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Optimization problem

General optimization problem in standard form:

minimize
x

f0 (x)

subject to fi (x) ≤ 0 i = 1, . . . ,m
hi (x) = 0 i = 1, . . . , p

where

x = (x1, . . . , xn) is the optimization variable
f0 : Rn −→ R is the objective function
fi : Rn −→ R, i = 1, . . . ,m are inequality constraint
functions
hi : Rn −→ R, i = 1, . . . , p are equality constraint
functions.

Goal: find an optimal solution x? that minimizes f0 while satisfying all
the constraints.
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Examples

Convex optimization is currently used in many different areas:
circuit design (start-up named Barcelona in Silicon Valley)
signal processing (e.g., filter design)
communication systems (e.g., transceiver design, beamforming design,
ML detection, power control in wireless)
financial engineering (e.g., portfolio design, index tracking)
image proc. (e.g., deblurring, compressive sensing, blind separation)
machine learning
biomedical applications (e.g., analysis of DNA)
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Elements in the formulation

An optimization problem has three basic elements:
1 variables,
2 constraints, and
3 objective.

Example: device sizing in electronic circuits:
variables: device widths and lengths
constraints: manufacturing limits, timing requirements, max area
objective: power consumption

Example: portfolio optimization:
variables: amounts invested in different assets
constraints: budget, max investments per asset, min return
objective: overall risk or return variance.
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Example: Power control in wireless networks

Consider a wireless network with n logical transmitter/receiver pairs:

Goal: design the power allocation so that each receiver receives
minimum interference from the other links.
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Example: Power control in wireless networks

The signal-to-interference-plus-noise-ratio (SINR) at the ith receiver is

sinri =
piGii∑

j 6=i pjGij + σ2
i

where
pi is the power used by the ith transmitter
Gij is the path gain from transmitter j to receiver i
σ2
i is the noise power at the ith receiver.

Problem: maximize the weakest SINR subject to power constraints
0 ≤ pi ≤ pmax

i :

maximize
p

min
i=1,...,n

piGii∑
j 6=i pjGij+σ

2
i

subject to 0 ≤ pi ≤ pmax
i i = 1, . . . , n.
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Solving optimization problems

General optimization problems are very difficult to solve (either long
computation time or not finding the best solution).
Exceptions: least-squares problems, linear programming problems, and
convex optimization problems.

Least-squares (LS) [Gauss, 1795]:

minimize
x

‖Ax − b‖22

solving LS problems: closed-form solution x? =
(
ATA

)−1
ATb for

which there are reliable and efficient algorithms; mature technology
using LS: easy to recognize
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Solving optimization problems

Linear Programming (LP):

minimize
x

cT x

subject to aTi x ≤ bi , i = 1, . . . ,m

solving LP problems: no closed-form solution, but reliable and efficient
algorithms and software; mature technology
using LP: not as easy to recognize as LS problems, a few standard
tricks to convert problems into LPs

Convex optimization:

minimize
x

f0 (x)

subject to fi (x) ≤ bi , i = 1, . . . ,m

solving convex problems: no closed-form solution, but still reliable and
efficient algorithms and software; almost a technology
using convex optimization: often difficult to recognize, many tricks for
transforming problems into convex form.
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Nonconvex optimization problems

Nonconvex optimization problems are generally very difficult to solve,
although there are some rare exceptions.

In general, they require either a long computation time or the
compromise of not always finding the optimal solution:

local optimization: fast algorithms, but no guarantee of global
optimality, only local solution around the initial point
global optimization: worst-case complexity grows exponentially with
problem size, but finds global solution.
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Example: Lamp illumination problem

Consider m lamps illuminating n small flat patches:

Goal: achieve a desired illumination Ides on all patches with bounded
lamp powers.
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Example: Lamp illumination problem

The intensity Ik at patch k depends linearly on the lamp powers pj :

Ik =
m∑
j=1

akjpj

where the coefficients akj are given by akj = cos θkj/r
2
kj .

