mathbf{x}_{nt} < 0$.

- Interpretations:
 - \bullet $\textbf{x} + \Delta \textbf{x}_{nt}$ minimizes the second order approximation around x

$$\hat{f}(\mathbf{x} + \mathbf{v}) = f(\mathbf{x}) + \nabla f(\mathbf{x})^T \mathbf{v} + \frac{1}{2} \mathbf{v}^T \nabla^2 f(\mathbf{x}) \mathbf{v}$$

• $\mathbf{x} + \Delta \mathbf{x}_{nt}$ solves the linearized (first order approximation) of the optimality condition $\nabla f(\mathbf{x}) = \mathbf{0}$ around \mathbf{x}

$$\nabla f(\mathbf{x} + \mathbf{v}) \approx \nabla \hat{f}(\mathbf{x} + \mathbf{v}) = \nabla f(\mathbf{x}) + \nabla^2 f(\mathbf{x}) \mathbf{v} = \mathbf{0}$$

D. Palomar (HKUST) Algorithms Primer 15 / 51

Newton decrement

The quantity

$$\lambda(\mathbf{x}) = (\nabla f(\mathbf{x})^T \nabla^2 f(\mathbf{x})^{-1} \nabla f(\mathbf{x}))^{1/2}$$

is a meaure of the proximity of x to x^* .

• It gives an estimate of $f(\mathbf{x}) - p^*$, using a quadratic approximation \hat{f} :

$$f(\mathbf{x}) - \inf_{\mathbf{y}} \hat{f}(\mathbf{y}) = \frac{1}{2}\lambda(\mathbf{x})^2.$$

• It's basically free to compute given the Newton step $\Delta \mathbf{x}_{nt} = -\nabla^2 f(\mathbf{x})^{-1} \nabla f(\mathbf{x})$:

$$\lambda(\mathbf{x})^2 = -\nabla f(\mathbf{x})^T \Delta \mathbf{x}_{\rm nt}.$$

D. Palomar (HKUST) Algorithms Primer 16 / 51

Newton's method

Algorithm 3: Newton's method

Set k=0, initialize $\mathbf{x}^0 \in \text{dom } f$, choose tolerance $\epsilon > 0$.

repeat

Ompute Newton step and decrement:

$$\Delta \mathbf{x}_{\rm nt}^k = -\nabla^2 f(\mathbf{x}^k)^{-1} \nabla f(\mathbf{x}^k) \quad \text{and} \quad \lambda(\mathbf{x}^k)^2 = -\nabla f(\mathbf{x}^k)^T \Delta \mathbf{x}_{\rm nt}^k.$$

- ② Stopping criterion: **quit** if $\lambda(\mathbf{x}^k)^2/2 \leq \epsilon$ and **return** \mathbf{x}^k .
- 3 Line search: Choose a stepsize $t^k > 0$ via bracktracking line search.
- **1** Update: $\mathbf{x}^{k+1} = \mathbf{x}^k + t^k \Delta \mathbf{x}_{n+1}^k$
- 6 $k \leftarrow k+1$

Converge of Newton's method*

Newton's method can be divided into two phases:

- damped Newton phase: $(\|\nabla f(\mathbf{x})\|_2 \ge \eta)$
 - most iterations require backtracking steps
 - ullet function value decreases by at least γ
- quadratically convergent phase: $(\|\nabla f(\mathbf{x})\|_2 < \eta)$
 - all iterations use stepsize t=1
 - $\|\nabla f(\mathbf{x})\|_2$ converges to zero quadratically.

Conclusion: number of iterations until $f(\mathbf{x}) - p^* \le \epsilon$ is bounded above by

$$\frac{f(\mathsf{x}^0) - p^\star}{\gamma} + \log_2\log_2(\epsilon_0/\epsilon)$$

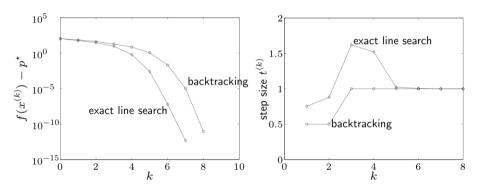
where γ and ϵ_0 are constants that depend on the smoothness of f and \mathbf{x}^0 (Boyd and Vandenberghe 2004)⁶.

