
Optimization Methods for Graph Learning

Prof. Daniel P. Palomar

ELEC5470/IEDA6100A - Convex Optimization
The Hong Kong University of Science and Technology (HKUST)

Fall 2020-21

Outline

1 Graphs

2 Basics

3 Learning Graphs from Data

Similarity function based
Smooth signal based
i.i.d. model based
Structured graphs via spectral constraints

4 Numerical Experiments

Outline

1 Graphs

2 Basics

3 Learning Graphs from Data

Similarity function based
Smooth signal based
i.i.d. model based
Structured graphs via spectral constraints

4 Numerical Experiments

Graphical models
Graphical models are a way to represent knowledge:

nodes correspond to the entities (variables);
edges encode the relationships between entities (dependencies between the variables).

x1

x2 x3

x4

x5x6

x7

x8

x9

D. Palomar (HKUST) Graph Learning 4 / 96

Examples
Financial graph: represents inter-dependencies of financial companies and the data are the
economic indices (stock price, volume, etc.) of each entity.

D. Palomar (HKUST) Graph Learning 5 / 96

Examples

Social graph: representa behavioral similarity/influence between people and the data are the
online activities (tagging, liking, purchasing).

D. Palomar (HKUST) Graph Learning 6 / 96

Graphical model importance

Graphs are intuitive way of representing and visualising the relationships between entities.
Graphs allow us to abstract out the conditional independence relationships and to
answer questions like: “Is x1 dependent on x6 given that we know the value of x8?” just
by looking at the graph.
Graph models constitute an effective representation of data, available across numerous
domains in science and engineering.
Graphs are widely used in a variety of applications in machine learning, graph CNN, graph
signal processing, functional connectivity between brain regions, behavioral influence
among groups of people, effect among stocks, etc.
Graphs offer a language through which different disciplines can seamlessly interact with
each other.
It captures the actual geometry of data.
It allows a visualization of high-dimensional data.

D. Palomar (HKUST) Graph Learning 7 / 96

How to learn a graph?

Graphical models are about having a graph representation that can encode relationships
between entities.
In many cases, the relationships between entities are straightforward and direct:

Are two people friends in a social network?
Are two researchers co-authors in a published paper?

In many other cases, relationships are not known and must be learned:
Does one gene regulate the expression of others?
Which drug alters the pharmacologic effect of another drug?

The choice of graph representation affects the subsequent analysis and eventually the
performance of any graph-based algorithm.

The goal is to learn a graph representation of data with specific properties (e.g., structures).

D. Palomar (HKUST) Graph Learning 8 / 96

Graph learning from data
Given a data matrix X = [x1, x2, . . . , xn] ∈ Rp×n, each column xi ∈ Rp is a graph signal
(one observation) and there are n observations.
The goal is to obtain a graph representation of the data.

A graph is a simple mathematical structure described by G = (V, E ,W), where
V contains the set of nodes V = {1, 2, 3, . . . , p};
E = {(1, 2), (1, 3), . . . , (i, j), . . . , (p, p− 1)} is the set of edges between pair of nodes (i, j);
the weight matrix W encodes the strength of the relationships.

D. Palomar (HKUST) Graph Learning 9 / 96

Graph learning example
Example of transforming a dataset with points in R2 into a graph:

Introductory references: (Mateos et al. 2019)1 and (Dong et al. 2019)2.
1G. Mateos, S. Segarra, A. G. Marques, and A. Ribeiro, “Connecting the dots,” IEEE Signal Processing

Magazine, vol. 36, no. 3, pp. 16–43, 2019.
2X. Dong, D. Thanou, M. Rabbat, and P. Frossard, “Learning graphs from data: A signal representation

perspective,” IEEE Signal Processing Magazine, vol. 36, no. 3, pp. 44–63, 2019.
D. Palomar (HKUST) Graph Learning 10 / 96

Outline

1 Graphs

2 Basics

3 Learning Graphs from Data

Similarity function based
Smooth signal based
i.i.d. model based
Structured graphs via spectral constraints

4 Numerical Experiments

Graph and its matrix representation
Connectivity matrix C, Adjacency matrix W, and Laplacian matrix L:

[C]ij =


1 if (i, j) ∈ E

0 if (i, j) /∈ E

0 if i = j

, [W]ij =


wij if (i, j) ∈ E

0 if (i, j) /∈ E

0 if i = j

, [L]ij =


−wij if (i, j) ∈ E

0 if (i, j) /∈ E∑p
j=1 wij if i = j

Example: V = {1, 2, 3, 4}, E = {(1, 2), (1, 3), (2, 3), (2, 4)}, and W = {2, 2, 3, 1}:

[C]ij =

 0 1 1 0
1 0 1 1
1 1 0 0
0 1 0 0

 , [W]ij =

 0 2 2 0
2 0 3 1
2 3 0 0
0 1 0 0

 , [L]ij =

 4 −2 −2 0
−2 6 −3 −1
−2 −3 5 0
0 −1 0 1


D. Palomar (HKUST) Graph Learning 12 / 96

Graph terminology

Graph matrices for a weighted graph G = (V, E ,W):
Weighted adjacency matrix of a graph (or simply adjacency matrix), W, is defined as
Wij = wij ≥ 0. It is a symmetric matrix (undirected graph) and Wii = 0 (no self-loops).
Connectivity matrix: C is a particular case of the adjacency matrix with 0− 1 elements.
The degree matrix is the diagonal matrix D that contains the degrees d1, . . . , dp along
the diagonal:

D = Diag (W1) .

The degree di of the vertex i is defined as the row sum di =
∑

j ̸=i Wi,j =
∑

j wij.
Laplacian of a graph:

L = D−W.

Normalized Laplacian of a graph:

Lnorm = D1/2LD1/2 = I−D1/2WD1/2.

D. Palomar (HKUST) Graph Learning 13 / 96

The Laplacian graph matrix
The adjacency matrix W already contains all the graph information, so why do we need
other graph matrices like the Laplacian matrix?
The Laplacian L = D−W, where D = Diag (W1), has a nice interesting physical
meaning as well as many nice properties:

L is a symmetric and positive semidefinite matrix L ⪰ 0;
the number of zero eigenvalues denotes the number of connected components of the graph;
L is singular with eigenvector 1: L1 = 0.

Physical interpretation: Denote with the vector x = (x1, . . . , xp) the value of some
quantity on all the p nodes. The Laplacian measures the smoothness or variance of that
vector weighted with the graph weights:

xTLx = 1
2
∑
i,j

wij(xi − xj)2.

Proof:
xTLx = xTDx− xTWx =

∑
i

dix2
i −

∑
i,j

wijxixj =
∑
i,j

wijx2
i −

∑
i,j

wijxixj.

D. Palomar (HKUST) Graph Learning 14 / 96

Outline

1 Graphs

2 Basics

3 Learning Graphs from Data

Similarity function based
Smooth signal based
i.i.d. model based
Structured graphs via spectral constraints

4 Numerical Experiments

Learning graphs from data

We will consider different ways to learn the graph adjacency matrix, W, or Laplacian
matrix, L, with input either the data matrix X or the sample covariance matrix S.

Similarity function based methods for adjacency W (with input the data matrix X).
Basically, two nodes i and j are connected based on some similarity function, leading to:

thresholded Euclidean distance graph;
Gaussian graph;
thresholded Gaussian graph;
k-nearest neighbors (k-NN) graph;
feature correlation graph;
self-tuned Gaussian graph.

D. Palomar (HKUST) Graph Learning 16 / 96

Learning graphs from data

Smooth signal based methods for Laplacian L:
graphs from smooth signals;
closest k-connected graph.

i.i.d. model based methods for Laplacian L (with input the sample covariance matrix S):
covariance matrix (with and without market factor, which applies to all the methods);
correlation matrix;
precision matrix;
graphical LASSO (GLASSO);
Laplacian-structured GLASSO;
Laplacian with spectral constraints (e.g., for k-connected graph);
shift operator based.

