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Convex optimization

A convex optimization problem is written as

minimize
x

f0 (x)
subject to fi (x) ≤ 0 i = 1, . . . , m

h (x) = Ax − b = 0

where f0, f1, . . . , fm are convex and equality constraints are affine.
Convex problems enjoy a rich theory (KKT conditions, zero duality gap, etc.) as well as a
large number of efficient numerical algorithms guaranteed to deliver an optimal solution
x⋆.
Many off-the-shelf solvers exist in all the programming languages (e.g., R, Python,
Matlab, Julia, C, etc.), tailored to specific classes of problems, namely, LP, QP, QCQP,
SOCP, SDP, GP, etc.
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Useless in practice!

However, the obtained optimal solution x⋆ typically performs very poorly in practice.
In many cases, it can be totally useless!
Why is that?
Recall that a problem formulation contains not only the optimization variables x but also
the parameters θ.
Such parameters define the problem instance and are typically estimated in practice, i.e.,
they are not exact: θ̂ ̸= θ but hopefully close θ̂ ≃ θ.
The question is whether a small error in the parameters is going to be detrimental or can
be ignored. That depends on each particular type of problem.
In the case of portfolio optimization, small errors in the parameters θ = (µ, Σ) happen to
have a huge effect in the solution x⋆. To the point that most practitioners avoid the use
of portfolio optimization!
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Parameters: θ

To make explicit the fact that the functions depend on parameters θ, we can explicitly
write fi (x; θ) and hi (x; θ).

For example, consider an LP:

minimize
x

cTx + d
subject to Ax = b.

The parameters are θ = (A, b, c, d).
The objective function is f0 (x; θ) = cTx + d
The constraint function is h (x; θ) = Ax − b

In practice, we only have an estimation θ̂. So the problem can only be formulated and
solved using θ̂ obtaining the solution x⋆(θ̂), which is different from the desired one x⋆ (θ).
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Robust optimization

The naive approach is to pretend that θ̂ is close enough to θ and solve the approximated
problem, obtaining x⋆(θ̂).
For some type of problems, it may be that x⋆(θ̂) ≈ x⋆ (θ) and that’s it.
For many other problems, however, that’s not the case. So we cannot really rely on the
naive solution x⋆(θ̂).
The solution is to consider instead a robust formulation that takes into account the fact
that we know we only have an estimation of the parameters.
There are several ways to make the problem robust to parameters errors, mainly:

stochastic robust optimization (involving expectations)
worst-case robust optimization
chance programming or chance robust optimization.
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Taxonomy of robust optimization
Stochastic optimization (SO): this includes expectations as well as chance constraints
(requires probabilistic modeling of the parameter):

J. R. Birge and F. V. Louveaux. Introduction to Stochastic Programming. Springer,
2011.

A. P. Ruszczynski and A. Shapiro. Stochastic Programming. Elsevier, 2003.
A. Prekopa. Stochastic Programming. Kluwer Academic Publishers, 1995.

Robust optimization (RO): this includes the worst-case approach (requires definition of
hard uncertainty set for the parameter):

A. Ben-Tal, L. E. Ghaoui, and A. Nemirovski. Robust Optimization. Princeton
University Press, 2009.

A. Ben-Tal and A. Nemirovski, “Selected topics in robust convex optimization”,
Mathematical Programming, 112 (1), 2008.

D. Bertsimas, D. B. Brown, and C. Caramanis, “Theory and applications of robust
optimization”, SIAM Review, 53 (3), 2011.

