
Algorithms Primer

Prof. Daniel P. Palomar

ELEC5470/IEDA6100A - Convex Optimization
The Hong Kong University of Science and Technology (HKUST)

Fall 2020-21

Outline

1 Unconstrained Optimization

Gradient Descent Method
Newton’s Method

2 Constrained Optimization

Equality Constrained Optimization
Gradient Projection Method
Interior-Point Methods (IPM)

3 Block Coordinate Algorithms

Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
Jacobi Algorithm

Outline

1 Unconstrained Optimization

Gradient Descent Method
Newton’s Method

2 Constrained Optimization

Equality Constrained Optimization
Gradient Projection Method
Interior-Point Methods (IPM)

3 Block Coordinate Algorithms

Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
Jacobi Algorithm

Unconstrained minimization
Consider the following optimization problem:

minimize
x

f (x)

where f is convex and twice continuously differentiable.
Optimization methods:

produce a sequence of points xk ∈ dom f, k = 0, 1, . . . with
f
(
xk)
→ p⋆

where p⋆ is the optimal value;
equivalently, can be interpreted as iterative methods to solve the optimality condition

∇f
(
xk)
→ 0.

Basic references: (Bertsekas 1999)1, (Boyd and Vandenberghe 2004)2, and (Nocedal and
Wright 2006)3.

1D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
2S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
3J. Nocedal and S. J. Wright, Numerical Optimization. Springer Verlag, 2006.

D. Palomar (HKUST) Algorithms Primer 4 / 51

Outline

1 Unconstrained Optimization

Gradient Descent Method
Newton’s Method

2 Constrained Optimization

Equality Constrained Optimization
Gradient Projection Method
Interior-Point Methods (IPM)

3 Block Coordinate Algorithms

Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
Jacobi Algorithm

Descent methods
Descent methods obtain the iterates as follows:

xk+1 = xk + tk∆xk,

where ∆x is the search direction and t is the stepsize, satisfying f (xk+1) < f (xk).
From convexity, the descent condition implies ∇f (x)T ∆x < 0.

Algorithm 1: Descent method
Set k = 0 and initialize x0 ∈ dom f
repeat

1 Determine a descent direction ∆xk.
2 Line search: Choose a stepsize tk > 0.
3 Update: xk+1 = xk + tk∆xk.
4 k← k + 1

until convergence
return xk

D. Palomar (HKUST) Algorithms Primer 6 / 51

Line search types
Exact line search:

t = arg min
t>0

f (x + t∆x)

Backtracking line search (parameters α ∈ (0, 1/2), β ∈ (0, 1)):
starting at t = 1, repeat t← βt until

f (x + t∆x) < f (x) + αtf (x)T∆x
graphical interpretation: backtrack until t ≤ t0

D. Palomar (HKUST) Algorithms Primer 7 / 51

Gradient descent method

Simply use the negative gradient as the direction

∆x = −∇f (x)

in the gradient descent method, which satisfies ∇f (x)T ∆x < 0.

The update is then
xk+1 = xk − tk∇f (xk)

Stopping criterion: usually of the form ∥∇f (x)∥2 ≤ ϵ.
Very simple, but often very slow; rarely used in practice.

D. Palomar (HKUST) Algorithms Primer 8 / 51

Gradient descent method

Algorithm 2: Gradient descent method
Set k = 0 and initialize x0 ∈ dom f.
repeat

1 Compute the negative gradient as descent direction: ∆xk = −∇f (xk)
2 Line search: Choose a stepsize tk > 0 via exact or bracktracking line search.
3 Update: xk+1 = xk − tk∇f (xk)
4 k← k + 1

until convergence
return xk

D. Palomar (HKUST) Algorithms Primer 9 / 51

Convergence of gradient descent method∗

If the exact line search or backtracking line search is used, then every limit point of {xk}
is a stationary point and f (xk)− p⋆ ≤ ck (

f (x0)− p⋆
)

(Boyd and Vandenberghe 2004)4.

Other simpler choices for the computation of the stepsize include:
constant stepsize: tk = t, k = 0, 1, . . .
dimishing stepsize rule: tk → 0 with

∑∞
k=0 tk =∞.

Other convergence results (Bertsekas 1999)5:
For the gradient descent with a sufficiently small constant stepsize, every limit point of {xk}
is a stationary point.
For the dimishing stepsize rule, every limit point of {xk} is a stationary point.

4S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
5D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.