D. Palomar (HKUST) Graph Learning 17 / 96

Outline

1 Graphs

2 Basics

3 Learning Graphs from Data

Similarity function based
Smooth signal based
i.i.d. model based
Structured graphs via spectral constraints

4 Numerical Experiments

Basic similarity measures
Write the data matrix in terms of the node signals xi ∈ Rn along the rows:
X = [x1, x2, . . . , xp]T ∈ Rp×n.
To choose the edges and weights to form the adjacency matrix W, either weighted or 0-1
connectivity matrix, we can use different methods:

Thresholded Euclidean distance graph: nodes i and j are connected (wij = 1) if the
corresponding signals satisfy ∥xi − xj∥2 ≤ γ (where γ is a threshold); otherwise not
connected (wij = 0).
Gaussian graph: set every pair of points i ̸= j as connected with the following weights:

wij = exp
(
−∥xi − xj∥2

2σ2

)
,

where σ2 controls the size of the neighborhood.
Thresholded Gaussian graph: we can combine the previous two graph constructions,
i.e., set every pair of points i ̸= j satisfying ∥xi − xj∥2 ≤ γ with Gaussian weights;
otherwise not connected (wij = 0).

D. Palomar (HKUST) Graph Learning 19 / 96

Basic similarity measures
k-nearest neighbors (k-NN) graph: nodes i and j are connected (wij = 1) if xi is one of
the k closest points (Euclidean distance) to xj or viceversa; otherwise not connected
(wij = 0).
Feature correlation graph: simply use the pairwise feature correlation for i ̸= j:

wij = xT
i xj.

Self-tuned Gaussian graph: the Gaussian graph tends to be too densely connected, this
approach automatically chooses a different σ for each point; in particular, it normalizes
the distance from each node i to the other nodes with the distance to its k-NN:

wij = exp
(
−∥xi − xj∥2

2σiσj

)
,

where σi denotes the distance between the ith node and its k-NN.
Basic reference: (Manor and Perona 2004)3.

3L. Z. Manor and P. Perona, “Self-tuning spectral clustering,” in Proc. Advances in Neural Information
Processing Systems (NeurIPS), 2004.

D. Palomar (HKUST) Graph Learning 20 / 96

Graphs from basic constructions
Thresholded distance 0−1 graph (two−moon data)

Thresholded distance 0−1 graph (three−circle data)

Gaussian graph (two−moon data)

Gaussian graph (three−circle data)

Thresholded Gaussian graph (two−moon data)

Thresholded Gaussian graph (three−circle data)

D. Palomar (HKUST) Graph Learning 21 / 96

Graphs from basic constructions
k−NN 0−1 graph (two−moon data)

k−NN 0−1 graph (three−circle data)

Feature correlation graph (two−moon data)

Feature correlation graph (three−circle data)

Self−tuned Gaussian graph (two−moon data)

Self−tuned Gaussian graph (three−circle data)

D. Palomar (HKUST) Graph Learning 22 / 96

Outline

1 Graphs

2 Basics

3 Learning Graphs from Data

Similarity function based
Smooth signal based
i.i.d. model based
Structured graphs via spectral constraints

4 Numerical Experiments

Learning graphs from data: Smooth signals

Previously, we have learned different basic ways to construct the adjacency matrix W,
either weighted or a 0-1 connectivity matrix, from a set of data points {xi}ni=1, where each
p-dimensional vector xi = (x1i, . . . , xpi) contains the signal from the p nodes of the graph.
In particular, we have considered the following similarity function based methods:

thresholded Euclidean distance graph;
Gaussian graph;
thresholded Gaussian graph;
k-nearest neighbors (k-NN) graph;
feature correlation graph;
self-tuned Gaussian graph.

We will now consider more sophisticated smooth signal based methods to learn the
graph Laplacian matrix L:

graphs from smooth signals;
closest k-connected graph.

D. Palomar (HKUST) Graph Learning 24 / 96

Learning graphs from smooth signals
Recall that a measure of smoothness or variance of a graph-signal x ∈ Rp is

xTLx = 1
2
∑
i,j

wij(xi − xj)2.

Given p signals, each containing n observations along the rows, in the data matrix
X = [x1, x2, . . . , xp]T ∈ Rp×n, we can measure its smoothness over the graph G as
Tr(XTLX) = 1

2
∑

i,j wij∥xi − xj∥2.
When the graph G is not available, we can learn it from the data X by finding the graph
weights that minimize the variance term combined with some regularization term:

minimize
L

Tr(XTLX) + γh(L).

Smaller distance ∥xi − xj∥2 between data points xi and xj will force to learn a graph with
larger affinity value wij, and vice versa.
Higher values of weight wij will imply the signals xi and xj are similar and, hence, strongly
connected.
h(L) is a regularization function, e.g., ∥L∥1, ∥L∥2

F, and −logdet(L).
D. Palomar (HKUST) Graph Learning 25 / 96

Learning graphs from smooth signals

The graph learning formulation from smooth signals can be formulated in convex form in
terms of either the adjacency matrix W or the Laplacian matrix L = D−W, where
D = Diag(d) and d = W1 is the degree vector of the nodes.
Formulation in terms of Laplacian matrix:

minimize
L⪰0

Tr(XTLX) + γ
2∥L∥2F,off

subject to diag(L) = 1
L1 = 0, Lij = Lji ≤ 0, ∀i ̸= j

where
the regularization term ∥L∥2

F,off controls the energy of the off-diagonal elements;
the constraint d = diag(L) = 1 controls the degrees of the nodes (to get a balanced graph);
and
we have the usual Laplacian constraints L1 = 0 and Lij = Lji ≤ 0 for i ̸= j.

D. Palomar (HKUST) Graph Learning 26 / 96

Learning graphs from smooth signals
Formulation in terms of adjacency matrix:

minimize
W

∑p
i,j=1 wij∥xi − xj∥2 + γ

∑p
i,j=1 w2

ij

subject to ∑p
j=1 wij = 1, ∀i

wii = 0, wij = wji ≥ 0, ∀i ̸= j.

Defining Zij = ∥xi − xj∥2, we can rewrite the problem compactly:

minimize
W

Tr(WZ) + γ∥W∥2F
subject to W1 = 1

diag(W) = 0, W = WT ≥ 0.

With γ = 0 we would get just one connection per node!
With γ →∞ we get instead a fully dense graph (Cauchy-Schwartz).
So the term ∥W∥2

F makes the solution nonsparse!
Both formulations (in terms of adjacency matrix or Laplacian matrix) are convex and can
be easily solved with a solver. Interestingly, we can develop a simple tailored algorithm.

D. Palomar (HKUST) Graph Learning 27 / 96

Learning graphs from smooth signals
If we ignore the symmetry constraint in the adjacency matrix W = WT, then the problem
can be nicely solved separately for each row/column wi as in (Nie et al. 2016)4.
Note that at a later stage we will have to symmetrize it:

W← 1
2(W + WT).

The problem of the ith row is
minimize

wi

∑p
j=1 wijzji + γ

∑p
j=1 w2

ij

subject to ∑p
j=1 wij = 1, wii = 0, wij ≥ 0

More compactly minimize
wi

zT
i wi + γ∥wi∥2

subject to wT
i 1 = 1, wii = 0, wi ≥ 0.

4F. Nie, X. Wang, M. Jordan, and H. Huang, “The constrained Laplacian rank algorithm for graph-based
clustering,” in Proc. of the Thirtieth Conference on Artificial Intelligence (AAAI), Phoenix, Arizona, USA, 2016,
pp. 1969–1976.

D. Palomar (HKUST) Graph Learning 28 / 96

Learning graphs from smooth signals

We can finally write our problem as

minimize
wi

1
2∥wi + zi

2γ ∥
2

subject to wT
i 1 = 1, wii = 0, wi ≥ 0.

