Convex Functions

Prof. Daniel P. Palomar

ELEC5470/IEDA6100A - Convex Optimization
The Hong Kong University of Science and Technology (HKUST)
Fall 2020-21
Outline of Lecture

• Definition convex function

• Examples on \mathbb{R}, \mathbb{R}^n, and $\mathbb{R}^{n \times n}$

• Restriction of a convex function to a line

• First- and second-order conditions

• Operations that preserve convexity

• Quasi-convexity, log-convexity, and convexity w.r.t. generalized inequalities

(Acknowledgement to Stephen Boyd for material for this lecture.)
Definition of Convex Function

- A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is said to be convex if the domain, $\text{dom } f$, is convex and for any $x, y \in \text{dom } f$ and $0 \leq \theta \leq 1$,

$$f(\theta x + (1 - \theta) y) \leq \theta f(x) + (1 - \theta) f(y).$$

- f is strictly convex if the inequality is strict for $0 < \theta < 1$.
- f is concave if $-f$ is convex.
Examples on \mathbb{R}

Convex functions:

- affine: $ax + b$ on \mathbb{R}
- powers of absolute value: $|x|^p$ on \mathbb{R}, for $p \geq 1$ (e.g., $|x|$)
- powers: x^p on \mathbb{R}_{++}, for $p \geq 1$ or $p \leq 0$ (e.g., x^2)
- exponential: e^{ax} on \mathbb{R}
- negative entropy: $x \log x$ on \mathbb{R}_{++}

Concave functions:

- affine: $ax + b$ on \mathbb{R}
- powers: x^p on \mathbb{R}_{++}, for $0 \leq p \leq 1$
- logarithm: $\log x$ on \mathbb{R}_{++}
Examples on \mathbb{R}^n

- **Affine functions** $f(x) = a^T x + b$ are convex and concave on \mathbb{R}^n.

- **Norms** $\|x\|$ are convex on \mathbb{R}^n (e.g., $\|x\|_\infty$, $\|x\|_1$, $\|x\|_2$).

- **Quadratic functions** $f(x) = x^T P x + 2q^T x + r$ are convex \mathbb{R}^n if and only if $P \succeq 0$.

- The **geometric mean** $f(x) = \left(\prod_{i=1}^n x_i\right)^{1/n}$ is concave on \mathbb{R}_{++}^n.

- The **log-sum-exp** $f(x) = \log \sum_i e^{x_i}$ is convex on \mathbb{R}^n (it can be used to approximate $\max_{i=1,\ldots,n} x_i$).

- **Quadratic over linear**: $f(x,y) = x^2/y$ is convex on $\mathbb{R}^n \times \mathbb{R}_{++}$.
Examples on $\mathbb{R}^{n \times n}$

- **Affine functions**: (prove it!)
 \[f(X) = \text{Tr}(AX) + b \]
 are convex and concave on $\mathbb{R}^{n \times n}$.

- **Logarithmic determinant function**: (prove it!)
 \[f(X) = \log \det(X) \]
 is concave on $S^n = \{X \in \mathbb{R}^{n \times n} \mid X \succeq 0\}$.

- **Maximum eigenvalue function**: (prove it!)
 \[f(X) = \lambda_{\text{max}}(X) = \sup_{y \neq 0} \frac{y^T X y}{y^T y} \]
 is convex on S^n.

Daniel P. Palomar 5
Epigraph

• The **epigraph** of f if the set

$$\text{epi } f = \left\{ (x, t) \in \mathbb{R}^{n+1} \mid x \in \text{dom } f, f(x) \leq t \right\}.$$

• Relation between convexity in sets and convexity in functions:

$$f \text{ is convex } \iff \text{epi } f \text{ is convex}$$
Restriction of a Convex Function to a Line

- \(f : \mathbb{R}^n \rightarrow \mathbb{R} \) is convex if and only if the function \(g : \mathbb{R} \rightarrow \mathbb{R} \)
 \[
 g(t) = f(x + tv), \quad \text{dom } g = \{ t \mid x + tv \in \text{dom } f \}
 \]
is convex for any \(x \in \text{dom } f, \; v \in \mathbb{R}^n \).