D. Palomar (HKUST) Algorithms Primer 10 / 51

Example: Quadratic function
Consider

f (x) = 1
2

(
x2

1 + γx2
2
)

(γ > 0)

with exact line search, starting at x0 = (γ, 1):

xk
1 = γ

(
γ − 1
γ + 1

)k
, xk

2 =
(
−γ − 1

γ + 1

)k

Very slow if γ ≫ 1 or γ ≪ 1.
Example for γ = 10:

D. Palomar (HKUST) Algorithms Primer 11 / 51

Example: Non-quadratic function

Consider
f (x) = ex1+3x2−0.1 + ex1−3x2−0.1 + e−x1−0.1

D. Palomar (HKUST) Algorithms Primer 12 / 51

Exact vs backtraking line search
Consider a big problem in R100:

f (x) = cTx−
500∑
i=1

log(bi − aT
i x)

Both exact line search and backtraking line search achieve a similar linear convergence
(i.e., straight line on a semilog plot):

D. Palomar (HKUST) Algorithms Primer 13 / 51

Outline

1 Unconstrained Optimization

Gradient Descent Method
Newton’s Method

2 Constrained Optimization

Equality Constrained Optimization
Gradient Projection Method
Interior-Point Methods (IPM)

3 Block Coordinate Algorithms

Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
Jacobi Algorithm

Newton step

Newton’s method uses the following direction:

∆xnt = −∇2f (x)−1∇f (x),

where ∇2f (x) is the Hessian of f, which satisfies the descent condition ∇f (x)T∆xnt < 0.

Interpretations:
x + ∆xnt minimizes the second order approximation around x

f̂ (x + v) = f (x) +∇f (x)Tv + 1
2vT∇2f (x)v

x + ∆xnt solves the linearized (first order approximation) of the optimality condition
∇f (x) = 0 around x

∇f (x + v) ≈ ∇f̂ (x + v) = ∇f (x) +∇2f (x)v = 0
D. Palomar (HKUST) Algorithms Primer 15 / 51

Newton decrement

The quantity
λ(x) = (∇f (x)T∇2f (x)−1∇f (x))1/2

is a meaure of the proximity of x to x⋆.

It gives an estimate of f (x)− p⋆, using a quadratic approximation f̂ :

f (x)− inf
y

f̂ (y) = 1
2λ(x)2.

It’s basically free to compute given the Newton step ∆xnt = −∇2f (x)−1∇f (x):

λ(x)2 = −∇f (x)T∆xnt.

D. Palomar (HKUST) Algorithms Primer 16 / 51

Newton’s method

Algorithm 3: Newton’s method
Set k = 0, initialize x0 ∈ dom f, choose tolerance ϵ > 0.
repeat

1 Compute Newton step and decrement:

∆xk
nt = −∇2f (xk)−1∇f (xk) and λ(xk)2 = −∇f (xk)T∆xk

nt.

2 Stopping criterion: quit if λ(xk)2/2 ≤ ϵ and return xk.
3 Line search: Choose a stepsize tk > 0 via bracktracking line search.
4 Update: xk+1 = xk + tk∆xk

nt.
5 k← k + 1

D. Palomar (HKUST) Algorithms Primer 17 / 51

Converge of Newton’s method∗

Newton’s method can be divided into two phases:
damped Newton phase: (∥∇f (x)∥2 ≥ η)

most iterations require backtracking steps
function value decreases by at least γ

quadratically convergent phase: (∥∇f (x)∥2 < η)
all iterations use stepsize t = 1
∥∇f (x)∥2 converges to zero quadratically.

Conclusion: number of iterations until f (x)− p⋆ ≤ ϵ is bounded above by

f (x0)− p⋆

γ
+ log2 log2(ϵ0/ϵ)

where γ and ϵ0 are constants that depend on the smoothness of f and x0 (Boyd and
Vandenberghe 2004)6.

6S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
D. Palomar (HKUST) Algorithms Primer 18 / 51

Example
Example in R100:

backtracking parameters: α = 0.01, β = 0.5
backtracking line search almost as fast as exact line search (and much simpler)
the two phases of the algorithm can be clearly appreciated.