The Lagrangian is

L(wi; ηi, βi) = 1
2

∥∥∥∥wi + zi
2γ

∥∥∥∥2
− ηi(wT

i 1− 1)− βT
i wi

where ηi and βi ∈ Rp are the Lagrangian multipliers with βji ≥ 0, ∀j ̸= i.
From the KKT optimality conditions, the optimal solution (defining zii =∞ so that
wii = 0) is

wi =
(
ηi −

zi
2γ

)+

where η is found so that the constraint wT
i 1 = 1 is satisfied.

D. Palomar (HKUST) Graph Learning 29 / 96

Technical details: Derivation of solution

To derive the optimal solution, setting the gradient of the Lagrangian w.r.t. wi to zero
gives

wi + zi
2γ − ηi1− βi = 0.

Now, from the complementary slackness condition wjiβji = 0, we get that, for j ̸= i:
if wji > 0, then wji = − zji

2γ + ηi and − zji
2γ + ηi > 0

if wji = 0, then − zji
2γ + ηi = −βji ≤ 0

In other words:
if ηi − zji

2γ > 0, then wji = − zi
2γ + ηi

if ηi − zji
2γ ≤ 0, then wji = 0.

More compactly (defining zii =∞ so that wii = 0):

wi =
(
ηi −

zi
2γ

)+
.

D. Palomar (HKUST) Graph Learning 30 / 96

Technical details: Obtaining sparsity via γ

Let’s find a choice of γ so that ∥wi∥0 = m with m≪ p (i.e., so that each node has
exactly m neighbors). In fact, we will need a different γ for each wi.
Without loss of generality, suppose z1i, z2i, . . . , zpi are ordered in increasing order.
The requirement ∥wi∥0 = m implies wmi > 0 and wm+1,i = 0. Therefore, we have

ηi −
zmi
2γ > 0 and ηi −

zm+1,i
2γ ≤ 0

Combining the solution of wi with the constraint wT
i 1 = 1, we get

m∑
j=1

(
ηi −

zji
2γ

)
= 1 =⇒ ηi = 1

m + 1
2mγ

m∑
j=1

zji.

This leads to following inequality for γ:

m
2 zmi −

1
2

m∑
j=1

zji < γ ≤ m
2 zm+1,i −

1
2

m∑
j=1

zji.

D. Palomar (HKUST) Graph Learning 31 / 96

Technical details: Obtaining sparsity via γ

Therefore, to obtain an optimal solution wi with exactly m nonzero values (∥wi∥0 = m),
the maximal γ is

γ = m
2 zm+1,i −

1
2

m∑
j=1

zji.

Combining the previous results, we get

wji =


zm+1,i−zji

mzm+1,i−
∑m

h=1 zhi
, j ≤ m

0, j > m.
We now drop the increasing ordering assumption on zji and we denote by z(m+1),i the
(m + 1)-th smallest element of z1,i, . . . , zp,i.
The final solution is written as:

w̃i =
(

1− zi
z(m+1),i

)+

wi = w̃i/1Tw̃i.
D. Palomar (HKUST) Graph Learning 32 / 96

Learning graphs from smooth signals revisited
Recall the formulation for the graph learning from smooth signals:

minimize
W

1
2Tr(WZ) + γ

2∥W∥2F
subject to W1 = 1

diag(W) = 0, W = WT ≥ 0.

If we move the hard constraint on the degrees of the nodes W1 = 1 to the objective as a
penalty term to avoid the trivial solution W = 0 (with vanishing degrees), we obtain
(Kalofolias 2016)5:

minimize
W

1
2Tr(WZ)− α1Tlog(W1) + β

2 ∥W∥2F
subject to diag(W) = 0, W = WT ≥ 0.

This formulation is convex and can be easily solved with a solver. Interestingly, we can
again develop a simple tailored algorithm.

5V. Kalofolias, “How to learn a graph from smooth signals,” in Proc. Int. Conf. Artif. Intell. Statist., 2016,
pp. 920–929.

D. Palomar (HKUST) Graph Learning 33 / 96

Learning graphs from smooth signals revisited

If we ignore the symmetry constraint in the adjacency matrix W = WT, then the problem
can be nicely solved separately for each row/column wi:

minimize
wi

1
2zT

i wi − α log(1Twi) + β
2 ∥wi∥2

subject to wii = 0, wi ≥ 0.

Note that at a later stage we will have to symmetrize it:

W← 1
2(W + WT).

From the KKT optimality conditions, the optimal solution (defining zii =∞ so that
wii = 0) is

wi =
(
α/β

ti
− zi

2β

)+

where ti is found so that 1Twi = ti.
D. Palomar (HKUST) Graph Learning 34 / 96

Technical details: Derivation of solution

The Lagrangian of the problem is

L(wi;λi) = 1
2zT

i wi − α log(1Twi) + β

2 ∥wi∥2 − λT
i wi

where λi ∈ Rp is the Lagrangian multipliers with λji ≥ 0, ∀j ̸= i.
Setting the gradient of the Lagrangian w.r.t. wi to zero gives 1

2zi− α
1Twi

1 + βwi−λi = 0.
Now, from the complementary slackness condition wjiλji = 0, we get that, for j ̸= i:

if wji > 0, then wji = α/β
1Twi
− zji

2β and α/β
1Twi

>
zji
2β

if wji = 0, then zji
2 −

α
1Twi

= λji ≥ 0
In other words:

if α/β
1Twi

>
zji
2β , then wji = α/β

1Twi
− zji

2β

if α/β
1Twi
≤ zji

2β , then wji = 0.

More compactly (defining zii =∞ so that wii = 0): wi =
(

α/β
1Twi
− zi

2β

)+
.

D. Palomar (HKUST) Graph Learning 35 / 96

Technical details: Obtaining sparsity via α and β

Let’s find a choice of α and β so that ∥wi∥0 = m with m≪ p (i.e., so that each node has
exactly m neighbors). In fact, we will need a different α and β for each wi.
Without loss of generality, suppose z1i, z2i, . . . , zpi are ordered in increasing order.
The requirement ∥wi∥0 = m implies wm,i > 0 and wm+1,i = 0. Therefore, we have

α/β

1Twi
>

zm,i
2β and α/β

1Twi
≤ zm+1,i

2β .

Denoting ᾱ = α/β, we can write it as
zm,i
2ᾱ 1Twi < β ≤ zm+1,i

2ᾱ 1Twi.

Therefore, to obtain an optimal solution wi with exactly m nonzero values (∥wi∥0 = m),
the maximal β is

β = zm+1,i
2ᾱ 1Twi.

D. Palomar (HKUST) Graph Learning 36 / 96

Technical details: Obtaining sparsity via α and β

Combining the previous results, the optimal solution is

wji = ᾱ∑m
j=1 wji

(
1− zji

zm+1,i

)+

Now we denote ti =
∑m

j=1 wji and write

wji = ᾱ

ti

(
1− zji

zm+1,i

)+

which leads to

ti =
m∑

j=1
wji = ᾱ

ti

p∑
j=1

(
1− zji

zm+1,i

)+

or

ti =

√√√√√ᾱ p∑
j=1

(
1− zji

zm+1,i

)+

.

D. Palomar (HKUST) Graph Learning 37 / 96

Technical details: Obtaining sparsity via α and β

The final solution for wi can be compactly written as

wi = ᾱ

ti

(
1− zi

zm+1,i

)+

with

ti =

√√√√√ᾱ p∑
j=1

(
1− zji

zm+1,i

)+

.

We now drop the increasing ordering assumption on zji and we denote by z(m+1),i the
(m + 1)-th smallest element of z1,i, . . . , zp,i.
The final solution is written as

w̃i = ᾱ

(
1− zi

z(m+1),i

)+

wi = w̃i/
√

1Tw̃i.

D. Palomar (HKUST) Graph Learning 38 / 96

Learning graphs from smooth signals revisited

Recall the original convex formulation:

minimize
W

1
2Tr(WZ)− α1Tlog(W1) + β

2 ∥W∥2F
subject to diag(W) = 0, W = WT ≥ 0.