D. Palomar (HKUST) Algorithms Primer 18 / 51

⁶S. P. Boyd and L. Vandenberghe, *Convex Optimization*. Cambridge University Press, 2004.

Example

Example in \mathbb{R}^{100} :



- backtracking parameters: $\alpha = 0.01$, $\beta = 0.5$
- backtracking line search almost as fast as exact line search (and much simpler)
- the two phases of the algorithm can be clearly appreciated.

- Unconstrained Optimization
 - Gradient Descent Method
 - Newton's Method
- **2** Constrained Optimization
 - Equality Constrained Optimization
 - Gradient Projection Method
 - Interior-Point Methods (IPM)
- **3** Block Coordinate Algorithms
 - Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
 - Jacobi Algorithm

- Unconstrained Optimization
 - Gradient Descent Method
 - Newton's Method
- **2** Constrained Optimization
 - Equality Constrained Optimization
 - Gradient Projection Method
 - Interior-Point Methods (IPM)
- **3** Block Coordinate Algorithms
 - Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
 - Jacobi Algorithm

Equality constrained optimization

• Consider the following equality constrained optimization problem:

minimize
$$f(\mathbf{x})$$
 subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$

where f is convex and twice continuously differentiable and $\mathbf{A} \in \mathbb{R}^{p \times n}$ is a fat full rank matrix.

- We assume p^* is finite and attained.
- The Lagrangian of this problem is

$$L(\mathbf{x}; \boldsymbol{\nu}) = f(\mathbf{x}) + \boldsymbol{\nu}^T (\mathbf{A}\mathbf{x} - \mathbf{b})$$

with gradient

$$\nabla L(\mathbf{x}; \boldsymbol{\nu}) = \nabla f(\mathbf{x}) + \mathbf{A}^T \boldsymbol{\nu}.$$

• Optimality conditions: \mathbf{x}^* is optimal iff there exists a \mathbf{v}^* such that

$$\nabla f(\mathbf{x}^*) + \mathbf{A}^T \mathbf{\nu}^* = 0, \quad \mathbf{A}\mathbf{x}^* = \mathbf{b}.$$

22 / 51

D. Palomar (HKUST) Algorithms Primer

Eliminating equality constraints

• From linear algebra, we know that we can represent the possibly infinite solutions to $\mathbf{A}\mathbf{x} = \mathbf{b}$ as

$$\{\mathbf{x} \in \mathbb{R}^n \mid \mathbf{A}\mathbf{x} = \mathbf{b}\} = \{\mathbf{F}\mathbf{z} + \mathbf{x}_0 \mid \mathbf{z} \in \mathbb{R}^{n-p}\}$$

where \mathbf{x}_0 is any particular solution to $\mathbf{A}\mathbf{x} = \mathbf{b}$ and the range of $\mathbf{F} \in \mathbb{R}^{n \times (n-p)}$ is the nullspace of $\mathbf{A} \in \mathbb{R}^{p \times n}$, i.e., $\mathbf{A}\mathbf{F} = \mathbf{0}$.

