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High Dimensional Data

Data becomes increasingly massive, high dimensional...

Images: compression, denoising, recognition. . .
Videos: streaming, tracking, stabilization. . .
User data: clustering, classification, recommendation. . .
Web data: indexing, ranking, search. . .
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Low Dimensional Structures in High Dimensional Data

Low dimensional structures in visual data

User Data: profiles of different users may share some common factors
How to extract low dimensional structures from such high dimensional data?
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Rank Minimization Problem (RMP)

In many scenarios, low dimensional structure is closely related to low rank.
But in real applications, the true rank is usually unknown. A natural approach to solve this
is to formulate it as a rank minimization problem (RMP), i.e., finding the matrix of lowest
rank that satisfies some constraint

minimize
X

rank(X)

subject to X ∈ C,

where X ∈ Rm×n is the optimization variable and C is a convex set denoting the
constraints.
When X is restricted to be diagonal, rank(X) = ‖diag(X)‖0 and the rank minimization
problem reduces to the cardinality minimization problem (`0-norm minimization).
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Matrix Rank

The rank of a matrix X ∈ Rm×n is
the number of linearly independent rows of X
the number of linearly independent columns of X
the number of nonzero singular values of X, i.e., ‖σ(X)‖0.
the smallest number r such that there exists an m× r matrix F and an r × n matrix G with
X = FG

It can be shown that any nonsquare matrix X can be associated with a positive
semidefinite matrix whose rank is exactly twice the rank of X.
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Semidefinite Embedding Lemma

Lemma
Let X ∈ Rm×n be a given matrix. Then rank(X) ≤ r if and only if there exist matrices
Y = YT ∈ Rm×m and Z = ZT ∈ Rn×n such that[

Y X
XT Z

]
� 0, rank(Y) + rank(Z) ≤ 2r.

Based on the semidefinite embedding lemma, minimizing the rank of a general nonsquare
matrix X, is equivalent to minimizing the rank of the positive semidefinite, block diagonal
matrix blkdiag(Y,Z):

minimize
X,Y,Z

1
2rank(blkdiag(Y,Z))

subject to
[

Y X
XT Z

]
� 0

X ∈ C.
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Solving Rank Minimization Problem

In general, the rank minimization problem is NP-hard, and there is little hope of finding
the global minimum efficiently in all instances.
What we are going to talk about, instead, are efficient heuristics, categorized into two
groups:

1 Approximate the rank function with some surrogate functions
Nuclear norm heuristic
Log-det heuristic

2 Solving a sequence of rank-constrained feasibility problems
Matrix factorization based method
Rank constraint via convex iteration
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Nuclear Norm Heuristic

A well known heuristic for rank minimization problem is replacing the rank function in the
objective with the nuclear norm

minimize
X

‖X‖∗
subject to X ∈ C

Proposed by Fazel (2002) [Fazel, 2002].
The nuclear norm ‖X‖∗ is defined as the sum of singular values, i.e., ‖X‖∗ =

∑r
i=1 σi.

If X = XT � 0, ‖X‖∗ is just Tr(X) and the “nuclear norm heuristic” reduces to the “trace
heuristic”.
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Why Nuclear Norm?

Nuclear norm can be viewed as the `1-norm of the vector of singular values.
Just as `1-norm ⇒ sparsity, nuclear norm ⇒ sparse singular value vector, i.e., low rank.
When X is restricted to be diagonal, ‖X‖∗ = ‖diag(X)‖1 and the nuclear norm heuristic
for rank minimization problem reduces to the `1-norm heuristic for cardinality minimization
problem.
‖x‖1 is the convex envelope of card(x) over {x| ‖x‖∞ ≤ 1}. Similarly, ‖X‖∗ is the
convex envelope of rank(X) on the convex set {X| ‖X‖2 ≤ 1} .
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Equivalent SDP Formulation
Lemma
For X ∈ Rm×n and t ∈ R, we have ‖X‖∗ ≤ t if and only if there exist matrices Y ∈ Rm×m

and Z ∈ Rn×n such that [
Y X
XT Z

]
� 0, Tr(Y) + Tr(Z) ≤ 2t.