M. S. Lobo. Robust and convex optimization with applications in finance. PhD thesis,
Stanford University, 2000.
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Stochastic optimization: Expectations

In stochastic robust optimization, one models the estimation θ̂ as a random variable that
fluctuates around its true value θ.
Then, instead of considering the approximated function f(x; θ̂), it uses its expected value
Eθ[f(x; θ)], where Eθ[·] denotes expectation over the random variable θ.
The random variable is typically modeled around the estimated value as θ = θ̂ + δ with δ
following a zero-mean distribution such as Gaussian.
For example, if the function is quadratic, say, f(x; θ̂) = (ĉTx)2, and we model the
parameter as c = ĉ + δ with δ zero-mean and covariance matrix Q, then the expected
value is

Eθ[f(x; θ)] = Eδ[((ĉ + δ)Tx)2]
= Eδ[xTĉĉTx + xTδδTx]
= (ĉTx)2 + xTQx

where the additional term xTQx serves as a regularizer.
D. Palomar (HKUST) Robust Optimization 9 / 49



Worst-case robust optimization

In worst-case robust optimization, the parameter is not characterized statistically. Instead,
it is assumed that the true parameter lies in an uncertainty region centered around the
estimated value: θ ∈ U .

The uncertainty region can be chosen depending on the problem. Typical choices include:
sphere region:

U = {θ| ∥ θ − θ̂ ∥2) ≤ δ}

box region:
U = {θ| ∥ θ − θ̂ ∥∞) ≤ δ}

elliptical region:
U = {θ|(θ − θ̂)TS−1(θ − θ̂)) ≤ δ2}

where S ≻ 0 defines the shape of the ellipsoid.
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Worst-case robust optimization: Example
Take the previous quadratic function

f(x; θ̂) = (ĉTx)2

and consider a sphere uncertainty region
U = {c| ∥ c − ĉ ∥2) ≤ δ}.

If the function is the objective to be minimized or it is a constraint of the form
f(x; θ̂) ≤ 0, then the worst-case value of that function is

max
c∈U

∣∣∣cTx
∣∣∣ = max

∥e∥≤δ

∣∣∣(ĉ + e)Tx
∣∣∣

≤ max
∥e∥≤δ

∣∣∣ĉTx
∣∣∣ +

∣∣∣eTx
∣∣∣

≤
∣∣∣ĉTx

∣∣∣ + δ ∥x∥

with upper bound achieved by e = x
∥x∥δ.
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Worst-case robust optimization: Example
Take the previous quadratic function

f(x; θ̂) = (ĉTx)2

and consider a sphere uncertainty region
U = {c| ∥ c − ĉ ∥2) ≤ δ}.

If the function is the objective to be maximized or it is a constraint of the form
f(x; θ̂) ≥ 0, then the worst-case value of that function is

min
c∈U

∣∣∣cTx
∣∣∣ = min

∥e∥≤δ

∣∣∣(ĉ + e)Tx
∣∣∣

≥ min
∥e∥≤δ

∣∣∣ĉTx
∣∣∣ −

∣∣∣eTx
∣∣∣

≥
∣∣∣ĉTx

∣∣∣ − δ ∥x∥

with lower bound achieved by e = − x
∥x∥δ.
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Stochastic optimization: Chance constraints

The problem with expectations is that only the average behavior is concerned and nothing
is under control about the realizations worse than the average. For example, on average
some constraint will be satisfied but it will be violated for many realizations.
The problem with worst-case programming is that it is too conservative as one deals with
the worst possible case.
Chance programming tries to find a compromise. In particular, it also models the
estimation errors statistically but instead of focusing on the average it guarantees a
performance for, say, 95% of the cases.
The naive constraint f(x; θ̂) ≤ 0 is replaced with Prθ [f(x; θ) ≤ 0] ≥ 1 − ϵ = 0.95 with
ϵ = 0.05.
Chance or probabilistic constraints are generally very hard to deal with and one typically
has to resort to approximations.
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Robust Beamforming in Wireless Communications

Use whiteboard.
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Markowitz mean-variance portfolio (1952)

The idea of the Markowitz mean-variance portfolio (MVP) (Markowitz 1952)1 is to
find a trade-off between the expected return wTµ and the risk of the portfolio measured
by the variance wTΣw:

maximize
w

wTµ − λwTΣw
subject to 1Tw = 1

where wT1 = 1 is the capital budget constraint and λ is a parameter that controls how
risk-averse the investor is.
This is a convex quadratic problem (QP) with only one linear constraint which admits a
closed-form solution:

wMVP = 1
2λ

Σ−1 (µ + ν1) ,

where ν is the optimal dual variable ν = 2λ−1TΣ−1µ
1TΣ−11 .