- In words: a function is convex if and only if it is convex when restricted to an arbitrary line.

- Implication: we can check convexity of \(f \) by checking convexity of functions of one variable!

- Example: concavity of \(\log \det (X) \) follows from concavity of \(\log (x) \).
Example: concavity of logdet(X):

\[
g(t) = \log\det(X + tV) = \log\det(X) + \log\det(I + tX^{-1/2}VX^{-1/2}) = \log\det(X) + \sum_{i=1}^{n} \log(1 + t\lambda_i)
\]

where λ_i’s are the eigenvalues of $X^{-1/2}VX^{-1/2}$.

The function g is concave in t for any choice of $X \succ 0$ and V; therefore, f is concave.
First and Second Order Condition

• **Gradient** (for differentiable f):

$$\nabla f (x) = \left[\frac{\partial f(x)}{\partial x_1} \ldots \frac{\partial f(x)}{\partial x_n} \right]^T \in \mathbb{R}^n.$$

• **Hessian** (for twice differentiable f):

$$\nabla^2 f (x) = \left(\frac{\partial^2 f(x)}{\partial x_i \partial x_j} \right)_{ij} \in \mathbb{R}^{n \times n}.$$

• Taylor series:

$$f (x + \delta) = f (x) + \nabla f (x)^T \delta + \frac{1}{2} \delta^T \nabla^2 f (x) \delta + o \left(\| \delta \|^2 \right).$$
• **First-order condition**: a differentiable f with convex domain is convex if and only if

$$f(y) \geq f(x) + \nabla f(x)^T (y - x) \quad \forall x, y \in \text{dom } f$$

![Diagram](image)

• Interpretation: first-order approximation if a global underestimator.

• **Second-order condition**: a twice differentiable f with convex domain is convex if and only if

$$\nabla^2 f(x) \succeq 0 \quad \forall x \in \text{dom } f$$
Examples

- **Quadratic function**: \(f(x) = (1/2) x^T P x + q^T x + r \) (with \(P \in \mathbb{S}^n \))

 \[\nabla f(x) = Px + q, \quad \nabla^2 f(x) = P \]

 is convex if \(P \succeq 0 \).

- **Least-squares objective**: \(f(x) = \|Ax - b\|_2^2 \)

 \[\nabla f(x) = 2A^T (Ax - b), \quad \nabla^2 f(x) = 2A^T A \]

 is convex.
• Quadratic-over-linear: $f(x, y) = \frac{x^2}{y}$

$$\nabla^2 f(x, y) = \frac{2}{y^3} \begin{bmatrix} y \\ -x \end{bmatrix} \begin{bmatrix} y & -x \end{bmatrix} \succeq 0$$

is convex for $y > 0$.
Operations that Preserve Convexity

How do we establish the convexity of a given function?

1. Applying the definition.

2. With first- or second-order conditions.

3. By restricting to a line.

4. Showing that the functions can be obtained from simple functions by operations that preserve convexity:
 - nonnegative weighted sum
 - composition with affine function (and other compositions)
 - pointwise maximum and supremum, minimization
 - perspective
• **Nonnegative weighted sum**: if \(f_1, f_2 \) are convex, then \(\alpha_1 f_1 + \alpha_2 f_2 \) is convex, with \(\alpha_1, \alpha_2 \geq 0 \).

• **Composition with affine functions**: if \(f \) is convex, then \(f(Ax + b) \) is convex (e.g., \(\|y - Ax\| \) is convex, \(\log \det(I + HXH^T) \) is concave).

• **Pointwise maximum**: if \(f_1, \ldots, f_m \) are convex, then \(f(x) = \max \{ f_1, \ldots, f_m \} \) is convex.

Example: sum of \(r \) largest components of \(x \in \mathbb{R}^n \): \(f(x) = x_{[1]} + x_{[2]} + \cdots + x_{[r]} \) where \(x_{[i]} \) is the \(i \)th largest component of \(x \).