Based on the above lemma, the nuclear norm minimization problem is equivalent to

minimize
X,Y,Z

1
2Tr(Y + Z)

subject to
[

Y X
XT Z

]
� 0

X ∈ C.
This SDP formulation can also be obtained by applying the “trace heuristic” to the PSD
form of the RMP.
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Log-det Heuristic

In the log-det heuristic, log-det function is used as a smooth surrogate for rank function.
Symmetric positive semidefinite case:

minimize
X

log det(X + δI)

subject to X ∈ C,

where δ > 0 is a small regularization constant.
Note that log det(X + δI) =

∑
i log(σi(X + δI)), rank(X) = ‖σ(X)‖0, and log(s+ δ)

can be seen as a surrogate function of card(s).
However, the surrogate function log det(X + δI) is not convex (in fact, it is concave).
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Log-det Heuristic

An iterative linearization and minimization scheme (called majorization-minimization) is
used to find a local minimum.
Let X(k) denote the kth iterate of the optimization variable X. The first-order Taylor
series expansion of log det (X + δI) about X(k) is given by

log det (X + δI) ≈ log det
(
X(k) + δI

)
+ Tr

((
X(k) + δI

)−1 (
X−X(k)

))
.

Then, one could minimize log det (X + δI) by iteratively minimizing the local linearization,
which leads to

X(k+1) = argmin
X∈C

Tr
((

X(k) + δI
)−1

X

)
.
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Interpretation of Log-det Heuristic

If we choose X(0) = I, the first iteration is equivalent to minimizing the trace of X, which
is just the trace heuristic. The iterations that follow try to reduce the rank further. In this
sense, we can view this heuristic as a refinement of the trace heuristic.

At each iteration we solve a weighted trace minimization problem, with weights
W(k) =

(
X(k) + δI

)−1
. Thus, the log-det heuristic can be considered as an extension of

the iterative reweighted `1-norm heuristic to the matrix case.
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Log-det Heuristic for General Matrix

For general nonsquare matrix X, we can apply the log-det heuristic to the equivalent PSD
form and obtain

minimize
X,Y,Z

log det(blkdiag(Y,Z) + δI)

subject to
[

Y X
XT Z

]
� 0

X ∈ C.

Linearizing as before, at iteration k we solve the following problem to get X(k+1), Y(k+1)

and Z(k+1)

minimize
X,Y,Z

Tr
((

blkdiag(Y(k),Z(k)) + δI
)−1

blkdiag(Y,Z)
)

subject to
[

Y X
XT Z

]
� 0

X ∈ C.
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Matrix Factorization based Method

The idea behind factorization based methods is that rank(X) ≤ r if and only if X can be
factorized as X = FG, where F ∈ Rm×r and G ∈ Rr×n.
For each given r, we check if there exists a feasible X of rank less than or equal to r by
checking if any X ∈ C can be factored as above.
The expression X = FG is not convex in X, F and G simultaneously, but it is convex in
(X,F) when G is fixed and convex in (X,G) when F is fixed.
Various heuristics can be applied to handle this non-convex equality constraint, but it is
not guaranteed to find an X with rank r even if one exists.
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Matrix Factorization based Method

Coordinate descent method: Fix F and G one at a time and iteratively solve a convex
problem at each iteration.

Choose F(0) ∈ Rm×r. Set k = 1.
repeat

(X̃(k),G(k)) = argmin
X∈C,G∈Rr×n

∥∥∥X− F(k−1)G
∥∥∥
F

(X(k),F(k)) = argmin
X∈C,F∈Rm×r

∥∥∥X− FG(k)
∥∥∥
F

e(k) =
∥∥∥X(k) − F(k)G(k)

∥∥∥
F
,

until e(k) ≤ ε, or e(k−1) and e(k) are approximately equal.
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Rank Constraint via Convex Iteration

Consider a semidefinite rank-constrained feasibility problem

find
X∈Sn

X

subject to X ∈ C
X � 0
rank(X) ≤ r,

It is proposed in [Dattorro, 2005] to solve this problem via iteratively solving the following
two convex problems:

minimize
X

Tr(W?X)

subject to X ∈ C
X � 0

minimize
W

Tr(WX?)

subject to 0 �W � I
Tr(W) = n− r,

where W? is the optimal solution of the second problem and X? is the optimal solution of
the first problem.
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Rank Constraint via Convex Iteration

An optimal solution to the second problem is known in closed form. Given non-increasingly
ordered diagonalization X? = QΛQT , then matrix W? = U?U?T is optimal where
U? = Q(:, r + 1 : n) ∈ Rn×n−r, and

Tr(W?X?) =

n∑
i=r+1

λi(X
?).