1H. Markowitz, “Portfolio selection,” J. Financ., vol. 7, no. 1, pp. 77–91, 1952.
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Sensitivity of Markowitz’s portfolio
Markowitz’s portfolio is extremely sensitivity of the estimatior errors of the parameters:
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Mean-variance tradeoff
Efficient frontier: mean-variance trade-off curve (Pareto curve) but it is not achieved in
practice due to parameter estimation errors:
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Feasible portfolios
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Markowitz’s portfolio: Naive vs robust
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Performance of Markowitz's mean−variance portfolio

In terms of Sharpe ratio, the robust is clearly superior to the naive (note that the
mean-variance portfolio is not the same as the maximum Sharpe ration portfolio).
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Global maximum return portfolio (GMRP)

The portfolio that maximizes the return (while ignoring the variance) is the linear
program (LP)

maximize
w

wTµ

subject to 1Tw = 1.

In practice, however, µ is unknown and has to be estimated µ̂, e.g., with the sample mean

µ̂ = 1
T

T∑
t=1

xt,

where xt is the return at day t.

Unfortunately, it is well known that the estimation of µ is extremely noisy in practice
(Chopra and Ziemba 1993)2.

2V. Chopra and W. Ziemba, “The effect of errors in means, variances and covariances on optimal portfolio
choice,” Journal of Portfolio Management, 1993.
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Worst-case robust GMRP

Instead of assuming that µ is known perfectly, we now assume it belongs to some convex
uncertainty set, denoted by Uµ.
The worst-case robust formulation is

maximize
w

min
µ∈Uµ

wTµ

subject to 1Tw = 1.

We assume the expected returns are only known within an ellipsoid:

Uµ =
{

µ = µ̂ + κS1/2u | ∥u∥2 ≤ 1
}

where one can use the estimated covariance matrix to shape the uncertainty ellipsoid, i.e.,
S = Σ̂.
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Worst-case robust GMRP

We can solve easily the inner minimization:

minimize
µ,u

wTµ

subject to µ = µ̂ + κS1/2u,
∥u∥2 ≤ 1.

It’s easy to find the minimum value using Cauchy-Schwartz’s inequality:

wTµ = wT
(
µ̂ + κS1/2u

)
= wTµ̂ + κwTS1/2u

≥ wTµ̂ − κ
∥∥∥S1/2w

∥∥∥
2

with equality achieved with u = − S1/2w
∥S1/2w∥2

.
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Worst-case robust GMRP

Finally, the robust formulation becomes the SOCP

maximize
w

wTµ̂ − κ
∥∥∥S1/2w

∥∥∥
2

subject to 1Tw = 1.

Recall the vanilla problem formulation was the LP

maximize
w

wTµ̂

subject to 1Tw = 1.

So, we have gone from an LP to an SOCP.
In general, when a problem is robustified, the complexity of the problem increases. For
example:

LP becomes SOCP
QP also becomes SOCP
SOCP becomes SDP.
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Global Minimum Variance Portfolio (GMVP)
The global minimum variance portfolio (GMVP) ignores the expected return and
focuses on the risk only:

minimize
w

wTΣw
subject to 1Tw = 1.

It is a simple convex QP with solution

wGMVP = 1
1TΣ−11

Σ−11.