• The reduced or eliminated problem is

$$\underset{\mathbf{z}}{\mathsf{minimize}} \quad \tilde{f}(\mathbf{z}) = f(\mathbf{F}\mathbf{z} + \mathbf{x}_0)$$

ullet From the solution \mathbf{z}^{\star} , we can obtain \mathbf{x}^{\star} and $\mathbf{\nu}^{\star}$ as

$$\mathbf{x}^{\star} = \mathbf{F}\mathbf{z}^{\star} + \mathbf{x}_{0}, \quad \mathbf{
u}^{\star} = -(\mathbf{A}\mathbf{A}^{T})^{-1}\mathbf{A}\nabla f(\mathbf{x}^{\star}).$$

• To use Newton's method on $\tilde{f}(\mathbf{z})$ note that

$$abla ilde{f}(\mathbf{z}) = \mathbf{F}^T
abla f(\mathbf{x})$$

$$abla^2 ilde{f}(\mathbf{z}) = \mathbf{F}^T
abla^2 f(\mathbf{x}) \mathbf{F}.$$

D. Palomar (HKUST) Algorithms Primer 23 / 51

- Unconstrained Optimization
 - Gradient Descent Method
 - Newton's Method
- **2** Constrained Optimization
 - Equality Constrained Optimization
 - Gradient Projection Method
 - Interior-Point Methods (IPM)
- **3** Block Coordinate Algorithms
 - Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
 - Jacobi Algorithm

Gradient projection method

Consider a convex optimization problem:

$$\begin{array}{ll}
\text{minimize} & f(\mathbf{x}) \\
\text{subject to} & \mathbf{x} \in \mathcal{X}
\end{array}$$

where $f(\cdot)$ is a convex function and \mathcal{X} represents an arbitrary feasible set (defined by equality and/or inequality constraints).

- If we were to use the gradient descent method $\mathbf{x}^{k+1} = \mathbf{x}^k \alpha^k \nabla f(\mathbf{x}^k)$ we would possibly end up with an infeasible point \mathbf{x}^{k+1} .
- The gradient projection method addresses this issue by projecting onto the feasible set after taking the step (Bertsekas 1999)⁷:

$$\mathbf{x}^{k+1} = \left[\mathbf{x}^k - \alpha^k \nabla f(\mathbf{x}^k)\right]_{\mathcal{X}}$$

where $[\cdot]_{\mathcal{X}}$ denotes projection onto the set \mathcal{X} defined as the solution to $\min_{\mathbf{y}} \|\mathbf{y} - \mathbf{x}\|$ subject to $\mathbf{y} \in \mathcal{X}$.

D. Palomar (HKUST) Algorithms Primer 25 / 51

⁷D. P. Bertsekas, *Nonlinear Programming*. Athena Scientific, 1999.

Gradient projection method

• A slightly more general version of the gradient projection method is to express a feasible direction as $\mathbf{d}^k = \bar{\mathbf{x}}^k - \mathbf{x}^k$ (because $\bar{\mathbf{x}}^k$ is feasible) and write the iteration as (Bertsekas 1999)⁸

$$\mathbf{x}^{k+1} = \mathbf{x}^k + \alpha^k \left(\mathbf{\bar{x}}^k - \mathbf{x}^k \right)$$

where

$$\bar{\mathbf{x}}^k = \left[\mathbf{x}^k - s^k \nabla f(\mathbf{x}^k)\right]_{\mathcal{X}},$$

 $\alpha^k \in (0,1]$ is a stepsize, and s^k is a positive scalar.

• Note that if we choose $\alpha^k = 1$ then the iteration simplifies to the previous expression:

$$\mathbf{x}^{k+1} = \left[\mathbf{x}^k - s^k \nabla f(\mathbf{x}^k)\right]_{\mathcal{X}}.$$

• The main limitation of the gradient projection method is to have to compute the projection at each iteration.

D. Palomar (HKUST) Algorithms Primer 26 / 51

⁸D. P. Bertsekas, *Nonlinear Programming*. Athena Scientific, 1999.

Convergence*

- Every limit point of $\{x^k\}$ is a stationary point (Bertsekas 1999):⁹
 - ullet if s^k is constant and $lpha^k$ is chosen with the exact line search or backtracking line search;
 - if $\alpha^k = 1$ and s^k is chosen according to the backtracking line search;
 - if $\alpha^k = 1$ and $s^k = s$ with s sufficiently small.

