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Investment strategies

Fund managers follow two basic investment strategies:

Active

Assumption: markets are not perfectly efficient.
Through expertise add value by choosing high performing assets.

Passive

Assumption: market cannot be beaten in the long run.
Conform to a defined set of criteria (e.g. achieve same return as an index).
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Passive investment
The stock markets have historically risen, e.g. S&P 500:

Partly misleading: e.g. inflation.
Still, reasonable returns can be obtained without the active management’s risk.
Makes passive investment more attractive.
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Index tracking

Index tracking is a popular passive portfolio management strategy.
Goal: construct a portfolio that replicates the performance of a financial index.
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Index tracking

Index tracking or benchmark replication is a strategy investment aimed at mimicking
the risk/return profile of a financial instrument.
For practical reasons, the strategy focuses on a reduced basket of representative assets.
The problem is also regarded as portfolio compression and it is intimately related to
compressed sensing and ℓ1-norm minimization techniques (Benidis et al. 2018a)1,
(Benidis et al. 2018b)2.
One example is the replication of an index, e.g., Hang Seng Index, based on a reduced
basket of assets.

1K. Benidis, Y. Feng, and D. P. Palomar, “Sparse portfolios for high-dimensional financial index tracking,”
IEEE Trans. Signal Processing, vol. 66, no. 1, pp. 155–170, 2018.

2K. Benidis, Y. Feng, and D. P. Palomar, Optimization Methods for Financial Index Tracking: From Theory
to Practice. Foundations and Trends in Optimization, Now Publishers, 2018.
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Definitions

Price and return of an asset or an index: pt and rt = pt−pt−1
pt−1

Returns of an index in T days: rb = [rb
1, . . . , rb

T]⊤ ∈ RT

Returns of N assets in T days: X = [r1, . . . , rT]⊤ ∈ RT×N with rt ∈ RN

Assume that an index is composed by a weighted collection of N assets with normalized
index weights b satisfying

b > 0
b⊤1 = 1
Xb = rb

We want to design a (sparse) tracking portfolio w satisfying
w ≥ 0
w⊤1 = 1
Xw ≈ rb
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Full replication

How should we select w?

Straightforward solution: full replication w = b
Buy appropriate quantities of all the assets
Perfect tracking

But it has drawbacks:
We may be trying to hedge some given portfolio with just a few names (to simplify the
operations)
We may want to deal properly with illiquid assets in the universe
We may want to control the transaction costs for small portfolios (AUM)
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Sparse index tracking

How can we overcome these drawbacks?
Sparse index tracking.

Use a small number of assets: card(w) < N
can allow hedging with just a few names
can avoid illiquid assets
can reduce transaction costs for small portfolios

Challenges:
Which assets should we select?
What should their relative weight be?
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Sparse regression
Sparse regression:

minimize
w

∥r− Xw∥2 + λ ∥w∥0
tries to fit the observations by minimizing the error with a sparse solution:

rb X w n
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Tracking error

Recall that b ∈ RN represents the actual benchmark weight vector and w ∈ RN denotes
the replicating portfolio.
Investment managers seek to minimize the following tracking error (TE) performance
measure:

TE (w) = (w− b)T Σ (w− b)

where Σ is the covariance matrix of the index returns.
In practice, however, the benchmark weight vector b may be unknown and the error
measure is defined in terms of market observations.
A common tracking measure is the empirical tracking error (ETE):

ETE(w) = 1
T

∥∥Xw− rb∥∥2
2
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Formulation for sparse index tracking

Problem formulation for sparse index tracking (Maringer and Oyewumi 2007):3

minimize
w

1
T

∥∥Xw− rb∥∥2
2 + λ∥w∥0

subject to w ∈ W

∥w∥0 is the ℓ0-“norm” and denotes card(w)
W is a set of convex constraints (e.g., W = {w|w ≥ 0, w⊤1 = 1})
we will treat any nonconvex constraint separately

This problem is too difficult to deal with directly:
Discontinuous, non-differentiable, non-convex objective function.