Instead of solving it with a solver or with the previously derived columnwise closed-form
solution (which ignores the symmetry constraint), we will attempt to derive a joint
closed-form solution.
Instead of dealing with matrix W, denote with w the off-diagonal elements stacked in a
vector.
Define z such that Tr(WZ) = zTw.
Also, define G to extract the row sums of W: W1 = GTw
Note that 1

2∥W∥2F = ∥w∥2.
The constraints diag(W) = 0 and W = WT are unnecessary.

D. Palomar (HKUST) Graph Learning 39 / 96

Learning graphs from smooth signals revisited

The problem can be rewritten in terms of w as (for aesthetics we change two 1/2 factors)

minimize
w

zTw− α1Tlog(GTw) + β
2 ∥w∥2

subject to w ≥ 0.

The Lagrangian of the problem is

L(w;λ) = zTw− α1Tlog(GTw) + β

2 ∥w∥
2 − λTw

where λ ∈ Rp
+.

Setting the gradient of the Lagrangian w.r.t. w to zero gives

z− α
p∑

j=1

gj
gT

j w
+ βw− λ = 0.

D. Palomar (HKUST) Graph Learning 40 / 96

Learning graphs from smooth signals revisited

Now, from the complementary slackness condition wiλi = 0, we get:
if wi > 0, then wi = α

β

∑p
j=1

gij
gT

j w −
zi
β and α

β

∑p
j=1

gij
gT

j w > zi
β

if wi = 0, then zi − α
∑p

j=1
gij

gT
j w = λi ≥ 0.

In other words:
if α

β

∑p
j=1

gij
gT

j w > zi
β , then wi = α

β

∑p
j=1

gij
gT

j w −
zi
β

if α
β

∑p
j=1

gij
gT

j w ≤
zi
β , then wji = 0.

More compactly (defining zii =∞ so that wii = 0):

w =

α
β

p∑
j=1

gj
gT

j w
− z
β

+

.

This expression is a fixed-point equation in w, which is not easy to compute in practice,
although algorithms can be devised.

D. Palomar (HKUST) Graph Learning 41 / 96

Learning graphs from smooth signals revisited
Denoting explicitly the degrees of the nodes by di = gT

i w, we can write a double
fixed-point equation in (d,w):

d = GTw

w =
(
α

β
Gd−1 − z

β

)+
.

We can also write the fixed-point equation in terms of d only:

d = GT
(
α

β
Gd−1 − z

β

)+

Alternatively, one would devise a gradient projection method:

wk+1 =
(
wk − µk

(
z− αG(GTwk)−1 + βwk

))+

where µk is the step size.
To avoid numerical issues in some degree di becoming zero, one can use the heuristic:

wk+1 =
(
wk − µk

(
z− αG(GTwk + ϵ)−1 + βwk

))+

D. Palomar (HKUST) Graph Learning 42 / 96

Learning a k-connected graph
Learn a clean graph from a noisy graph by imposing k-connected structure:

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

D. Palomar (HKUST) Graph Learning 43 / 96

Eigenvalue property of Laplacian matrix
Consider the eigenvalue decomposition of the Laplacian matrix:

L = UDiag(λ1, λ2, . . . , λp)UT,

where U contains the eigenvectors columnwise and λ1 ≤ λ2 ≤ · · · ≤ λp are the
eigenvalues in increasing order.
For a k-connected graph, the k smallest eigenvalues are zero:

λ1 = · · · = λk = 0.

0 10 20 30 40

0
2

4
6

8
10

Eigenvalue number
L

ap
la

ci
an

 E
ig

en
v

al
u

es

three zero eigenvalues
corresponding to a 3−component graph

D. Palomar (HKUST) Graph Learning 44 / 96

Learning a k-connected graph

Goal: Given an initial noisy adjacency matrix W0, infer a k-connected graph.
In other words, we want to learn W as close as possible to W0 but satisfying the property
of a k-connected graph: zero k smallest eigenvalues of the corresponding Laplacian matrix.
Define the Laplacian operator: L(W) = Diag(W1)−W.

Rank constrained nonconvex formulation (Nie et al. 2016)6:

minimize
W

∥W−W0∥2F
subject to W1 = 1, diag(W) = 0, W = WT ≥ 0

rank(L(W)) = p− k.

6F. Nie, X. Wang, M. Jordan, and H. Huang, “The constrained Laplacian rank algorithm for graph-based
clustering,” in Proc. of the Thirtieth Conference on Artificial Intelligence (AAAI), Phoenix, Arizona, USA, 2016,
pp. 1969–1976.

D. Palomar (HKUST) Graph Learning 45 / 96

Learning a k-connected graph
If we relax the low-rank constraint λ1(L(W)) = · · · = λk(L(W)) = 0, we can rewrite the
problem as

minimize
W

∥W−W0∥2F + β
∑k

i=1 λi(L(W))
subject to W1 = 1, diag(W) = 0, W = WT ≥ 0

We now use the variational interpretation of the smallest eigenvalues known as Ky Fan’s
theorem (Fan 1949):

k∑
i=1

λi(X) = minF∈Rp×k Tr(FTXF) s.t. FTF = I.

The problem can then be rewritten in a more manageable form (still nonconvex) as

minimize
W,F

∥W−W0∥2F + βTr(FTL(W)F)

subject to W1 = 1, diag(W) = 0, W = WT ≥ 0
FTF = I.

D. Palomar (HKUST) Graph Learning 46 / 96

Learning a k-connected graph

To solve this nonconvex problem in the variables (W,F), we will use the block coordinate
descent (BCD) method, which in this particular case with two blocks it becomes a simple
sequential optimization with respect to W and F alternatively.
Optimization w.r.t. F:

minimize
F

Tr(FTL(W)F)
subject to FTF = I.

whose solution is trivially given by the eigenvectors corresponding to the k smallest
eigenvalues of L(W).
Optimization w.r.t. W is a quadratic problem (QP):

minimize
W

∥W−W0∥2F + βTr(FTL(W)F)
subject to W1 = 1, diag(W) = 0, W = WT ≥ 0.

D. Palomar (HKUST) Graph Learning 47 / 96

Learning a k-connected graph
From the property of the Laplacian matrix we can write:

Tr(FTL(W)F) = 1
2
∑
i,j

wij∥fi − fj∥2

The problem w.r.t. W can then be rewritten as
minimize

W
∥W−W0∥2F + β

2
∑

i,j wij∥fi − fj∥2

subject to W1 = 1, diag(W) = 0, W = WT ≥ 0.
If we ignore the symmetry constraint in the adjacency matrix W = WT, then the problem
can be nicely solved separately for each row/column wi as in (Nie et al. 2016)7:

minimize
wi

∥wi −w0,i∥2 + β
2 wT

i vi

subject to wT
i 1 = 1, wii = 0, wi ≥ 0,

where vij = ∥fi − fj∥2.
7F. Nie, X. Wang, M. Jordan, and H. Huang, “The constrained Laplacian rank algorithm for graph-based

clustering,” in Proc. of the Thirtieth Conference on Artificial Intelligence (AAAI), Phoenix, Arizona, USA, 2016,
pp. 1969–1976.

D. Palomar (HKUST) Graph Learning 48 / 96

Learning a k-connected graph

The problem can be finally rewritten as

minimize
wi

∥∥∥wi −
(
w0,i − β

2 vi
)∥∥∥2

subject to wT
i 1 = 1, wii = 0, wi ≥ 0,

where vij = ∥fi − fj∥2.
We have seen this problem before and it has the closed-form solution for j ̸= i (recall
wii = 0)

wji =
(

w0,i −
β

2 vi + ηi

)+

where η is found so that the constraint wT
i 1 = 1 is satisfied.