It is widely used in academic papers for simplicity of evaluation and comparison of
different estimators of the covariance matrix Σ (while ignoring the estimation of µ).
In practice, Σ is unknown and has to be estimated Σ̂, e.g., with the sample covariance
matrix.
Then, the naive portfolio becomes

wGMVP = 1
1TΣ̂−11

Σ̂−11.
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Worst-case robust GMVP

Instead of assuming that Σ is known perfectly, we now assume it belongs to some convex
uncertainty set, denoted by UΣ.
The worst-case robust formulation is

minimize
w

max
Σ∈UΣ

wTΣw
subject to 1Tw = 1.

In particular, we will assume that the estimation comes from the sample covariance
matrix Σ̂ = 1

TXTX where X is a T × N matrix containing the return data (assumed
demeaned already).
However, we will assume that the data matrix is noisy X̂ and the actual matrix can be
written as X = X̂ + ∆, where ∆ is some error matrix bounded in its norm.
Thus, we will then model the data matrix as

UX =
{

X |
∥∥∥X − X̂

∥∥∥
F

≤ δX
}

.
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Worst-case robust GMVP
The worst-case robust formulation becomes:

minimize
w

max
X∈UX

wT 1
TXTXw

subject to 1Tw = 1.

Let’s focus on the inner maximization:

max
X∈UX

wTXTXw = max
∥∆∥F≤δX

∥∥∥(
X̂ + ∆

)
w

∥∥∥2

2

We first invoke the triangle inequality to get an upper bound:∥∥∥(
X̂ + ∆

)
w

∥∥∥
2

≤
∥∥∥X̂w

∥∥∥
2

+ ∥∆w∥2

with equality achieved when the two vectors X̂w and ∆w are aligned.
Next, we invoke the norm inequality

∥∆w∥2 ≤ ∥∆∥F ∥w∥2 ≤ δX ∥w∥2

with equality achieved when ∆ is rank-one with right singular vector aligned with w with
∥∆∥F = δX. (This follows from wTMw ≤ λmax (M) ∥w∥2 ≤ Tr (M) ∥w∥2 for M ⪰ 0.)
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Worst-case robust GMVP

Finally, we can see that both upper bounds can be actually achieved if the error is
properly chosen as

∆ = δX
X̂wwT

∥w∥2

∥∥∥X̂w
∥∥∥

2

.

Thus,
max
X∈UX

wTXTXw =
(∥∥∥X̂w

∥∥∥
2

+ δX ∥w∥2
)2

.

The robust problem formulation finally becomes:

minimize
w

∥∥∥X̂w
∥∥∥

2
+ δX ∥w∥2

subject to 1Tw = 1

which is a (convex) SOCP.

D. Palomar (HKUST) Robust Optimization 31 / 49



Worst-case robust GMVP
Recall the vanilla problem formulation was the QP

minimize
w

∥∥∥X̂w
∥∥∥2

2
subject to 1Tw = 1

Now, the robust problem formulation is the SOCP (from QP to SOCP)

minimize
w

∥∥∥X̂w
∥∥∥

2
+ δX ∥w∥2

subject to 1Tw = 1
which contains the regularization term δX ∥w∥2.
One common heuristic, called Tikhonov regularization, is to consider instead

minimize
w

∥∥∥X̂w
∥∥∥2

2
+ δX ∥w∥2

2 = wT
(
X̂TX̂ + δXI

)
w

subject to 1Tw = 1
which is equivalent to the vanilla formulation but using the regularized sample covariance
matrix Σ̂tik = 1

T(X̂TX̂ + δXI) = Σ̂ + δX
T I.
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Markowitz’s portfolio formulation

Recall Markowitz’s formulation:

maximize
w

wTµ − λwTΣw
subject to 1Tw = 1, w ∈ W,

where W denotes some other constraints on w.

Instead of assuming µ and Σ are known perfectly, now we assume they belong to some
convex uncertainty sets, denoted as Uµ and UΣ, respectively.
The worst-case formulation will consider the worst-case points within those uncertainty
sets.
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Worst-case Markowitz’s portfolio

A conservative and practical investment approach is to optimize the worst-case objective
over the uncertainty sets (Cornuejols and Tütüncü 2006)3, (Fabozzi 2007)4:

maximize
w

min
µ∈Uµ

wTµ − λ max
Σ∈UΣ

wTΣw

subject to wT1 = 1, w ∈ W.