3D. Maringer and O. Oyewumi, “Index tracking with constrained portfolios,” Intelligent Systems in
Accounting, Finance and Management, vol. 15, no. 1-2, pp. 57–71, 2007.
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Existing methods

Two step approach:
1 stock selection:

largest market capital
most correlated to the index
a combination cointegrated well with the index

2 capital allocation:
naive allocation: proportional to the original weights
optimized allocation: usually a convex problem

Mixed Integer Programming (MIP)
practical only for small dimensions, e.g.

(100
20

)
> 1020.

Genetic algorithms
solve the MIP problems in reasonable time
worse performance, cannot prove optimality.
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Existing methods
The two-step approach is much worse than joint optimization:
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Interlude: Majorization-Minimization (MM)
Consider the following presumably difficult optimization problem:

minimize
x

f (x)
subject to x ∈ X ,

with X being the feasible set and f (x) being continuous.
Idea: successively minimize a more managable surrogate function u

(
x, x(k)

)
:

x(k+1) = arg min
x∈X

u
(
x, x(k)

)
,

hoping the sequence of minimizers
{

x(k)
}

will converge to optimal x⋆.

Question: how to construct u
(
x, x(k)

)
?

Answer: that’s more like an art (Sun et al. 2017).4
4Y. Sun, P. Babu, and D. P. Palomar, “Majorization-minimization algorithms in signal processing,

communications, and machine learning,” IEEE Trans. Signal Processing, vol. 65, no. 3, pp. 794–816, 2017.
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Interlude on MM: surrogate/majorizer
Construction rule:

u (y, y) = f (y) , ∀y ∈ X
u (x, y) ≥ f (x) , ∀x, y ∈ X
u′ (x, y; d)|x=y = f ′ (y; d) , ∀d with y + d ∈ X
u (x, y) is continuous in x and y

x(k)x(k) x(k+1)x(k+1) x(k+2)x(k+2)

f (x)f (x)

u(x; x(k))u(x; x(k))

u(x; x(k+1))u(x; x(k+1))
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Interlude on MM: Algorithm

Algorithm MM
Set k = 0 and initialize with a feasible point x0 ∈ X .
repeat

x(k+1) = arg minx∈X u
(
x, x(k)

)
k← k + 1

until convergence
return x(k)
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Interlude on MM: Convergence

Under some technical assumptions, every limit point of the sequence
{

xk
}

is a stationary
point of the original problem.

If further assume that the level set X 0 =
{
x|f (x) ≤ f

(
x0)}

is compact, then

lim
k→∞

d
(
x(k),X ⋆

)
= 0,

where X ⋆ is the set of stationary points.
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Sparse index tracking via MM

Approximation of the ℓ0-norm (indicator
function):

ρp,γ(w) = log(1 + |w|/p)
log(1 + γ/p) .

Good approximation in the interval
[−γ, γ].
Concave for w ≥ 0.
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0.8

1

1.2

||w||1
ρp,1(w)
ρp,0.2(w)
||w||0

So-called folded-concave for w ∈ R.
For our problem we set γ = u, where u ≤ 1 is an upperbound of the weights (we can
always choose u = 1).
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Approximate formulation

Continuous and differentiable approximate formulation:

minimize
w

1
T

∥∥Xw− rb∥∥2
2 + λ1⊤ρp,u(w)

subject to w ∈ W

where ρp,u(w) = [ρp,u(w1), . . . , ρp,u(wN)]⊤.

This problem is still non-convex: ρp,u(w) is concave for w ≥ 0.

We will use MM to deal with the non-convex part.
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Majorization of ρp,γ

Lemma 1
The function ρp,γ(w), with w ≥ 0, is upperbounded at w(k) by the surrogate function

hp,γ(w, w(k)) = dp,γ(w(k))w + cp,γ(w(k)),

where
dp,γ(w(k)) = 1

log(1 + γ/p)(p + w(k))
,

cp,γ(w(k)) =
log

(
1 + w(k)/p

)
log(1 + γ/p) − w(k)

log(1 + γ/p)(p + w(k))
are constants.
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Proof of Lemma 1

The function ρp,γ(w) is concave for w ≥ 0.
An upper bound is its first-order Taylor approximation at any point w0 ∈ R+.