D. Palomar (HKUST) Graph Learning 49 / 96

Graphs based on smooth signals
Smooth−optimized graph (two−moon data)

Smooth−optimized graph (three−circle data)

Smooth Kalofolias graph (two−moon data)

Smooth Kalofolias graph (three−circle data)

Smooth low−rank graph (two−moon data)

Smooth low−rank graph (three−circle data)

D. Palomar (HKUST) Graph Learning 50 / 96

Outline

1 Graphs

2 Basics

3 Learning Graphs from Data

Similarity function based
Smooth signal based
i.i.d. model based
Structured graphs via spectral constraints

4 Numerical Experiments

Notation for time series

Our convention for graphs is to form the data matrix as X = [x1, . . . , xn] ∈ Rp×n, where p
is the number of nodes and n is the number of observations per node. Note that each xi
denotes one graph observation.
In the context of time series, we usually denote the number of series by N and the
number of time observations by T (with observation along rows instead of columns). So
the correspondence of the two conventions is

p = N: number of nodes/series
n = T: number of observations/features

The way to construct our graph data matrix X from a time series is by transposing the
usual time series matrix (where each column represents the T observations of one series).
In our graph notation, we want each series along a row of X and each column is one
vector observation, so that X is N× T (p× n):

X = [x1, . . . , xT] ∈ RN×T.

D. Palomar (HKUST) Graph Learning 52 / 96

Modeling as i.i.d. Random Variables

Until now the data matrix X was composed of some (columnwise) observations for each
of the nodes without any statistical modeling.
Examples of observations xi:

the x-y coordinates of some points (e.g., two-moon dataset, three-circle dataset)
feature vector with arbitrary features (e.g., the animal dataset, where the features include
attributed such as whether the animal is a mammal, has wings, has feathers, weight, size,
etc.)

Now we will assume a statistical model where the observations are multivariate i.i.d.
random variables and each multivariate observation xi is distributed according to some
multivariate distribution.
Example: Gaussian distribution

xi ∼ N (µ,Σ),

where µ is the mean and Σ the covariance matrix of the observations.

D. Palomar (HKUST) Graph Learning 53 / 96

Graph from covariance matrix
If our dataset is a collection of multivariate i.i.d. random variables {xi}, we may look for
more interesting similarity measures.
Let Σ = E[xixT

i] be the covariance matrix of the multivariate random i.i.d. variables. The
correlation matrix is a normalized version (equivalent to normalizing the variance of each
stock):

C = D−1/2ΣD−1/2

where D = Diag (Σ).
The correlation matrix can be used for graph construction (Heimo et al. 2007)8.
We can consider a modification of the correlation matrix as an adjacency matrix:

W = |C| − I

so that W has nonnegative elements and zero along the diagonal.
8T. Heimo, J. Saramaki, J.-P. Onnela, and K. Kaski, “Spectral and network methods in the analysis of

correlation matrices of stock returns,” Physica A: Statistical Mechanics and its Applications, vol. 383, no. 1,
pp. 147–151, 2007.

D. Palomar (HKUST) Graph Learning 54 / 96

Graph from precision matrix
The covariance/correlation matrix measures the direct dependency between two nodes
but ignores the other nodes.
Can we improve that? Answer: conditional dependence graph.
Definition: We say that two random variables X and Y are conditionally independent
given a third variable Z if their conditional probability distributions given Z are
independent. We denote it by X ⊥ Y | Z.

Example: Height and vocabulary of kids are not independent, but they are conditionally
independent if you also consider age.

Definition: The precision matrix is defined as Θ = Σ−1.
Theorem: Suppose our random variables are Gaussian with zero mean and covariance Σ.
Then

Θij = 0⇐⇒ Xi ⊥ Xj | {Xl}l̸=i,j.

In words: the non-zero entries of Θ indicate conditional dependence between the two
random variables given all the other random variables.

D. Palomar (HKUST) Graph Learning 55 / 96

Historical timeline of Markov graphical models
Suppose the columns of the data matrix X follow xi ∼ N (µ,Σ) and let S be the sample
covariance matrix.
Covariance selection (Dempster 1972): graph from the elements of S−1 inverse sample
covariance matrix.
Neighborhood regression (Meinshausen and Bühlmann 2006):

arg min
β1
|x(1) − βT

1 X/x(1) |2 + α∥β∥1.

ℓ1-regularized MLE (Banerjee et al. 2008; Friedman et al. 2008):

maximize
Θ≻0

log det(Θ)− Tr
(
ΘS

)
− α∥Θ∥1.

Ising model: ℓ1-regularized logistic regression (Ravikumar et al. 2010).
Attractive IGMRF (Slawski and Hein 2015).
Laplacian structure in Θ (Lake and Tenenbaum 2010).
ℓ1-regularized MLE with Laplacian structure (Egilmez et al. 2017; Zhao et al. 2019).

D. Palomar (HKUST) Graph Learning 56 / 96

Graphical LASSO (GLASSO)

In real life, interactions are typically local and sparse.
Normally the ideal precision matrix will be sparse.
But the sample covariance matrix is noisy.
Graphical LASSO tries to learn a sparse precision matrix:

maximize
Θ≻0

log det (Θ)− Tr (SΘ)− ρ∥Θ∥1,off

where S is the sample covariance matrix and ∥ · ∥1,off denotes the ℓ1 elementwise of the
off-diagonal elements.

If ρ = 0, the solution is given precisely by the inverse sample covariance matrix
Θ = S−1.
Seminal reference (Friedman et al. 2008)9.

9J. Friedman, T. Hastie, and R. Tibshirani, “Sparse inverse covariance estimation with the graphical lasso,”
Biostatistics, vol. 9, no. 3, pp. 432–441, 2008.

D. Palomar (HKUST) Graph Learning 57 / 96

Derivation of GLASSO algorithm
The optimality condition for the problem

maximize
Θ≻0

log det (Θ)− Tr (SΘ)− ρ∥Θ∥1,off

is
Θ−1 − S− αΓ = 0,

where Γ is a matrix of component-wise signs of Θ:

[Γ]jk =
{
γjk = sign(Θjk), if Θjk ̸= 0
γjk ∈ [−1, 1], if Θjk ̸= 0.

The equation for optimality condition is also known as the normal equation.
Furthermore, the constraint requires Θjj to be positive, this implies that

Σ̂ii = Sii + α, i = 1, . . . , p,

where Σ̂ = Θ−1.
D. Palomar (HKUST) Graph Learning 58 / 96

Derivation of GLASSO algorithm
GLASSO uses a block-coordinate method for solving the problem.
Consider a partitioning of Θ and Σ̂:

Θ =
(

Θ11 θ12
θT

12 θ22

)
, Σ̂ =

(
Σ̂11 σ̂12
σ̂T

12 σ̂22

)
,

where Θ11 ∈ R(p−1)×(p−1), θ̂12 ∈ Rp−1 and θ22 is a scalar, and similarly for the other
partitions.
Then, Σ̂ = Θ−1 (ΘΣ̂ = I) can be expressed as

Σ̂ =

 Θ−1
11 + Θ−1

11 θ12θT
12Θ−1

11
θ22−θT

12Θ−1
11 θ12

Θ−1
11 θ12

θ22−θT
12Θ−1

11 θ12

· 1
θ22−θT

12Θ−1
11 θ12


GLASSO solves for a row/column of Θ at a time, holding the rest fixed. Considering the
pth column of the normal equation, we get

−σ̂12 + s12 + αγ12 = 0.
D. Palomar (HKUST) Graph Learning 59 / 96

Derivation of GLASSO algorithm
Consider reading off θ12 from the partitioned expression:

Θ−1
11 θ12

θ22 − θT
12Θ−1

11 θ12
+ s12 + αγ12 = 0.