D. Palomar (HKUST) Algorithms Primer 19 / 51

Outline

1 Unconstrained Optimization

Gradient Descent Method
Newton’s Method

2 Constrained Optimization

Equality Constrained Optimization
Gradient Projection Method
Interior-Point Methods (IPM)

3 Block Coordinate Algorithms

Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
Jacobi Algorithm

Outline

1 Unconstrained Optimization

Gradient Descent Method
Newton’s Method

2 Constrained Optimization

Equality Constrained Optimization
Gradient Projection Method
Interior-Point Methods (IPM)

3 Block Coordinate Algorithms

Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
Jacobi Algorithm

Equality constrained optimization
Consider the following equality constrained optimization problem:

minimize
x

f (x)
subject to Ax = b

where f is convex and twice continuously differentiable and A ∈ Rp×n is a fat full rank
matrix.
We assume p⋆ is finite and attained.
The Lagrangian of this problem is

L(x; ν) = f (x) + νT(Ax− b)

with gradient
∇L(x; ν) = ∇f (x) + ATν.

Optimality conditions: x⋆ is optimal iff there exists a ν⋆ such that

∇f (x⋆) + ATν⋆ = 0, Ax⋆ = b.

D. Palomar (HKUST) Algorithms Primer 22 / 51

Eliminating equality constraints
From linear algebra, we know that we can represent the possibly infinite solutions to
Ax = b as

{x ∈ Rn | Ax = b} = {Fz + x0 | z ∈ Rn−p}
where x0 is any particular solution to Ax = b and the range of F ∈ Rn×(n−p) is the
nullspace of A ∈ Rp×n, i.e., AF = 0.
The reduced or eliminated problem is

minimize
z

f̃ (z) = f (Fz + x0)

From the solution z⋆, we can obtain x⋆ and ν⋆ as

x⋆ = Fz⋆ + x0, ν⋆ = −(AAT)−1A∇f (x⋆) .

To use Newton’s method on f̃ (z) note that

∇f̃ (z) = FT∇f (x)
∇2f̃ (z) = FT∇2f (x)F.

D. Palomar (HKUST) Algorithms Primer 23 / 51

Outline

1 Unconstrained Optimization

Gradient Descent Method
Newton’s Method

2 Constrained Optimization

Equality Constrained Optimization
Gradient Projection Method
Interior-Point Methods (IPM)

3 Block Coordinate Algorithms

Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
Jacobi Algorithm

Gradient projection method
Consider a convex optimization problem:

minimize
x

f (x)
subject to x ∈ X

where f (·) is a convex function and X represents an arbitrary feasible set (defined by equality
and/or inequality constraints).

If we were to use the gradient descent method xk+1 = xk − αk∇f (xk) we would possibly
end up with an infeasible point xk+1.
The gradient projection method addresses this issue by projecting onto the feasible set
after taking the step (Bertsekas 1999)7:

xk+1 =
[
xk − αk∇f (xk)

]
X

where [·]X denotes projection onto the set X defined as the solution to miny ∥y− x∥
subject to y ∈ X .

7D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
D. Palomar (HKUST) Algorithms Primer 25 / 51

Gradient projection method

A slightly more general version of the gradient projection method is to express a feasible
direction as dk = x̄k − xk (because x̄k is feasible) and write the iteration as (Bertsekas
1999)8

xk+1 = xk + αk
(
x̄k − xk

)
where

x̄k =
[
xk − sk∇f (xk)

]
X

,

αk ∈ (0, 1] is a stepsize, and sk is a positive scalar.
Note that if we choose αk = 1 then the iteration simplifies to the previous expression:

xk+1 =
[
xk − sk∇f (xk)

]
X

.

The main limitation of the gradient projection method is to have to compute the
projection at each iteration.

8D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
D. Palomar (HKUST) Algorithms Primer 26 / 51

Convergence∗

Every limit point of {xk} is a stationary point (Bertsekas 1999):9
if sk is constant and αk is chosen with the exact line search or backtracking line search;
if αk = 1 and sk is chosen according to the backtracking line search;
if αk = 1 and sk = s with s sufficiently small.

9D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
D. Palomar (HKUST) Algorithms Primer 27 / 51

Outline

1 Unconstrained Optimization

Gradient Descent Method
Newton’s Method

2 Constrained Optimization

Equality Constrained Optimization
Gradient Projection Method
Interior-Point Methods (IPM)

3 Block Coordinate Algorithms

Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
Jacobi Algorithm

Inequality constrained optimization

Consider the following equality constrained optimization problem:

minimize
x

f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m

Ax = b

where all fi is convex and twice continuously differentiable and A ∈ Rp×n is a fat full rank
matrix.
We assume p⋆ is finite and attained.
We assume the problem is strictly feasible, hence strong duality holds and dual optimum
is attained.