ρp,γ(w) = log(1 + w/p)
log(1 + γ/p)

≤ 1
log(1 + γ/p)

[
log (1 + w0/p) + 1

p + w0
(w− w0)

]
= 1

log(1 + γ/p)(p + w0)︸ ︷︷ ︸
dp,γ

w

+ log (1 + w0/p)
log(1 + γ/p) −

w0
log(1 + γ/p)(p + w0)︸ ︷︷ ︸
bp,γ
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Majorization of ρp,γ
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Iterative formulation via MM

Now in every iteration we need to solve the following problem:

minimize
w

1
T

∥∥Xw− rb∥∥2
2 + λd(k)

p,u
⊤

w
subject to w ∈ W

where d(k)
p,u =

[
dp,u(w(k)

1 ), . . . , dp,u(w(k)
N )

]⊤
.

This problem is convex (actually a QP).

Requires a solver in each iteration.
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Algorithm LAIT

Algorithm 1: Linear Approximation for the Index Tracking problem (LAIT)
Set k = 0 and choose w(0) ∈ W.
repeat

Compute d(k)
p,u

w(k+1) = arg minw∈W
1
T

∥∥Xw− rb∥∥2
2 + λd(k)

p,u
⊤

w
k← k + 1

until convergence
return w(k)
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Should we stop here?

Advantages:
The problem is convex.
Can be solved efficiently by an off-the-shelf solver.

Disadvantages:
Needs to be solved many times (one for each iteration).
Calling a solver many times increases significantly the running time.

Can we do something better?
For specific constraint sets we can derive closed-form update algorithms!
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Let’s rewrite the objective function

Expand the objective:
1
T

∥∥Xw− rb∥∥2
2 + λd(k)

p,u
⊤

w = 1
Tw⊤X⊤Xw +

(
λd(k)

p,u − 2
TX⊤rb

)⊤
w + const.

Further upper-bound it:

Lemma 2
Let L and M be real symmetric matrices such that M ⪰ L. Then, for any point w(k) ∈ RN the
following inequality holds:

w⊤Lw ≤ w⊤Mw + 2w(k)⊤(L−M) w−w(k)⊤(L−M) w(k).

Equality is achieved when w = w(k).
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Let’s majorize the objective function

Based on Lemma 2:
Majorize the quadratic term 1

T w⊤X⊤Xw.
In our case L1 = 1

T X⊤X.
We set M1 = λ

(L1)
maxI so that M1 ⪰ L1 holds.

The objective becomes:

w⊤L1w +
(

λd(k)
p,u −

2
TX⊤rb

)⊤
w

≤ w⊤M1w + 2w(k)⊤(L1 −M1) w−w(k)⊤(L1 −M1) w(k)

+
(

λd(k)
p,u −

2
TX⊤rb

)⊤
w

= λ
(L1)
maxw⊤w +

(
2

(
L1 − λ

(L1)
maxI

)
w(k) + λd(k)

p,u −
2
TX⊤rb

)⊤
w + const.
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Specialized iterative formulation

The new optimization problem at the (k + 1)-th iteration becomes

minimize
w

w⊤w + q(k)
1

⊤
w

subject to w⊤1 = 1,
0 ≤ w ≤ 1,

}
W

where
q(k)

1 = 1
λ

(L1)
max

(
2

(
L1 − λ

(L1)
maxI

)
w(k) + λd(k)

p,u −
2
TX⊤rb

)
.