The two key issues are:
1 How to choose the uncertainty sets Uµ and UΣ so that they are meaningful in practice.
2 To make sure the optimization problem above is still easy to solve.

3G. Cornuejols and R. Tütüncü, Optimization Methods in Finance. Cambridge University Press, 2006.
4F. J. Fabozzi, Robust Portfolio Optimization and Management. Wiley, 2007.
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Worst-case mean: Box set

Box uncertainty set:
Ub

µ = {µ | −δ ≤ µ − µ̂ ≤ δ} ,

where the predefined parameters µ̂ and δ denote the location and size of the box
uncertainty set, respectively.
Easily, the worst-case mean is

min
µ∈Ub

µ

wTµ = wTµ̂ + min
−δ≤γ≤δ

wTγ = wTµ̂ − |w|Tδ,

where |w| denotes elementwise absolute value of w.
Note that it is a concave function of w (as it should be since it is the minimum of linear
functions).
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Worst-case mean: Elliptical set

Elliptical uncertainty set:

Ue
µ =

{
µ | (µ − µ̂)TS−1

µ (µ − µ̂) ≤ δ2
µ

}
,

where the predefined parameters µ̂, δµ > 0, and Sµ ≻ 0 denote the location, size, and
the shape of the uncertainty set, respectively.
The worst-case mean is

min
µ∈Ue

µ

wTµ = min∥∥∥S−1/2
µ γ

∥∥∥
2
≤δµ

wT(µ̂ + γ) = wTµ̂ + min∥∥∥S−1/2
µ γ

∥∥∥
2
≤δµ

wTγ

= wTµ̂ + min
∥γ̃∥2≤δµ

wTS1/2
µ γ̃ = wTµ̂ − δµ

∥∥∥S1/2
µ w

∥∥∥
2

.

Note that it is a concave function of w (as it should be since it is the minimum of linear
functions).
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Worst-case variance: Box set

Box uncertainty set:
Ub

Σ =
{

Σ | Σ ≤ Σ ≤ Σ, Σ ⪰ 0
}

.

The worst-case value max
Σ∈Ub

Σ

wTΣw is given by the (convex) semidefinite problem (SDP)

maximize
Σ

wTΣw
subject to Σ ≤ Σ ≤ Σ,

Σ ⪰ 0.
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Worst-case variance: Box set

The equivalent dual problem is (Lobo and Boyd 2000)5

minimize
Λ, Λ

Tr(Λ Σ) − Tr(Λ Σ)

subject to
[
Λ − Λ w

wT 1

]
⪰ 0,

Λ ≥ 0, Λ ≥ 0,

which is a convex SDP.
The constraints are jointly convex in the inner dual variable variables Λ and Λ and the
outer variable w.

5M. S. Lobo and S. Boyd, “The worst-case risk of a portfolio,” Tech. Rep., 2000.
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Worst-case variance: Elliptical set

Elliptical uncertainty set:

Ue
Σ =

{
Σ |

(
vec(Σ) − vec(Σ̂)

)T
S−1

Σ

(
vec(Σ) − vec(Σ̂)

)
≤ δ2

Σ, Σ ⪰ 0
}

where Σ̂ denotes the location, δΣ denotes the size, and SΣ determines the shape.

The worst-case value max
Σ∈Ue

Σ
wTΣw is given by the (convex) SDP

maximize
Σ

wTΣw

subject to
(
vec(Σ) − vec(Σ̂)

)T
S−1

Σ

(
vec(Σ) − vec(Σ̂)

)
≤ δ2

Σ,

Σ ⪰ 0.
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Worst-case variance: Elliptical set
Since the problem is convex, strong duality holds (zero duality gap).
Thus, the maximum objective value equals the minimum objective value of its dual
problem:

minimize
Z

Tr
(
Σ̂

(
wwT + Z

))
+ δΣ

∥∥∥S1/2
Σ

(
vec(wwT) + vec(Z)

)∥∥∥
2

subject to Z ⪰ 0.