D. Palomar (HKUST) Algorithms Primer 29 / 51

Indicator function

We can reformulate the original problem with inequality constraints

minimize
x

f0(x)
subject to fi(x) ≤ 0, i = 1, . . . , m

Ax = b

via the indicator function I−(·):

minimize
x

f0(x) +
∑m

i=1 I−(fi(x))
subject to Ax = b

where

I−(u) =
{

0 if u ≤ 0
∞ otherwise.

D. Palomar (HKUST) Algorithms Primer 30 / 51

Logarithmic barrier
Then we can approximate the indicator function via the logarithmic barrier:

minimize
x

f0(x)− (1/t) ∑m
i=1 log(−fi(x))

subject to Ax = b
which is an equality constrained smooth problem.
For t > 0, −(1/t) log(−u) is a smooth approximation of I−(u), which improves as t→∞.

D. Palomar (HKUST) Algorithms Primer 31 / 51

Logarithmic barrier function

The logarithmic barrier function is

ϕ(x) = −
m∑

i=1
log(−fi(x))

with domϕ = {x | f1(x) < 0, . . . , fm(x) < 0}.
It is convex (follows from composition rules).
Twice continuously differentiable, with derivatives:

∇ϕ(x) =
m∑

i=1

1
−fi(x)∇fi(x)

∇2ϕ(x) =
m∑

i=1

1
fi(x)2∇fi(x)∇fi(x)T +

m∑
i=1

1
−fi(x)∇

2fi(x)

D. Palomar (HKUST) Algorithms Primer 32 / 51

Central path
For t > 0, define x⋆(t) as the solution of

minimize
x

tf0(x) + ϕ(x)
subject to Ax = b.

The central path is the curve {x⋆(t) | t > 0}.
For example, central path of an LP:

D. Palomar (HKUST) Algorithms Primer 33 / 51

Dual points on central path∗

Central path: x = x⋆(t) if there exists a w such that

t∇f0(x) +
m∑

i=1

1
−fi(x)∇fi(x) + ATw = 0, Ax = b

Therefore, x⋆(t) minimizes the Lagrangian

L(x; λ⋆(t), ν⋆(t)) = f0(x) +
m∑

i=1
λ⋆

i (t)fi(x) + ν⋆(t)T(Ax− b)

where we define λ⋆
i (t) = 1/(−tfi(x⋆(t))) and ν⋆(t) = w/t.

This confirms the intuitive idea that f0(x⋆(t))→ p⋆ if t→∞:

p⋆ ≥ g(λ⋆(t), ν⋆(t))
= L(x⋆(t); λ⋆(t), ν⋆(t))
= f0(x⋆(t))−m/t.

D. Palomar (HKUST) Algorithms Primer 34 / 51

Interpretation via KKT conditions∗

x = x⋆(t), x = x⋆(t) satisfy

1 Primal feasibility: fi(x) ≤ 0, i = 1, . . . , m, Ax = b
2 Dual feasibility: λ ≥ 0
3 Approximate complementary slackness: −λifi(x) = 1/t, i = 1, . . . , m
4 Gradient of Lagrangian with respect to x vanishes:

∇f0(x) +
m∑

i=1
λi∇fi(x) + ATν = 0.

The difference with the KKT conditions of the original problem is that condition 3
replaces λifi(x) = 0.

D. Palomar (HKUST) Algorithms Primer 35 / 51

Barrier method
Algorithm 4: Barrier method
Set k = 0, initial x0 strictly feasible, t0 > 0, µ > 1, tolerance ϵ > 0.
repeat

1 Centering step: Compute x⋆(tk) by minimizing tkf0(x) + ϕ(x) subject to Ax = b.
2 Stopping criterion: quit if m/t < ϵ and return x⋆(tk).
3 Increase t: tk+1 ← µtk

4 k← k + 1

Terminates with f0(x)− p⋆ ≤ ϵ (follows from f0(x⋆(t))− p⋆ ≤ m/t).
Centering usually with Newton’s method (starting at the current x).
Choice of µ involves a trade-off: large µ means fewer outer iterations, but more inner
(Newton) iterations; typical values are µ = 10 ∼ 20.
For convergence analysis see (Boyd and Vandenberghe 2004)10.