The above also simplifies to
Θ−1

11 θ12σ̂22 + s12 + αγ12 = 0
with ν = θ12σ̂22 (with σ̂ fixed), Θ11 ≻ 0 is equivalent to the stationary condition for
(Mazumder and Hastie 2012)

minimize
ν∈Rp−1

1
2νTΘ−1

11 ν + νTs12 + α∥ν∥1

Let ν⋆ be the minimizer, then
θ⋆

12 = ν⋆σ̂22

θ⋆
22 = 1

σ̂22
+ (θ⋆

12)TΘ−1
11 θ⋆

12

D. Palomar (HKUST) Graph Learning 60 / 96

Derivation of GLASSO algorithm

Algorithm Graphical LASSO

initialize: Σ̂ = Diag(S) + αI and Θ = Σ̂−1. repeat
Rearrange rows and columns such that the target column is the last.
Compute Θ−1

11 = Σ̂11 −
σ̂12σ̂T

12
σ̂22

Obtain ν and update θ⋆
12 and θ⋆

22.
Update Θ and Σ̂ using the second partition function, ensuring ΘΣ̂ = I.

until convergence
return Θ

D. Palomar (HKUST) Graph Learning 61 / 96

Laplacian-structured GLASSO
We can compute a precision-like matrix with the Laplacian structure by adding the
following constraints:

L ⪰ 0, L1 = 0, Lij = Lji ≤ 0, ∀i ̸= j.

Laplacian-structured GLASSO: precision estimation with Laplacian constraints and
ℓ1-norm regularization:

maximize
L⪰0

log gdet (L)− Tr (SL)− ρ∥L∥1,off

subject to L1 = 0, Lij = Lji ≤ 0, ∀i ̸= j

Basic references (Lake and Tenenbaum 2010)10, (Egilmez et al. 2017)11, and (Zhao et al.
2019)12.

10B. Lake and J. Tenenbaum, “Discovering structure by learning sparse graphs,” in Proc. the 33rd Annual
Cognitive Science Conference, 2010.

11H. E. Egilmez, E. Pavez, and A. Ortega, “Graph learning from data under Laplacian and structural
constraints,” IEEE Journal of Selected Topics in Signal Processing, vol. 11, no. 6, pp. 825–841, 2017.

12L. Zhao, Y. Wang, S. Kumar, and D. P. Palomar, “Optimization algorithms for graph Laplacian estimation
via ADMM and MM,” IEEE Trans. on Signal Processing, vol. 67, no. 16, pp. 4231–4244, 2019.

D. Palomar (HKUST) Graph Learning 62 / 96

Graphs based on the i.i.d. model
Precision based graph (two−moon data)

Precision based graph (three−circle data)

GLASSO graph (two−moon data)

GLASSO graph (three−circle data)

Laplacian−structured GLASSO graph (two−moon data)

Laplacian−structured GLASSO graph (three−circle data)

D. Palomar (HKUST) Graph Learning 63 / 96

Outline

1 Graphs

2 Basics

3 Learning Graphs from Data

Similarity function based
Smooth signal based
i.i.d. model based
Structured graphs via spectral constraints

4 Numerical Experiments

Structured graphs

Multi-component graph Regular graph Modular graph

Bipartite graph Grid graph Tree graph

D. Palomar (HKUST) Graph Learning 65 / 96

Structured graphs: Importance and challenges
Useful graph structures:

Multi-component: for clustering, classification.
Bipartite: for matching and constructing two-channel filter banks.
Multi-component bipartite: for co-clustering.
Tree: for sampling algorithms.
Modular: for social network analysis.
Connected sparse: for graph signal processing applications.

Structured graph learning from data
involves both the estimation of structure (graph connectivity) and parameters (graph
weights),
parameter estimation is well explored (e.g., maximum likelihood),
but structure is a combinatorial property which makes structure estimation very
challenging.

Structure learning is NP-hard for a general class of graphical models (Bogdanov et al.
2008).

D. Palomar (HKUST) Graph Learning 66 / 96

Eigenvalue property of Laplacian matrix
Consider the eigenvalue decomposition of the Laplacian matrix:

L = UDiag(λ1, λ2, . . . , λp)UT,

where U contains the eigenvectors columnwise and λ1 ≤ λ2 ≤ · · · ≤ λp are the
eigenvalues in increasing order.
For a multi-component graph (aka k-connected graph), the k smallest eigenvalues are
zero:

λ1 = · · · = λk = 0.

0 10 20 30 40

0
2

4
6

8
10

Eigenvalue number
L

ap
la

ci
an

 E
ig

en
v

al
u

es

three zero eigenvalues
corresponding to a 3−component graph

D. Palomar (HKUST) Graph Learning 67 / 96

Eigenvalue property of adjacency matrix
Consider the eigenvalue decomposition of the adjacency matrix:

W = VDiag(ψ1, ψ2, . . . , ψp)VT,

where V contains the eigenvectors columnwise and ψ1, ψ2, . . . , ψp are the eigenvalues in
increasing order.
For a bipartite graph, the eigenvalues are symmetric:

ψi = −ψp−i ∀i.

5 10 15 20

−
2

−
1

0
1

2
Eigenvalue number

A
d

ja
ce

n
cy

 M
at

ri
x

 E
ig

en
v

al
u

es

eigenvalues are symmetric around zero

D. Palomar (HKUST) Graph Learning 68 / 96

Laplacian with spectral constraints
The Laplacian-structured GLASSO is useful, but in many practical situations, graphs of
more complex structures need to be estimated, e.g., k-component graph, bipartite graph,
etc.
Such classes of graphs can be enforced via spectral constraints on the graph matrices W
and L.
The (nonconvex) formulation of the Laplacian estimation with spectral constraints is

maximize
L⪰0

log gdet (L)− Tr (SL)− ρh(L)

subject to L1 = 0, Lij = Lji ≤ 0, ∀i ̸= j
λ(L) ∈ Sλ.

References: (Kumar et al. 2019)13 and (Kumar et al. 2020)14.
13S. Kumar, J. Ying, J. V. de M. Cardoso, and D. P. Palomar, “Structured graph learning via laplacian

spectral constraints,” in Proc. Advances in Neural Information Processing Systems (NeurIPS), Vancouver,
Canada, 2019.

14S. Kumar, J. Ying, J. V. de M. Cardoso, and D. P. Palomar, “A unified framework for structured graph
learning via spectral constraints,” Journal of Machine Learning Research (JMLR), pp. 1–60, 2020.

D. Palomar (HKUST) Graph Learning 69 / 96

Graphs with spectral constraints
Consider learning a graph with k = 3 clusters:

without imposing the clusters, we get a fully connected graph;
further approximating the previous graph with a low-rank one, we don’t get the best
results;
learning directly a low-rank graph is the best option.

Smooth−optimized graph (three−circle data) Low−rank approximated graph (three−circle data) Low−rank ML graph (three−circle data)

D. Palomar (HKUST) Graph Learning 70 / 96

Derivation of Structured Graph Learning (SGL) algorithm
Recall the original problem

maximize
L⪰0

log gdet (L)− Tr (SL)− ρ∥L∥1,off

subject to L1 = 0, Lij = Lji ≤ 0, ∀i ̸= j
λ(L) ∈ Sλ.

To properly control the eigenvalues of L, let’s include them explicitly as variables:

maximize
L⪰0,λ,U

log gdet (L)− Tr (SL)− ρ∥L∥1,off

subject to L1 = 0, Lij = Lji ≤ 0, ∀i ̸= j
L = UDiag(λ)UT, λ ∈ Sλ, UTU = I,

where λ denote the eigenvalues and U the eigenvectors columnwise.
This formulation seems intractable with so many nonconvex constraints coupling the
different variables.

To simplify it, we will introduct a linear operator L that transforms the Laplacian
structural constraints into simple algebraic constraints.