We start from W? = I and iteratively solving the two convex problems. Note that in the
first iteration the first problem is just the “trace heuristic”.
Suppose at convergence, Tr(W?X?) = τ , if τ = 0, then rank(X?) ≤ r and X? is a
feasible point. But this is not guaranteed, only local convergence can be established, i.e.,
converging to some τ ≥ 0.
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Rank Constraint via Convex Iteration

For general nonsquare matrix X ∈ Rm×n, we have an equivalent PSD form

find
X∈Rm×n

X

subject to X ∈ C
rank(X) ≤ r

⇔

find
X,Y,Z

X

subject to X ∈ C

G =

[
Y X
XT Z

]
� 0

rank(Y) + rank(Z) ≤ 2r.

The same convex iterations can be applied now. Note that if we start from W? = I, now
the first problem is just the “nuclear norm heuristic” for the first iteration.
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Recommender Systems

How does Amazon recommend commodities?
How does Netflix recommend movies?
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Netflix Prize

Given 100 million ratings on a scale of 1 to 5, predict 3 million ratings to highest accuracy

17,770 total movies, 480,189 total users
How to fill in the blanks?
Can you improve the recommendation accuracy by 10% over what Netflix was
using? =⇒ One million dollars!
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Abstract Setup: Matrix Completion

Consider a rating matrix Rm×n with Rij representing the rating user i gives to movie j.
But some Rij are unknown since no one watches all movies

Movies

R =


2 3 ? ? 5 ?
1 ? ? 4 ? 3
? ? 3 2 ? 5
4 ? 3 ? 2 4

 Users

We would like to predict how users will like unwatched movies.
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Structure of the Rating Matrix

The rating matrix is very big, 480, 189 (number of users) times 17, 770 (number of
movies) in the Netflix case.
But there are much fewer types of people and movies than there are people and movies.
So it is reasonable to assume that for each user i, there is a k-dimensional vector pi

explaining the user’s movie taste and for each movie j, there is also a k-dimensional vector
qj explaining the movie’s appeal. And the inner product between these two vectors, pT

i qj ,
is the rating user i gives to movie j, i.e., Rij = pT

i qj . Or equivalently in matrix form, R
is factorized as R = PTQ, where P ∈ Rk×m, Q ∈ Rk×n, k � min(m,n).
It is the same as assuming the matrix R is of low rank.
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Matrix Completion

The true rank is unknown, a natural approach is to find the minimum rank solution

minimize
X

rank(X)

subject to Xij = Rij , ∀(i, j) ∈ Ω,

where Ω is the set of observed entries.
In practice, instead of requiring strict equality for the observed entries, one may allow
some error and the formulation becomes

minimize
X

rank(X)

subject to
∑

(i,j)∈Ω(Xij −Rij)
2 ≤ ε.

Then, all the heuristics can be applied, e.g., log-det heuristic, matrix factorization.
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What did the Winners Use?

What algorithm did the final winner of the Netflix Prize use?

You can find the report from the Netflix Prize website. The winning solution is really a
cocktail of many methods combined and thousands of model parameters fine-tuned
specially to the training set provided by Netflix.
But one key idea they used is just the factorization of the rating matrix as the product of
two low rank matrices [Koren et al., 2009], [Koren and Bell, 2011].
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Background Extraction from Video

Given video sequence Fi, i = 1, . . . , n.

The objective is to extract the background in the video sequence, i.e., separating the
background from the human activities.
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Low-Rank Matrix + Sparse Matrix

Stacking the images and grouping the video sequence Y = [vec(F1), . . . , vec(Fn)]

The background component is of low rank, since the background is static within a short
period (ideally it is rank one as the image would be the same).
The foreground component is sparse, as activities only occupy a small fraction of space.
The problem fits into the following signal model

Y = X + E,

where Y is the observation, X is a low rank matrix (the low rank background) and E is a
sparse matrix (the sparse foreground).
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Low-Rank and Sparse Matrix Recovery

Low-rank and sparse matrix recovery

minimize
X

rank(X) + γ ‖vec(E)‖0
subject to Y = X + E.

Applying the nuclear norm heuristic and `1-norm heuristic simultaneously

minimize
X

‖X‖∗ + γ ‖vec(E)‖1
subject to Y = X + E.

Recently, some theoretical results indicate that when X is of low rank and E is sparse
enough, exact recovery happens with high probability [Wright et al., 2009].
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Background Extraction Result

row 1: the original video sequences.
row 2: the extracted low-rank background.
row 3: the extracted sparse foreground.
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Summary

We have introduced the rank minimization problem.
We have developed different heuristics to solve the rank minimization problem:

Nuclear norm heuristic
Log-det heuristic
Matrix factorization based method
Rank constraint via convex iteration

Real applications are provided.
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For more information visit:

https://www.danielppalomar.com
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