10S. P. Boyd and L. Vandenberghe, Convex Optimization. Cambridge University Press, 2004.
D. Palomar (HKUST) Algorithms Primer 36 / 51

Example
Example with an LP (m = 100 inequalities, n = 50 variables):

starts with x on central path (t0 = 1, duality gap 100)
terminates when t = 108 (gap 10−6)
centering uses Newton’s method with backtracking
total number of Newton iterations not very sensitive for µ ≤ 10

D. Palomar (HKUST) Algorithms Primer 37 / 51

Feasibility and phase I methods

Recall that the barrier method requires a strictly feasible initial point x0.
Feasibility problem: find x such that

fi(x) ≤ 0, i = 1, . . . , m, Ax = b

How can we find a feasible point?
Phase I method:

minimize
x,s

s
subject to fi(x) ≤ s, i = 1, . . . , m

Ax = b

If the solution (x⋆, s⋆) satisfies s⋆ < 0, then x⋆ is strictly feasible in the original problem;
otherwise, the original problem is infeasible.
To solve the phase I problem we can use the barrier method.
But how do we obtain a stricly feasible point for the phase I method?

D. Palomar (HKUST) Algorithms Primer 38 / 51

Primal-dual interior-point methods

Primal-dual IPMs are more efficient than the primal barrier method when high accuracy is
needed.
The idea is to update the primal and dual variables at each iterations; so no distinction
between inner and outer iterations.
Often exhibit superlinear asymptotic convergence.
Search directions can be interpreted as Newton directions for modified KKT conditions.
Can start at infeasible points.
Cost per iteration same as barrier method.

D. Palomar (HKUST) Algorithms Primer 39 / 51

Outline

1 Unconstrained Optimization

Gradient Descent Method
Newton’s Method

2 Constrained Optimization

Equality Constrained Optimization
Gradient Projection Method
Interior-Point Methods (IPM)

3 Block Coordinate Algorithms

Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
Jacobi Algorithm

Feasible Cartesian product structure
Consider a general optimization problem

minimize
x

f (x)
subject to x ∈ X

where the optimization variable can be separated into N blocks

x = (x1, . . . , xN)

and the feasible set has a Cartesian product structure

X =
N∏

i=1
Xi.

The problem can be written with decoupled constrains as
minimize

x
f (x1, . . . , xN)

subject to xi ∈ Xi i = 1, . . . , N.

D. Palomar (HKUST) Algorithms Primer 41 / 51

Outline

1 Unconstrained Optimization

Gradient Descent Method
Newton’s Method

2 Constrained Optimization

Equality Constrained Optimization
Gradient Projection Method
Interior-Point Methods (IPM)

3 Block Coordinate Algorithms

Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
Jacobi Algorithm

Block Coordinate Descent (BCD)

The Block Coordinate Descent (BCD) algorithm, also called nonlinear Gauss-Seidel
algorithm, optimizes f (x1, . . . , xN) sequentially.
At iteration k, for i = 1, . . . , N:

xk+1
i = arg min

xi∈Xi
f
(
xk+1

1 , . . . , xk+1
i−1 , xi, xk

i+1 . . . , xk
N+1

)
Observe that at each iteration k the blocks are optimized sequentially.
Merits of BCD:

1 each subproblem may be much easier to solve, or even may have a closed-form solution;
2 the objective value is nonincreasing along the BCD updates;
3 it allows parallel or distributed implementations.

D. Palomar (HKUST) Algorithms Primer 43 / 51

Convergence of BCD∗

Suppose that i) f (·) is continuously differentiable over X and ii) each block optimization
is strictly convex. Then, every limit point of the sequence {xk} is a stationary point
(Bertsekas 1999)11, (Bertsekas and Tsitsiklis 1997)12.
If X is convex, then the strict convexity of each block optimization can be relaxed to
simply having a unique solution.
Convergence generalizations: it converges in any of the following cases (Grippo and
Sciandrone 2000)13:

the two-block case N = 2;
f (·) is component-wise strictly quasi-convex w.r.t. N− 2 components;
f (·) is pseudo-convex.

11D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
12D. P. Bertsekas and J. N. Tsitsiklis, Parallel and Distributed Computation: Numerical Methods. Athena

Scientific, 1997.
13L. Grippo and M. Sciandrone, “On the convergence of the block nonlinear Gauss–Seidel method under

convex constraints,” Oper. Res. Lett., vol. 26, no. 3, pp. 127–136, 2000.
D. Palomar (HKUST) Algorithms Primer 44 / 51

Application of BCD: ℓ2 − ℓ1 optimization problem

Consider the convex problem

minimize
x

f (x) ≜ 1
2∥y− Ax∥22 + λ∥x∥1

We can use BCD on each element of x = (x1, . . . , xN).
The optimization w.r.t. each block xi is

minimize
xi

fi(xi) ≜
1
2∥ỹi − aixi∥22 + λ|xi|

where ỹi ≜ y−∑
j̸=i ajxj.