D. Palomar (HKUST) Algorithms Primer 27 / 51

⁹D. P. Bertsekas, *Nonlinear Programming*. Athena Scientific, 1999.

- Unconstrained Optimization
 - Gradient Descent Method
 - Newton's Method
- Constrained Optimization
 - Equality Constrained Optimization
 - Gradient Projection Method
 - Interior-Point Methods (IPM)
- 3 Block Coordinate Algorithms
 - Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
 - Jacobi Algorithm

Inequality constrained optimization

• Consider the following equality constrained optimization problem:

minimize
$$f_0(\mathbf{x})$$

subject to $f_i(\mathbf{x}) \leq 0, \qquad i = 1, \dots, m$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

where all f_i is convex and twice continuously differentiable and $\mathbf{A} \in \mathbb{R}^{p \times n}$ is a fat full rank matrix.

- We assume p^* is finite and attained.
- We assume the problem is strictly feasible, hence strong duality holds and dual optimum is attained.

D. Palomar (HKUST) Algorithms Primer 29 / 51

Indicator function

We can reformulate the original problem with inequality constraints

minimize
$$f_0(\mathbf{x})$$

subject to $f_i(\mathbf{x}) \leq 0, \qquad i = 1, \dots, m$
 $\mathbf{A}\mathbf{x} = \mathbf{b}$

via the **indicator function** $I_{-}(\cdot)$:

minimize
$$f_0(\mathbf{x}) + \sum_{i=1}^m I_-(f_i(\mathbf{x}))$$

subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$

where

$$I_{-}(u) = \begin{cases} 0 & \text{if } u \leq 0 \\ \infty & \text{otherwise.} \end{cases}$$

30 / 51

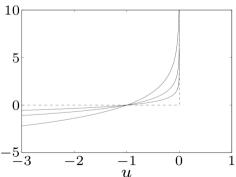
Logarithmic barrier

• Then we can approximate the indicator function via the **logarithmic barrier**:

minimize
$$f_0(\mathbf{x}) - (1/t) \sum_{i=1}^m \log(-f_i(\mathbf{x}))$$
 subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$

which is an equality constrained smooth problem.

• For t > 0, $-(1/t)\log(-u)$ is a smooth approximation of $I_{-}(u)$, which improves as $t \to \infty$.



D. Palomar (HKUST) Algorithms Primer 31/51

Logarithmic barrier function

• The logarithmic barrier function is

$$\phi(\mathbf{x}) = -\sum_{i=1}^{m} \log(-f_i(\mathbf{x}))$$

with dom
$$\phi = \{x \mid f_1(\mathbf{x}) < 0, \dots, f_m(\mathbf{x}) < 0\}.$$

- It is convex (follows from composition rules).
- Twice continuously differentiable, with derivatives:

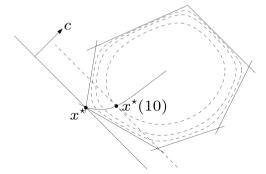
$$\nabla \phi(\mathbf{x}) = \sum_{i=1}^{m} \frac{1}{-f_i(\mathbf{x})} \nabla f_i(\mathbf{x})$$

$$\nabla^2 \phi(\mathbf{x}) = \sum_{i=1}^{m} \frac{1}{f_i(\mathbf{x})^2} \nabla f_i(\mathbf{x}) \nabla f_i(\mathbf{x})^T + \sum_{i=1}^{m} \frac{1}{-f_i(\mathbf{x})} \nabla^2 f_i(\mathbf{x})$$

Central path

• For t > 0, define $\mathbf{x}^*(t)$ as the solution of

- The central path is the curve $\{\mathbf{x}^*(t) \mid t > 0\}$.
- For example, central path of an LP:



Dual points on central path*

• Central path: $\mathbf{x} = \mathbf{x}^*(t)$ if there exists a **w** such that

$$t\nabla f_0(\mathbf{x}) + \sum_{i=1}^m \frac{1}{-f_i(\mathbf{x})} \nabla f_i(\mathbf{x}) + \mathbf{A}^T \mathbf{w} = 0, \quad \mathbf{A}\mathbf{x} = \mathbf{b}$$

• Therefore, $\mathbf{x}^*(t)$ minimizes the Lagrangian

$$L(\mathbf{x}; \boldsymbol{\lambda}^{\star}(t), \boldsymbol{
u}^{\star}(t)) = f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i^{\star}(t) f_i(\mathbf{x}) + \boldsymbol{
u}^{\star}(t)^T (\mathbf{A}\mathbf{x} - \mathbf{b})$$

where we define $\lambda_i^{\star}(t) = 1/(-tf_i(\mathbf{x}^{\star}(t)))$ and $\boldsymbol{\nu}^{\star}(t) = \mathbf{w}/t$.

• This confirms the intuitive idea that $f_0(\mathbf{x}^*(t)) \to p^*$ if $t \to \infty$:

$$p^* \ge g(\lambda^*(t), \nu^*(t))$$

= $L(\mathbf{x}^*(t); \lambda^*(t), \nu^*(t))$
= $f_0(\mathbf{x}^*(t)) - m/t$.

D. Palomar (HKUST) Algorithms Primer 34/51

Interpretation via KKT conditions*

$$\mathbf{x} = \mathbf{x}^{\star}(t)$$
, $\mathbf{x} = \mathbf{x}^{\star}(t)$ satisfy

- **1** Primal feasibility: $f_i(\mathbf{x}) \leq 0, i = 1, ..., m, \quad \mathbf{A}\mathbf{x} = \mathbf{b}$
- ② Dual feasibility: $\lambda \geq 0$
- **3** Approximate complementary slackness: $-\lambda_i f_i(\mathbf{x}) = 1/t, i = 1, \dots, m$
- Gradient of Lagrangian with respect to x vanishes:

$$\nabla f_0(\mathbf{x}) + \sum_{i=1}^m \lambda_i \nabla f_i(\mathbf{x}) + \mathbf{A}^T \mathbf{\nu} = 0.$$

• The difference with the KKT conditions of the original problem is that condition 3 replaces $\lambda_i f_i(\mathbf{x}) = 0$.

D. Palomar (HKUST) Algorithms Primer 35 / 51

Barrier method

Algorithm 4: Barrier method

Set k=0, initial \mathbf{x}^0 strictly feasible, $t^0>0$, $\mu>1$, tolerance $\epsilon>0$.

repeat

- Centering step: Compute $\mathbf{x}^*(t^k)$ by minimizing $t^k f_0(\mathbf{x}) + \phi(\mathbf{x})$ subject to $\mathbf{A}\mathbf{x} = \mathbf{b}$.
- **②** Stopping criterion: **quit** if $m/t < \epsilon$ and **return** $\mathbf{x}^*(t^k)$.
- **3** Increase $t: t^{k+1} \leftarrow \mu t^k$
- $0 k \leftarrow k+1$
 - Terminates with $f_0(\mathbf{x}) p^* \le \epsilon$ (follows from $f_0(\mathbf{x}^*(t)) p^* \le m/t$).
 - ullet Centering usually with Newton's method (starting at the current ${\bf x}$).
 - Choice of μ involves a trade-off: large μ means fewer outer iterations, but more inner (Newton) iterations; typical values are $\mu=10\sim20$.
 - For convergence analysis see (Boyd and Vandenberghe 2004)¹⁰.

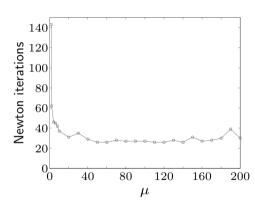
D. Palomar (HKUST) Algorithms Primer 36 / 51

¹⁰S. P. Boyd and L. Vandenberghe, *Convex Optimization*. Cambridge University Press, 2004.