Problem formulation: since the illumination is perceived
logarithmically by the eye, a good formulation of the problem is

minimize
I1,...,In,p1,...,pm

max k |log Ik − log Ides|

subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m
Ik =

∑m
j=1 akjpj , k = 1, . . . , n.

How to solve the problem?
Answer: It depends on how much you know about optimization.
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Solving the lamp illumination problem

1 If you don’t know anything, then you just take a heuristic guess like
using a uniform power pj = p, perhaps trying different values of p.

2 If you know about least-squares, then approximate the problem as

minimize
I1,...,In,p1,...,pm

∑n
k=1 (Ik − Ides)

2

subject to Ik =
∑m

j=1 akjpj , k = 1, . . . , n.

and then clip pj if pj > pmax or pj < 0.

3 If you know about linear programming, then approximate the problem
as

minimize
I1,...,In,p1,...,pm

max k |Ik − Ides|

subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m
Ik =

∑m
j=1 akjpj , k = 1, . . . , n,

which may not look as an LP but it is!
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Solving the lamp illumination problem

4 If you know about convex optimization, after staring at the problem
long enough, you may realize that you can actually reformulate the
original problem in convex form and then find the global solution:

minimize
I1,...,In,p1,...,pm

max k h (Ik/Ides)

subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m
Ik =

∑m
j=1 akjpj , k = 1, . . . , n,

where h (u) = max {u, 1/u}.
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Additional constraints

Additional constraints: does adding the constraints below
complicate the problem?

(a) no more than half of total power is in any 10 lamps
(b) no more than half of the lamps are on (pj > 0).

Answer:
(a) does not complicate the problem, whereas

(b) makes the problem extremely difficult.

Moral: untrained intuition doesn’t always work; one needs to obtain
the proper background and develop the right intuition to discern
between difficult and easy problems.
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Historical snapshot

Theory (convex analysis): ca1900-1970 (e.g. Rockafellar)
Algorithms:

1947: simplex algorithm for linear programming (Dantzig)
1960s: early interior-point methods (Fiacco & McCormick, Dikin)
1970s: ellipsoid method and other subgradient methods
1980s: polynomial-time interior-point methods for linear programming
(Karmakar 1984)
late 1980s-now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

Applications:
before 1990s: mostly in operations research; few in engineering
since 1990: many new applications in engineering and new problem
classes (SDP, SOCP, robust optim.)
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Course goals and topics

Goal: to introduce convex optimization theory and to illustrate its use
with many recent applications with emphasis on

i) the art of unveiling the hidden convexity of problems
ii) a proper characterization of the solution either

analytically or algorithmically.
The course follows a case-study approach with applications in the
areas of signal processing, finance, machine learning, and big data.

Problems covered include: portfolio optimization in financial markets,
filter design, beamforming design in wireless communications,
classification in machine learning, circuit design, robust designs under
uncertainty, sparse optimization, low-rank optimization, graph learning
from data, discrete maximum likelihood decoding, network
optimization, distributed algorithms, Internet protocol design, etc.

D. Palomar Intro CvxOpt 22 / 26



Course team

Fantastic TAs (Rui Zhou and Ze Vinicius):

Professor Daniel P. Palomar:

D. Palomar Intro CvxOpt 23 / 26



Outline

1 Optimization Problems

2 Examples

3 Solving Optimization Problems

4 More Examples

5 This Course

6 References



References

Stephen Boyd and Lieven Vandenberghe, Convex Optimization.
Cambridge, U.K.: Cambridge University Press, 2004.

https://web.stanford.edu/~boyd/cvxbook/bv_cvxbook.pdf

Daniel P. Palomar and Yonina C. Eldar, Eds., Convex Optimization in
Signal Processing and Communications, Cambridge University Press,
2009.
Ben Tal & Nemirovsky, Lectures on Modern Convex Optimization.
SIAM 2001.
Nesterov & Nemirovsky, Interior-point Polynomial Algorithms in
Convex Programming. SIAM 1994.

D. Palomar Intro CvxOpt 25 / 26



Thanks

For more information visit:
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