This problem can be solved with a closed-form update algorithm.
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Solution

Proposition 1
The optimal solution to the previous problem with u = 1 is:

w⋆
i =

{
−µ+qi

2 , i ∈ A,

0, i /∈ A,

with
µ = −

∑
i∈A qi + 2
card(A) ,

and
A =

{
i
∣∣µ + qi < 0

}
,

where A can be determined in O(log(N)) steps.
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Algorithm SLAIT

Algorithm 2: Specialized Linear Approximation for the Index Tracking problem
(SLAIT)
Set k = 0 and choose w(0) ∈ W.
repeat

Compute q(k)
1

w(k+1) = arg minw∈W w⊤w + q(k)
1

⊤
w

k← k + 1
until convergence
return w(k)
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Holding constraints

In practice, the constraints that are usually considered in the index tracking problem can
be written in a convex form.

Exception: holding constraints to avoid extreme positions or brokerage fees for very small
orders

l⊙ I{w>0} ≤ w ≤ u⊙ I{w>0}

Active constraints only for the selected assets (wi > 0).

Upper bound is easy: w ≤ u⊙ I{w>0} ⇐⇒ w ≤ u (convex and can be included in W).
Lower bound is nasty.
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Problem formulation

The problem formulation with holding constraints becomes (after the ℓ0-“norm”
approximation):

minimize
w

1
T

∥∥Xw− rb∥∥2
2 + λ1⊤ρp,u(w)

subject to w ∈ W,
l⊙ I{w>0} ≤ w.

How should we deal with the non-convex constraint?
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Penalization of violations

Hard constraint =⇒ Soft constraint.
Penalize violations in the objective.
A suitable penalty function for a general entry w is (since the constraints are separable):

fl(w) =
(
I{0<w<l} · l− w

)+
.

Approximate the indicator function with ρp,γ(w). Since we are interested in the interval
[0, l] we select γ = l:

f̃p,l(w) = (ρp,l(w) · l− w)+ .
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Penalization of violations
Penalty functions fl(w) and f̃p,l(w) for l = 0.01, p = 10−4:
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Problem Formulation with Penalty

The penalized optimization problem becomes:

minimize
w

1
T

∥∥Xw− rb∥∥2
2 + λ1⊤ρp,u(w) + ν⊤f̃p,l(w)

subject to w ∈ W

where ν is a parameter vector that controls the penalization and
f̃p,l(w) = [̃fp,l(w1), . . . , f̃p,l(wN)]⊤.

This problem is not convex:
ρp,u(w) is concave =⇒ Linear upperbound with Lemma 1.
f̃p,l(w) is neither convex nor concave.
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Majorization of f̃p,l(w)
Lemma 3
The function f̃p,l(w) = (ρp,l(w) · l− w)+ is majorized at w(k) ∈ [0, u] by the convex function

hp,l(w, w(k)) =
((

dp,l(w(k)) · l− 1
)

w + cp,l(w(k)) · l
)+

,

where dp,l(w(k)) and cp,l(w(k)) are given in Lemma 1.

Proof: ρp,l(w) ≤ dp,l(w(k))w + cp,l(w(k)) for w ≥ 0 [Lemma 1].

f̃p,l(w) = max (ρp,l(w) · l− w, 0)

≤ max
(
(dp,l(w(k))w + cp,l(w(k))) · l− w, 0

)
= max

((
dp,l(w(k)) · l− 1

)
w + cp,l(w(k)) · l, 0

)
.

hp,l(w, w(k)) is convex as the maximum of two convex functions.
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Majorization of f̃p,l(w)
Observe f̃p,l(w) and its piecewise linear majorizer hp,l(w, w(k)):

0 0.005 0.01 0.015 0.02 0.025 0.03

w

0

0.5

1

1.5

2

2.5

3

3.5

4

4.5

5
×10-3

f̃p,l
hp,l

h̃p,ε,l

qp,ε,l

D. Palomar (HKUST) Index Tracking 49 / 86



Convex formulation of the majorization
Recall our problem:

minimize
w

1
T

∥∥Xw− rb∥∥2
2 + λ1⊤ρp,u(w) + ν⊤f̃p,l(w)

subject to w ∈ W.

From Lemma 1: ρp,u(w) ≤ d(k)
p,u

⊤
w + const.