Example

Example with an LP (m = 100 inequalities, n = 50 variables):





- starts with **x** on central path $(t^0 = 1$, duality gap 100)
- terminates when $t = 10^8$ (gap 10^{-6})

Feasibility and phase I methods

- Recall that the barrier method requires a strictly feasible initial point \mathbf{x}^0 .
- Feasibility problem: find x such that

$$f_i(\mathbf{x}) \le 0, \ i = 1, \dots, m, \quad \mathbf{A}\mathbf{x} = \mathbf{b}$$

- How can we find a feasible point?
- Phase I method:

minimize
$$s$$
 subject to $f_i(\mathbf{x}) \leq s, \qquad i = 1, \dots, m$ $\mathbf{A}\mathbf{x} = \mathbf{b}$

- If the solution (\mathbf{x}^*, s^*) satisfies $s^* < 0$, then \mathbf{x}^* is strictly feasible in the original problem; otherwise, the original problem is infeasible.
- To solve the phase I problem we can use the barrier method.
- But how do we obtain a stricly feasible point for the phase I method?

D. Palomar (HKUST) Algorithms Primer 38 / 51

Primal-dual interior-point methods

- Primal-dual IPMs are more efficient than the primal barrier method when high accuracy is needed.
- The idea is to update the primal and dual variables at each iterations; so no distinction between inner and outer iterations.
- Often exhibit superlinear asymptotic convergence.
- Search directions can be interpreted as Newton directions for modified KKT conditions.
- Can start at infeasible points.
- Cost per iteration same as barrier method.

Outline

- Unconstrained Optimization
 - Gradient Descent Method
 - Newton's Method
- Constrained Optimization
 - Equality Constrained Optimization
 - Gradient Projection Method
 - Interior-Point Methods (IPM)
- **3** Block Coordinate Algorithms
 - Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
 - Jacobi Algorithm

Feasible Cartesian product structure

Consider a general optimization problem

$$\begin{array}{ll}
\text{minimize} & f(\mathbf{x}) \\
\text{subject to} & \mathbf{x} \in \mathcal{X}
\end{array}$$

where the optimization variable can be separated into N blocks

$$\mathbf{x} = (\mathbf{x}_1, \dots, \mathbf{x}_N)$$

and the feasible set has a Cartesian product structure

$$\mathcal{X} = \prod_{i=1}^{N} \mathcal{X}_{i}.$$

The problem can be written with decoupled constrains as

minimize
$$f(\mathbf{x}_1, \dots, \mathbf{x}_N)$$

subject to $\mathbf{x}_i \in \mathcal{X}_i$ $i = 1, \dots, N$.

41 / 51

D. Palomar (HKUST)

Algorithms Primer

Outline

- Unconstrained Optimization
 - Gradient Descent Method
 - Newton's Method
- Constrained Optimization
 - Equality Constrained Optimization
 - Gradient Projection Method
 - Interior-Point Methods (IPM)
- 3 Block Coordinate Algorithms
 - Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
 - Jacobi Algorithm

Block Coordinate Descent (BCD)

- The Block Coordinate Descent (BCD) algorithm, also called nonlinear Gauss-Seidel algorithm, optimizes $f(x_1, ..., x_N)$ sequentially.
- At iteration k, for i = 1, ..., N:

$$\mathbf{x}_i^{k+1} = \arg\min_{\mathbf{x}_i \in \mathcal{X}_i} f\left(\mathbf{x}_1^{k+1}, \dots, \mathbf{x}_{i-1}^{k+1}, \mathbf{x}_i, \mathbf{x}_{i+1}^{k}, \dots, \mathbf{x}_{N+1}^{k}\right)$$

- Observe that at each iteration k the blocks are optimized sequentially.
- Merits of BCD:
 - each subproblem may be much easier to solve, or even may have a closed-form solution;
 - ② the objective value is nonincreasing along the BCD updates;
 - it allows parallel or distributed implementations.