The optimal xi has a closed-form update:

x⋆
i = softλ

(
aT

i ỹi
)

/∥ai∥2

where softλ(u) ≜ sign(u) [|u| − λ]+ is the soft-thresholding operator ([·]+ ≜ max{·, 0}).
D. Palomar (HKUST) Algorithms Primer 45 / 51

Soft-thresholding operator

Consider the problem
minimize

xi

1
2∥ỹi − aixi∥22 + λ|xi|

Assuming xi > 0, the objective becomes 1
2∥ai∥2x2

i − ỹT
i aixi + λxi and setting the gradient

to zero we get
xi =

(
ỹT

i ai − λ
)

/∥ai∥2

which implies ỹT
i ai > λ > 0.

Assuming xi < 0, the objective becomes 1
2∥ai∥2x2

i − ỹT
i aixi − λxi and setting the gradient

to zero we get
xi =

(
ỹT

i ai + λ
)

/∥ai∥2

which implies ỹT
i ai < −λ < 0.

The last case is when ỹT
i ai ∈ [−λ, λ] (equivalently, |ỹT

i ai| ≤ λ), in which case xi = 0.

D. Palomar (HKUST) Algorithms Primer 46 / 51

Soft-thresholding operator
Recall that

if ỹT
i ai > λ: xi =

(
ỹT

i ai − λ
)

/∥ai∥2 =
(
|ỹT

i ai| − λ
)

/∥ai∥2

if ỹT
i ai < −λ: xi =

(
ỹT

i ai + λ
)

/∥ai∥2 = −
(
|ỹT

i ai| − λ
)

/∥ai∥2

Together with the case xi when |ỹT
i ai| ≤ λ, we can finally write the solution in a compact

form:
xi = sign(ỹT

i ai)
[
|ỹT

i ai| − λ
]

+
/∥ai∥2.

D. Palomar (HKUST) Algorithms Primer 47 / 51

Outline

1 Unconstrained Optimization

Gradient Descent Method
Newton’s Method

2 Constrained Optimization

Equality Constrained Optimization
Gradient Projection Method
Interior-Point Methods (IPM)

3 Block Coordinate Algorithms

Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
Jacobi Algorithm

Jacobi Algorithm

The Jacobi algorithm is similar to the Gauss-Seiden algorithm but, instead of
sequentially, it optimizes f (x1, . . . , xN) in parallel.
At iteration k, for i = 1, . . . , N:

xi = arg min
xi

f
(
xk

1, . . . , xk
i−1, xi, xk

i+1 . . . , xk
N+1

)
Observe that at each iteration k all the blocks are optimized in parallel.
Convergence is more difficult to establish.
If the mapping defined by T(x) = x− γ∇f (x) is a contraction for some γ, then {xk}
converges to solution x⋆ geometrically (Bertsekas 1999)14.

14D. P. Bertsekas, Nonlinear Programming. Athena Scientific, 1999.
D. Palomar (HKUST) Algorithms Primer 49 / 51

Thanks

For more information visit:

https://www.danielppalomar.com

References I

Bertsekas, D. P. (1999). Nonlinear programming. Athena Scientific.

Bertsekas, D. P., & Tsitsiklis, J. N. (1997). Parallel and distributed computation: Numerical
methods. Athena Scientific.

Boyd, S. P., & Vandenberghe, L. (2004). Convex optimization. Cambridge University Press.

Grippo, L., & Sciandrone, M. (2000). On the convergence of the block nonlinear Gauss–Seidel
method under convex constraints. Oper. Res. Lett., 26(3), 127–136.

Nocedal, J., & Wright, S. J. (2006). Numerical optimization. Springer Verlag.

D. Palomar (HKUST) Algorithms Primer 51 / 51

	
	Unconstrained Optimization
	Gradient Descent Method
	Newton's Method

	Constrained Optimization
	Equality Constrained Optimization
	Gradient Projection Method
	Interior-Point Methods (IPM)

	Block Coordinate Algorithms
	Gauss-Seidel Algorithm or Block Coordinate Descent (BCD)
	Jacobi Algorithm