From Lemma 3:

f̃p,l(w) =
(
ρp,l(w) · l−w

)+
≤

(
Diag

(
d(k)

p,l ⊙ l− 1
)

w + c(k)
p,l ⊙ l

)+

= hp,l(w, w(k))

The majorized problem at the (k + 1)-th iteration becomes:

minimize
w

1
T

∥∥Xw− rb∥∥2
2 + λd(k)⊤

p,u w + ν⊤hp,l(w, w(k))
subject to w ∈ W

which is convex.
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Algorithm LAITH

Algorithm 3: Linear Approximation for the Index Tracking problem with Holding
constraints (LAITH)
Set k = 0 and choose w(0) ∈ W.
repeat

Compute d(k)
p,l , d(k)

p,u

Compute c(k)
p,l

w(k+1) = arg minw∈W
1
T

∥∥Xw− rb∥∥2
2 + λd(k)⊤

p,u w + ν⊤hp,l(w, w(k))
k← k + 1

until convergence
return w(k)
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Should we stop here?

Again, for specific constraint sets we can derive closed-form update algorithms!
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Smooth approximation of the (·)+ operator

To get a closed-form update algorithm we need to majorize again the objective.
Let us begin with the majorization of the third term, i.e.,

hp,l(w, w(k)) =
(
Diag

(
d(k)

p,l ⊙ l− 1
)
w + c(k)

p,l ⊙ l
)+

.

Separable: focus only in the univariate case, i.e., hp,l(w, w(k)).
Not smooth: cannot define majorization function at the non-differentiable point.
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Smooth approximation of the (·)+ operator

Use a smooth approximation of the (·)+ operator:

(x)+ ≈ x +
√

x2 + ϵ2

2 ,

where 0 < ϵ≪ 1 controls the approximation.

Apply this to hp,l(w, w(k)) =
((

dp,l(w(k)) · l− 1
)

w + cp,l(w(k)) · l
)+

:

h̃p,ϵ,l(w, w(k)) =
α(k)w + β(k) +

√
(α(k)w + β(k))2 + ϵ2

2 ,

where α(k) = dp,l(w(k)) · l− 1, andβ(k) = cp,l(w(k)) · l.

D. Palomar (HKUST) Index Tracking 55 / 86



Smooth majorization of f̃p,l(w)
Penalty function f̃p,l(w), its piecewise linear majorizer hp,l(w, w(k)), and its smooth
approximation h̃p,ϵ,l(w, w(k)):
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Quadratic majorization of h̃p,ϵ,l(w, w(k))

Lemma 4
The function h̃p,ϵ,l(w, w(k)) is majorized at w(k) by the quadratic convex function

qp,ϵ,l(w, w(k)) = ap,ϵ,l(w(k))w2 + bp,ϵ,l(w(k))w + cp,ϵ,l(w(k)),

where ap,ϵ,l(w(k)) = (α(k))2

2κ , bp,ϵ,l(w(k)) = α(k)β(k)

κ + α(k)

2 , and
cp,ϵ,l(w(k)) = (α(k)w(k))(α(k)w(k)+2β(k))+2(β(k)2+ϵ2)

2κ + β(k)

2 is an optimization irrelevant constant,
with κ=2

√
(α(k)w(k)+β(k))2+ϵ2.

Proof: Majorize the square root term of h̃p,ϵ,l(w, w(k)) (concave) with its first-order Taylor
approximation.
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Quadratic majorization of f̃p,l(w)
Penalty function f̃p,l(w), its piecewise linear majorizer hp,l(w, w(k)), its smooth majorizer
h̃p,ϵ,l(w, w(k)), and its quadratic majorizer qp,ϵ,l(w, w(k)):
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Quadratic formulation of the majorization
Recall our problem:

minimize
w

1
T

∥∥Xw− rb∥∥2
2 + λd(k)⊤

p,u w + ν⊤h̃p,ϵ,l(w, w(k))
subject to w ∈ W

From Lemma 4:

h̃p,ϵ,l(w, w(k))≤w⊤Diag
(
a(k)

p,ϵ,l ⊙ ν
)

w + b(k)
p,ϵ,l ⊙ ν⊤w + const.