Convergence of BCD*

- Suppose that i) $f(\cdot)$ is continuously differentiable over \mathcal{X} and ii) each block optimization is strictly convex. Then, every limit point of the sequence $\{\mathbf{x}^k\}$ is a stationary point (Bertsekas 1999)¹¹, (Bertsekas and Tsitsiklis 1997)¹².
- ullet If ${\mathcal X}$ is convex, then the strict convexity of each block optimization can be relaxed to simply having a unique solution.
- Convergence generalizations: it converges in any of the following cases (Grippo and Sciandrone 2000)¹³:
 - the two-block case N=2;
 - $f(\cdot)$ is component-wise strictly quasi-convex w.r.t. N-2 components;
 - $f(\cdot)$ is pseudo-convex.

D. Palomar (HKUST) Algorithms Primer 44 / 51

¹¹D. P. Bertsekas, *Nonlinear Programming*. Athena Scientific, 1999.

¹²D. P. Bertsekas and J. N. Tsitsiklis, *Parallel and Distributed Computation: Numerical Methods*. Athena Scientific. 1997.

¹³L. Grippo and M. Sciandrone, "On the convergence of the block nonlinear Gauss–Seidel method under convex constraints," *Oper. Res. Lett.*, vol. 26, no. 3, pp. 127–136, 2000.

Application of BCD: $\ell_2 - \ell_1$ optimization problem

Consider the convex problem

minimize
$$f(\mathbf{x}) \triangleq \frac{1}{2} \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_2^2 + \lambda \|\mathbf{x}\|_1$$

- We can use BCD on each element of $\mathbf{x} = (x_1, \dots, x_N)$.
- The optimization w.r.t. each block x_i is

minimize
$$f_i(x_i) \triangleq \frac{1}{2} \|\tilde{\mathbf{y}}_i - \mathbf{a}_i x_i\|_2^2 + \lambda |x_i|$$

where $\tilde{\mathbf{y}}_i \triangleq \mathbf{y} - \sum_{j \neq i} \mathbf{a}_j x_j$.

• The optimal x_i has a closed-form update:

$$x_i^{\star} = \operatorname{soft}_{\lambda} \left(\mathbf{a}_i^T \tilde{\mathbf{y}}_i \right) / \|\mathbf{a}_i\|^2$$

where $\operatorname{soft}_{\lambda}(u) \triangleq \operatorname{sign}(u)[|u| - \lambda]_{+}$ is the **soft-thresholding** operator $([\cdot]_{+} \triangleq \max\{\cdot, 0\})$.

Soft-thresholding operator

Consider the problem

minimize
$$\frac{1}{2} \|\tilde{\mathbf{y}}_i - \mathbf{a}_i x_i\|_2^2 + \lambda |x_i|$$

• Assuming $x_i > 0$, the objective becomes $\frac{1}{2} \|\mathbf{a}_i\|^2 x_i^2 - \tilde{\mathbf{y}}_i^T \mathbf{a}_i x_i + \lambda x_i$ and setting the gradient to zero we get

$$x_i = \left(\tilde{\mathbf{y}}_i^T \mathbf{a}_i - \lambda\right) / \|\mathbf{a}_i\|^2$$

which implies $\tilde{\mathbf{y}}_i^T \mathbf{a}_i > \lambda > 0$.

• Assuming $x_i < 0$, the objective becomes $\frac{1}{2} \|\mathbf{a}_i\|^2 x_i^2 - \tilde{\mathbf{y}}_i^T \mathbf{a}_i x_i - \lambda x_i$ and setting the gradient to zero we get

$$x_i = \left(\tilde{\mathbf{y}}_i^T \mathbf{a}_i + \lambda\right) / \|\mathbf{a}_i\|^2$$

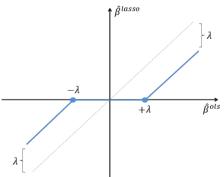
which implies $\tilde{\mathbf{y}}_{i}^{T}\mathbf{a}_{i}<-\lambda<0$.