Proof: \(f(x) = \max \{ x_{i_1} + x_{i_2} + \cdots + x_{i_r} \mid 1 \leq i_1 < i_2 < \cdots < i_r \leq n \} \).
• **Pointwise supremum:** if \(f(x, y) \) is convex in \(x \) for each \(y \in \mathcal{A} \), then

\[
g(x) = \sup_{y \in \mathcal{A}} f(x, y)
\]

is convex.

Example: distance to farthest point in a set \(C \):

\[
f(x) = \sup_{y \in C} \|x - y\|
\]

Example: maximum eigenvalue of symmetric matrix: for \(X \in \mathbb{S}^n \),

\[
\lambda_{\text{max}}(X) = \sup_{y \neq 0} \frac{y^T X y}{y^T y}
\]
• **Composition with scalar functions:** let $g : \mathbb{R}^n \rightarrow \mathbb{R}$ and $h : \mathbb{R} \rightarrow \mathbb{R}$, then the function $f (x) = h (g (x))$ satisfies:

$f (x)$ is convex if g convex, h convex nondecreasing

g concave, h convex nonincreasing

• **Minimization:** if $f (x, y)$ is convex in (x, y) and C is a convex set, then

$g (x) = \inf_{y \in C} f (x, y)$

is convex (e.g., distance to a convex set).

Example: distance to a set C:

$f (x) = \inf_{y \in C} \| x - y \|$

is convex if C is convex.
• **Perspective**: if \(f(x) \) is convex, then its perspective

\[
g(x,t) = tf(x/t), \quad \text{dom } g = \{(x,t) \in \mathbb{R}^{n+1} \mid x/t \in \text{dom } f, t > 0\}
\]

is convex.

Example: \(f(x) = x^T x \) is convex; hence \(g(x,t) = x^T x/t \) is convex for \(t > 0 \).

Example: the negative logarithm \(f(x) = -\log x \) is convex; hence the relative entropy function \(g(x,t) = t \log t - t \log x \) is convex on \(\mathbb{R}_+^2 \).
Quasi-Convexity Functions

- A function $f : \mathbb{R}^n \rightarrow \mathbb{R}$ is quasi-convex if $\text{dom } f$ is convex and the sublevel sets
 \[S_\alpha = \{ x \in \text{dom } f \mid f(x) \leq \alpha \} \]
 are convex for all α.

- f is quasiconcave if $-f$ is quasiconvex.
Examples:

- $\sqrt{|x|}$ is quasiconvex on \mathbb{R}
- $\text{ceil}(x) = \inf\{z \in \mathbb{Z} \mid z \geq x\}$ is quasilinear
- $\log x$ is quasilinear on \mathbb{R}_{++}
- $f(x_1, x_2) = x_1x_2$ is quasiconcave on \mathbb{R}^2_{++}
- The linear-fractional function
 \[
 f(x) = \frac{a^T x + b}{c^T x + d},
 \quad \text{dom } f = \{x \mid c^T x + d > 0\}
 \]
 is quasilinear
Log-Convexity

• A positive function f is log-concave if $\log f$ is concave:

$$f(\theta x + (1 - \theta) y) \geq f(x)^\theta f(y)^{1-\theta} \quad \text{for} \quad 0 \leq \theta \leq 1.$$

• f is log-convex if $\log f$ is convex.

• Example: x^a on \mathbb{R}_{++} is log-convex for $a \leq 0$ and log-concave for $a \geq 0$

• Example: many common probability densities are log-concave
Convexity w.r.t. Generalized Inequalities

- $f : \mathbb{R}^n \rightarrow \mathbb{R}^m$ is K-convex if $\text{dom} f$ is convex and for any $x, y \in \text{dom} f$ and $0 \leq \theta \leq 1$,

$$f (\theta x + (1 - \theta) y) \preceq_K \theta f (x) + (1 - \theta) f (y).$$

- Example: $f : S^m \rightarrow S^m$, $f (X) = X^2$ is S^m_+-convex.
References

Chapter 3 of