The majorized problem at the (k + 1)-th iteration becomes:

minimize
w

w⊤
(

1
TX⊤X + Diag

(
a(k)

p,ϵ,l ⊙ ν
))

w
+

(
λd(k)

p,u − 2
TX⊤rb + b(k)

p,ϵ,l ⊙ ν
)

⊤w
subject to w ∈ W

This problem is a QP that can be solved with a solver, but we can do better.
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Quadratic formulation of the majorization

Use Lemma 2 to majorize the quadratic part:
L2 = 1

T X⊤X + Diag
(

a(k)
p,ϵ,l ⊙ ν

)
M2 = λ

(L2)
maxI.

And the final optimization problem at the (k + 1)-th iteration becomes:

minimize
w

w⊤w + q(k)
2

⊤
w

subject to w ∈ W,

where
q(k)

2 = 1
λ

(L2)
max

(
2

(
L2 − λ

(L2)
maxI

)
w(k) + λd(k)

p,u −
2
TX⊤rb + b(k)

p,ϵ,l ⊙ ν

)
.

This problem can be solved in closed form!

D. Palomar (HKUST) Index Tracking 60 / 86



Algorithm SLAITH

Algorithm 4: Specialized Linear Approximation for the Index Tracking problem with
Holding constraints (SLAITH)
Set k = 0 and choose w(0) ∈ W.
repeat

Compute q(k)
2

Solve w(k+1) = arg minw∈W w⊤w + q(k)
2

⊤
w, using Proposition 1.

k← k + 1
until convergence
return w(k)
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Extension to other tracking error measures

In all the previous formulations we used the empirical tracking error (ETE):

ETE(w) = 1
T

∥∥rb − Xw
∥∥2

2.

However, we can use other tracking error measures such as (Benidis et al. 2018b):5

Downside risk:
DR(w) = 1

T
∥∥(rb − Xw)+∥∥2

2,

where (x)+ = max(0, x).
Value-at-Risk (VaR) relative to an index.
Conditional VaR (CVaR) relative to an index.

5K. Benidis, Y. Feng, and D. P. Palomar, Optimization Methods for Financial Index Tracking: From Theory
to Practice. Foundations and Trends in Optimization, Now Publishers, 2018.

D. Palomar (HKUST) Index Tracking 64 / 86



Extension to downside risk

DR(w) is convex: can be used directly without any manipulation.
Interestingly, specialized algorithms can be derived for DR too by properly majorizing it.

Lemma 5
The function DR(w) = 1

T
∥∥(rb −Xw)+∥∥2

2 is majorized at w(k) by the quadratic convex function

1
T

∥∥rb − Xw− y(k)∥∥2
2,

where y(k) = −
(
Xw(k) − rb

)+
.
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Proof of Lemma 5 (1/4)
For convenience set z = rb − Xw. Then:

DR(w) = 1
T

∥∥(z)+∥∥2
2 = 1

T

T∑
i=1

z̃2
i ,

where

z̃i =
{

zi, if zi > 0,

0, if zi ≤ 0.

Majorize each z̃2
i . Two cases:

For a point z(k)
i > 0, f1(zi|z(k)

i ) = z2
i is an upper bound of z̃2

i , with
f1(z(k)

i |z
(k)
i ) =

(
z(k)

i

)2
=

(
z̃(k)

i

)2
.

For a point z(k)
i ≤ 0, f2(zi|z(k)

i ) =
(

zi − z(k)
i

)2
is an upper bound of z̃2

i , with

f2(z(k)
i |z

(k)
i )=

(
z(k)

i − z(k)
i

)2
=0=

(
z̃(k)

i

)2
.
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Proof of Lemma 5 (2/4)
For both cases the proofs are straightforward and they are easily shown pictorially:
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Proof of Lemma 5 (3/4)