• The last case is when $\tilde{\mathbf{y}}_i^T \mathbf{a}_i \in [-\lambda, \lambda]$ (equivalently, $|\tilde{\mathbf{y}}_i^T \mathbf{a}_i| \leq \lambda$), in which case $x_i = 0$.

Soft-thresholding operator

- Recall that
 - if $\tilde{\mathbf{y}}_i^T \mathbf{a}_i > \lambda$: $x_i = (\tilde{\mathbf{y}}_i^T \mathbf{a}_i \lambda) / \|\mathbf{a}_i\|^2 = (|\tilde{\mathbf{y}}_i^T \mathbf{a}_i| \lambda) / \|\mathbf{a}_i\|^2$
 - if $\tilde{\mathbf{y}}_i^T \mathbf{a}_i < -\lambda$: $x_i = \left(\tilde{\mathbf{y}}_i^T \mathbf{a}_i + \lambda\right) / \|\mathbf{a}_i\|^2 = -\left(|\tilde{\mathbf{y}}_i^T \mathbf{a}_i| \lambda\right) / \|\mathbf{a}_i\|^2$
- Together with the case x_i when $|\tilde{\mathbf{y}}_i^T \mathbf{a}_i| \leq \lambda$, we can finally write the solution in a compact form:

$$x_i = \operatorname{sign}(\tilde{\mathbf{y}}_i^T \mathbf{a}_i) \left[|\tilde{\mathbf{y}}_i^T \mathbf{a}_i| - \lambda \right] / \|\mathbf{a}_i\|^2.$$



D. Palomar (HKUST) Algorithms Primer 47/51

Outline

- Unconstrained Optimization
 - Gradient Descent Method
 - Newton's Method
- Constrained Optimization
 - Equality Constrained Optimization
 - Gradient Projection Method
 - Interior-Point Methods (IPM)
- **3** Block Coordinate Algorithms
 - Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
 - Jacobi Algorithm

Jacobi Algorithm

- The **Jacobi algorithm** is similar to the Gauss-Seiden algorithm but, instead of sequentially, it optimizes $f(\mathbf{x}_1, \dots, \mathbf{x}_N)$ in parallel.
- At iteration k, for i = 1, ..., N:

$$\mathbf{x}_i = \arg\min_{\mathbf{x}_i} f\left(\mathbf{x}_1^k, \dots, \mathbf{x}_{i-1}^k, \mathbf{x}_i, \mathbf{x}_{i+1}^k, \dots, \mathbf{x}_{N+1}^k\right)$$

- Observe that at each iteration k all the blocks are optimized in parallel.
- Convergence is more difficult to establish.
- If the mapping defined by $T(\mathbf{x}) = \mathbf{x} \gamma \nabla f(\mathbf{x})$ is a contraction for some γ , then $\{\mathbf{x}^k\}$ converges to solution \mathbf{x}^* geometrically (Bertsekas 1999)¹⁴.

D. Palomar (HKUST) Algorithms Primer 49 / 51

¹⁴D. P. Bertsekas, *Nonlinear Programming*. Athena Scientific, 1999.

Thanks

For more information visit:

https://www.danielppalomar.com

References I

Bertsekas, D. P. (1999). Nonlinear programming. Athena Scientific.

Bertsekas, D. P., & Tsitsiklis, J. N. (1997). Parallel and distributed computation: Numerical methods. Athena Scientific.

Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.

Grippo, L., & Sciandrone, M. (2000). On the convergence of the block nonlinear Gauss–Seidel method under convex constraints. *Oper. Res. Lett.*, 26(3), 127–136.

Nocedal, J., & Wright, S. J. (2006). Numerical optimization. Springer Verlag.