D. Palomar (HKUST) Graph Learning 71 / 96

Derivation of SGL algorithm

We will now derive the linear operator L to characterize the Laplacian constraints.
Recall that the valid Laplacian are defined in the set

SL = {L ⪰ 0 | L1 = 0, Lij = Lji ≤ 0, ∀i ̸= j} ,

It’s not difficult to see that due to the constraints L1 = 0 and Lij = Lji the degrees of
freedom of the Laplacian L ∈ Rp×p are actually p(p− 1)/2.
We can define a linear operator L : w ∈ Rp(p−1)/2

+ → Lw ∈ Rp×p that maps a weight
vector w to a valid Laplacian matrix satisfying all the required properties.
Eaxmple for p = 4: w = [w1,w2, . . . ,w6] ∈ R6 and

Lw =


∑

i=1,2,3 wi −w1 −w2 −w3
−w1

∑
i=1,4,5 wi −w4 −w5

−w2 −w4
∑

i=2,4,6 wi −w6
−w3 −w5 −w6

∑
i=3,5,6 wi

 .
D. Palomar (HKUST) Graph Learning 72 / 96

Derivation of SGL algorithm

Using L = Lw and gdet(L) = gdet(Diag(λ)), we can rewrite the problem as

maximize
w,λ,U

log gdet (Diag(λ))− Tr (SLw)− ρ∥Lw∥1,off

subject to Lw = UDiag(λ)UT, λ ∈ Sλ, UTU = I,

Noting that ∥Lw∥1,off = 1
2∥w∥1 = 1

21Tw, we can group together the two linear terms on
w (i.e., Tr (SLw) and ∥Lw∥1,off) into the single linear term kTw with a properly defined
k.
Finally, relaxing the hard constraint Lw = UDiag(λ)UT to the objective, we get the
approximate formulation:

minimize
w,λ,U

kTw− log gdet (Diag(λ)) + β
2 ∥Lw−UDiag(λ)UT∥2F

subject to w ≥ 0, λ ∈ Sλ, UTU = I.

D. Palomar (HKUST) Graph Learning 73 / 96

Derivation of SGL algorithm for k-connected graph

To solve the problem in the three variables (w,λ,U) we will use the block
majorization-minimization (MM) method, which updates each variable sequentially
while keeping the others fixed based on simple surrogate functions (Sun et al. 2017)15,
(Razaviyayn et al. 2013)16.
For illustration purposes we will give the algorithm for a k-connected graph.
The constraints for each of the three variables are:

Spectral constraint: Sλ = {{λj = 0}k
j=1, c1 ≤ λk+1 ≤ · · · ≤ λp ≤ c2}.

Nonnegativity constraint: w ≥ 0.
Orthogonality constraint: UTU = I.

15Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms in signal processing,
communications, and machine learning,” IEEE Trans. Signal Processing, vol. 65, no. 3, pp. 794–816, 2017.

16M. Razaviyayn, M. Hong, and Z. Luo, “A unified convergence analysis of block successive minimization
methods for nonsmooth optimization,” SIAM J. Optim., vol. 23, no. 2, pp. 1126–1153, 2013.

D. Palomar (HKUST) Graph Learning 74 / 96

Derivation of SGL algorithm: Update for w
Sub-problem for w:

minimize
w≥0

kTw + β
2 ∥Lw−UDiag(λ)UT∥2F.

It can be rewritten as
minimize

w≥0
f (w) ≜ ∥Lw∥2F − cTw

which is clearly a convex quadratic program (QP).
The QP does not have a closed-form solution due to the constraint w ≥ 0 and we will use
MM.
The function f (w) is majorized at wt by

g(w|wt) = f (wt) + (w−wt)T∇f (wt) + L
2∥w−wt∥2

The majorized problem has now a simple closed-form solution:

wt+1 =
(

wt − 1
2p∇f (wt)

)+
.

D. Palomar (HKUST) Graph Learning 75 / 96

Derivation of SGL algorithm: Update for U

Sub-problem for U:
minimize

U
β
2 ∥Lw−UDiag(λ)UT∥2F

subject to UTU = I.
It can be rewritten as

maximize
U

Tr(UTLwUDiag(λ))
subject to UTU = I.

This sub-problem is an optimization on the orthogonal Stiefel manifold (Absil et al. 2009;
Benidis et al. 2016).
From the KKT optimality conditions the solution is given by

Ut+1 = eigenvectors(Lwt+1)[k + 1 : p],

that is, the p− k principal eigenvectors of the matrix Lwt+1 in increasing order of
eigenvalue magnitude.

D. Palomar (HKUST) Graph Learning 76 / 96

Derivation of SGL algorithm: Update for λ

Sub-problem for λ:

minimize
λ∈Sλ

−log gdet (Diag(λ)) + β
2 ∥Lw−UDiag(λ)UT∥2F.

It can be rewritten for the k-component graph as

minimize
c1≤λk+1≤···≤λp≤c2

−
∑p−k

i=1 log(λk+i) + β
2 ∥λ− d∥2.

This sub-problem is popularly known as a regularized isotonic regression problem. It is a
convex optimization problem and the solution can be obtained from the KKT optimality
conditions.
An efficient algorithm with a fast convergence to the global optimum can be derived with
a maximum of p− k iterations (Kumar et al. 2020).

D. Palomar (HKUST) Graph Learning 77 / 96

Derivation of SGL algorithm: Summary

Algorithm SGL for k-connected graph
Input: S, k, c1, c2, β
Output: Lw
t← 0
repeat

wt+1 =
(
wt − 1

2p∇f(wt)
)+

Ut+1 ← eigenvectors(Lwt+1), suitably ordered.
Update λt+1 via isotonic regression.
t← t + 1

until convergence
return Lwt

D. Palomar (HKUST) Graph Learning 78 / 96

Derivation of SGL algorithm: Convergence

The following gives the convergence of the SGL algorithm to a stationary point (Kumar et al.
2019)17 and (Kumar et al. 2020)18.

Theorem
The limit point (w⋆,λ⋆,U⋆) generated by the SGL algorithm converges to the set of KKT
points of the optimization problem.

Furthermore, the worst-case computational complexity of the proposed algorithm is O(p3).

17S. Kumar, J. Ying, J. V. de M. Cardoso, and D. P. Palomar, “Structured graph learning via laplacian
spectral constraints,” in Proc. Advances in Neural Information Processing Systems (NeurIPS), Vancouver,
Canada, 2019.

18S. Kumar, J. Ying, J. V. de M. Cardoso, and D. P. Palomar, “A unified framework for structured graph
learning via spectral constraints,” Journal of Machine Learning Research (JMLR), pp. 1–60, 2020.

D. Palomar (HKUST) Graph Learning 79 / 96

Outline

1 Graphs

2 Basics

3 Learning Graphs from Data

Similarity function based
Smooth signal based
i.i.d. model based
Structured graphs via spectral constraints

4 Numerical Experiments

Synthetic experiment setup

Generate a graph with desired structure.
Generate weights for the graph edges.
Obtain true Laplacian Ltrue.
Sample data X = [x1, . . . , xn] with xi ∈ Rp ∼ N (0,Σ = L†

true).
S = 1

n
∑n

i=1 xixT
i

Use S as input for the learning and some prior spectral information, if available, to
estimate the graph L̂
Performance metric:

Relative Error = ∥L̂− Ltrue∥F
∥Ltrue∥F

and F-Score = 2tp
2tp + fp + fn ,

where tp, fp, fn correspond to true positives, false positives, and false negatives,
respectively.
SGL refers to structured graph learning.