Combining the two cases:

z̃2
i ≤

f1(zi|z(k)
i ), if z(k)

i > 0,

f2(zi|z(k)
i ), if z(k)

i ≤ 0,

=

(zi − 0)2, if z(k)
i > 0,

(zi − z(k)
i )2, if z(k)

i ≤ 0,

=(zi − y(k)
i )2,

where

y(k)
i =

0, if z(k)
i > 0,

z(k)
i , if z(k)

i ≤ 0,

=− (−z(k)
i )+.
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Proof of Lemma 5 (4/4)

Thus, DR(z) is majorized as follows:

DR(w) = 1
T

T∑
i=1

z̃2
i ≤

1
T

T∑
i=1

(zi − y(k)
i )2 = 1

T
∥∥z− y(k)∥∥2

2.

Substituting back z = rb − Xw, we get

DR(w) ≤ 1
T

∥∥rb − Xw− y(k)∥∥2
2,

where y(k) = −(−z(k))+ = −(Xw− rb)+.
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Extension to other penalty functions

Apart from the various performance measures, we can select a different penalty function.
We have used only the ℓ2-norm to penalize the differences between the portfolio and the
index.
We can use the Huber penalty function for robustness against outliers (Benidis et al.
2018b):6

ϕ(x) =
{

x2, |x| ≤ M,

M(2|x| −M), |x| > M.

The ℓ1-norm.
Many more…

6K. Benidis, Y. Feng, and D. P. Palomar, Optimization Methods for Financial Index Tracking: From Theory
to Practice. Foundations and Trends in Optimization, Now Publishers, 2018.
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Extension to Huber penalty function

Lemma 6
The function ϕ(x) is majorized at x(k) by the quadratic convex function
f(x|x(k)) = a(k)x2 + b(k), where

a(k) =

1, |x(k)| ≤ M,
M

|x(k)| , |x(k)| > M,

and

b(k) =
{

0, |x(k)| ≤ M,

M(|x(k)| −M), |x(k)| > M.
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Extension to Huber Penalty Function
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Set up
For the numerical experiments we use historical data of two indices:

Table 1: Index Information

Index Data Period $T_{trn}$ Ttst
S&P 500 01/01/10 - 31/12/15 252 252
Russell 2000 01/06/06 - 31/12/15 1000 252

We use a rolling window approach.
Performance measure: magnitude of daily tracking error (MDTE)

MDTE = 1
T− Ttrn

∥∥diag(XW)− rb∥∥
2,

where X ∈ R(T−Ttrn)×N and rb ∈ RT−Ttrn .
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Benchmarks

We will use the following benchmark methods:

MIP solution by Gurobi solver (MIPGur).
Diversity Method (Jansen and Van Dijk 2002)7 where the ℓ1/2-“norm” approximation is
used (DM1/2).
Hybrid Half Thresholding (HHT) algorithm (Xu et al. 2015)8.

7R. Jansen and R. Van Dijk, “Optimal benchmark tracking with small portfolios,” The Journal of Portfolio
Management, vol. 28, no. 2, pp. 33–39, 2002.

8F. Xu, Z. Xu, and H. Xue, “Sparse index tracking based on L1/2 model and algorithm,” arXiv preprint, 2015.
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S&P 500 - w/o holding constraints
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Russell 2000 - w/o holding constraints
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S&P 500 - w/ holding constraints
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Russell 2000 - w/ holding constraints
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Tracking the S&P 500 index

K. Benidis, Y. Feng, and D. P. Palomar, “Sparse portfolios for high-dimensional financial
index tracking,” IEEE Trans. Signal Process., vol. 66, no. 1, pp. 155–170, 2018.
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Average running time of proposed methods
Comparison of AS1 and ASu:
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Conclusions

We have developed efficient algorithms that promote sparsity for the index tracking
problem.

The algorithms are derived based on the MM framework:
derivation of surrogate functions
majorization of convex problems for closed-form solutions.

Many possible extensions.

Same techniques can be used for active portfolio management.

More generally: if you know how to solve a problem, then inducing sparsity should be a
piece of cake!
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Thanks

For more information visit:

https://www.danielppalomar.com
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