D. Palomar (HKUST) Graph Learning 81 / 96

Grid graph

True [Egilmez et al., 2017]

SGL with ℓ1-norm SGL with reweighted ℓ1-norm

D. Palomar (HKUST) Graph Learning 82 / 96

Noisy multi-component graph

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

True W Noisy W Learned W

True graph Noisy graph Learned graph

D. Palomar (HKUST) Graph Learning 83 / 96

Model mismatch

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

True W Noisy W Learned W (with k = 2)

True graph Noisy graph Learned graph (with k = 2)

D. Palomar (HKUST) Graph Learning 84 / 96

Popular multi-component structures

D. Palomar (HKUST) Graph Learning 85 / 96

Real data: cancer dataset (Weinstein et al. 2013)

CLR (Nie et al., 2016) SGL with k = 5

Clustering accuracy (ACC): CLR = 0.9862 and SGL = 0.99875.
D. Palomar (HKUST) Graph Learning 86 / 96

Animal dataset (Osherson et al. 1991)

ElephantRhino

Horse

CowCamel

Giraffe

Chimp

Gorilla

Mouse

Squirrel

Tiger
Lion

CatDog

Wolf

Seal

Dolphin

Robin

Eagle

Chicken

Salmon

Trout

Bee

Iguana

Alligator

Butterfly

Ant

Finch

Penguin

Cockroach

Whale

Ostrich

Deer

Elephant

Rhino

Horse
Cow

Camel

Giraffe

Chimp

Gorilla

Mouse

Squirrel

Tiger

Lion

Cat

Dog Wolf

Seal

Dolphin

Robin

Eagle

Chicken

Salmon

Trout
Bee

Iguana

Alligator

Butterfly

Ant

Finch

Penguin

Cockroach

Whale

Ostrich

Deer

GGL [Egilmez et al., 2017] GLasso [Friedman et al., 2008]

Elephant

Rhino

Horse

Cow

Camel

Giraffe

Chimp
Gorilla

Mouse

Squirrel

Tiger

Lion
Cat

Dog
Wolf

Seal Dolphin

Robin

EagleChicken

Salmon

Trout

Bee

IguanaAlligator

Butterfly

Ant

Finch

Penguin

Cockroach

Whale

Ostrich

Deer

Elephant

Rhino

Horse

Cow

Camel

Giraffe

Chimp

Gorilla

Mouse

Squirrel

Tiger Lion

Cat

Dog

Wolf

Seal

Dolphin

Robin

Eagle

Chicken

Salmon

Trout

Bee

Iguana

Alligator

Butterfly
Ant

Finch

Penguin
Cockroach

Whale

Ostrich

Deer

SGL with k = 1 SGL with k = 4
D. Palomar (HKUST) Graph Learning 87 / 96

Bipartite structure via adjacency spectral constraints

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

True Noisy Learned

D. Palomar (HKUST) Graph Learning 88 / 96

Multi-component bipartite structure via joint spectral constraints

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

0

0.1

0.2

0.3

0.4

0.5

0.6

0.7

0.8

0.9

1

True Noisy Learned

D. Palomar (HKUST) Graph Learning 89 / 96

Thanks

For more information visit:

https://www.danielppalomar.com

References I

Absil, P. A., Mahony, R., & Sepulchre, R. (2009). Optimization algorithms on matrix
manifolds. Princeton University Press.
Banerjee, O., Ghaoui, L., & d’Aspremont, A. (2008). Model selection through sparse
maximum likelihood estimation for multivariate Gaussian or binary data. Journal of Machine
Learning Research, 9(Mar), 485–516.
Benidis, K., Sun, Y., Babu, P., & Palomar, D. P. (2016). Orthogonal sparse PCA and
covariance estimation via Procrustes reformulation. IEEE Trans. Signal Processing, 64(23),
6211–6226.
Bogdanov, A., Mossel, E., & Vadhan, S. (2008). The complexity of distinguishing markov
random fields. In Approximation, randomization and combinatorial optimization. Algorithms
and techniques (pp. 331–342). Springer.
Dempster, A. P. (1972). Covariance selection. Biometrics, 157–175.

D. Palomar (HKUST) Graph Learning 91 / 96

References II

Dong, X., Thanou, D., Rabbat, M., & Frossard, P. (2019). Learning graphs from data: A
signal representation perspective. IEEE Signal Processing Magazine, 36(3), 44–63.
Egilmez, H. E., Pavez, E., & Ortega, A. (2017). Graph learning from data under Laplacian and
structural constraints. IEEE Journal of Selected Topics in Signal Processing, 11(6), 825–841.
Fan, K. (1949). On a theorem of weyl concerning eigenvalues of linear transformations i.
Proceedings of the National Academy of Sciences of the United States of America, 35(11),
652.
Friedman, J., Hastie, T., & Tibshirani, R. (2008). Sparse inverse covariance estimation with
the graphical lasso. Biostatistics, 9(3), 432–441.
Heimo, T., Saramaki, J., Onnela, J.-P., & Kaski, K. (2007). Spectral and network methods in
the analysis of correlation matrices of stock returns. Physica A: Statistical Mechanics and its
Applications, 383(1), 147–151.

D. Palomar (HKUST) Graph Learning 92 / 96

References III

Kalofolias, V. (2016). How to learn a graph from smooth signals. In Proc. Int. Conf. Artif.
Intell. Statist. (pp. 920–929).
Kumar, S., Ying, J., M. Cardoso, J. V. de, & Palomar, D. P. (2019). Structured graph
learning via laplacian spectral constraints. In Proc. Advances in neural information processing
systems (neurips). Vancouver, Canada.
Kumar, S., Ying, J., M. Cardoso, J. V. de, & Palomar, D. P. (2020). A unified framework for
structured graph learning via spectral constraints. Journal of Machine Learning Research
(JMLR), 1–60.
Lake, B., & Tenenbaum, J. (2010). Discovering structure by learning sparse graphs. In Proc.
The 33rd annual cognitive science conference.
Manor, L. Z., & Perona, P. (2004). Self-tuning spectral clustering. In Proc. Advances in
neural information processing systems (neurips).

D. Palomar (HKUST) Graph Learning 93 / 96

References IV

Mateos, G., Segarra, S., Marques, A. G., & Ribeiro, A. (2019). Connecting the dots. IEEE
Signal Processing Magazine, 36(3), 16–43.
Mazumder, R., & Hastie, T. (2012). The graphical lasso: New insights and alternatives.
Electronic journal of statistics, 6, 2125.
Meinshausen, N., & Bühlmann, P. (2006). High-dimensional graphs and variable selection
with the lasso. The annals of statistics, 34(3), 1436–1462.
Nie, F., Wang, X., Jordan, M., & Huang, H. (2016). The constrained Laplacian rank
algorithm for graph-based clustering. In Proc. Of the thirtieth conference on artificial
intelligence (aaai) (pp. 1969–1976). Phoenix, Arizona, USA.
Osherson, D. N., Stern, J., Wilkie, O., Stob, M., & Smith, E. E. (1991). Default probability.
Cognitive Science, 15(2), 251–269.

D. Palomar (HKUST) Graph Learning 94 / 96

References V

Ravikumar, P., Wainwright, M., Lafferty, J. D., & others. (2010). High-dimensional ising
model selection using ℓ1-regularized logistic regression. The Annals of Statistics, 38(3),
1287–1319.
Razaviyayn, M., Hong, M., & Luo, Z. (2013). A unified convergence analysis of block
successive minimization methods for nonsmooth optimization. SIAM J. Optim., 23(2),
1126–1153.
Slawski, M., & Hein, M. (2015). Estimation of positive definite m-matrices and structure
learning for attractive gaussian markov random fields. Linear Algebra and its Applications, 473,
145–179.
Sun, Y., Babu, P., & Palomar, D. P. (2017). Majorization-minimization algorithms in signal
processing, communications, and machine learning. IEEE Trans. Signal Processing, 65(3),
794–816.

D. Palomar (HKUST) Graph Learning 95 / 96

References VI

Weinstein, J. N., Collisson, E. A., Mills, G. B., Shaw, K. R. M., Ozenberger, B. A., Ellrott, K.,
et al. (2013). The cancer genome atlas pan-cancer analysis project. Nature Genetics, 45(10),
1113.

Zhao, L., Wang, Y., Kumar, S., & Palomar, D. P. (2019). Optimization algorithms for graph
Laplacian estimation via ADMM and MM. IEEE Trans. on Signal Processing, 67(16),
4231–4244.

D. Palomar (HKUST) Graph Learning 96 / 96

	
	Graphs
	Basics
	Learning Graphs from Data
	Similarity function based
	Smooth signal based
	i.i.d. model based
	Structured graphs via spectral constraints

	Numerical Experiments