We can now plug in this inner problem in the original problem:

maximize
w,Z

min
µ∈Uµ

wTµ − λ
(
Tr

(
Σ̂

(
wwT + Z

))
+δΣ

∥∥∥S1/2
Σ

(
vec(wwT) + vec(Z)

)∥∥∥
2

)
subject to wT1 = 1, w ∈ W

Z ⪰ 0.

However, now this problem contains a complicated term with the composition of
vec(wwT) and the norm ∥·∥2.
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Worst-case variance: Elliptical set
We can further include a new variable as X = wwT so that the objective function
becomes nicer.
But this constraint is not convex!
Luckily we can instead use X ⪰ wwT (because we can easily show that at the optimal
point it will be achieved with equality), which can be further expressed as[

X w
wT 1

]
⪰ 0.

The final problem is

maximize
w,X,Z

min
µ∈Uµ

wTµ − λ
(
Tr

(
Σ̂ (X + Z)

)
+δΣ

∥∥∥S1/2
Σ (vec(X) + vec(Z))

∥∥∥
2

)
subject to wT1 = 1, w ∈ W[

X w
wT 1

]
⪰ 0

Z ⪰ 0.
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Equivalent formulation
Consider the two uncertainty sets:

Ub
µ = {µ | −δ ≤ µ − µ̂ ≤ δ} ,

Ub
Σ =

{
Σ | Σ ≤ Σ ≤ Σ, Σ ⪰ 0

}
.

The worst-case robust formulation
maximize

w
min

µ∈Uµ

wTµ − λ max
Σ∈UΣ

wTΣw

subject to wT1 = 1, w ∈ W.

becomes
maximize

w
wTµ̂ − |w|Tδ − λ min

Λ,Λ

{
Tr(Λ Σ) − Tr(Λ Σ)

}
subject to

[
Λ − Λ w

wT 1

]
⪰ 0,

Λ ≥ 0, Λ ≥ 0,
subject to wT1 = 1, w ∈ W.
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Equivalent formulation

Finally, the worst-case robust formulation can be written as the (convex) SDP:

maximize
w,Λ,Λ

wTµ̂ − |w|Tδ − λ
(
Tr(Λ Σ) − Tr(Λ Σ)

)
subject to wT1 = 1, w ∈ W,[

Λ − Λ w
wT 1

]
⪰ 0,

Λ ≥ 0, Λ ≥ 0.

This problem does not have a closed-form solution, but it is an SDP that can be easily
solved with an off-the-shelf SDP solver.
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More cases of robust formulations

F. J. Fabozzi. Robust Portfolio Optimization and Management. Wiley, 2007.
D. Goldfarb and G. Iyengar, “Robust portfolio selection problems”, Mathematics of

Operations Research, vol. 28, no. 1, pp. 1–38, 2003.
R. H. Tutuncu and M. Koenig, “Robust asset allocation”, Annals Operations Research,

vol. 132, no. 1, pp. 157–187, 2004.
L. El Ghaoui, M. Oks, and F. Oustry, “Worst-case value-at-risk and robust portfolio

optimization: A conic programming approach”, Operations Research, pp. 543–556, 2003.
Z. Lu, “Robust portfolio selection based on a joint ellipsoidal uncertainty set”, Optimization

Methods & Software, vol. 26, no. 1, pp. 89–104, 2011.
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Outline

1 Robust Optimization

2 Robust Beamforming in Wireless Communications

3 Naive Markowitz Portfolio Optimization

4 Robust Portfolio Optimization

Robust Global Maximum Return Portfolio Optimization
Robust Global Minimum Variance Portfolio Optimization
Robust Markowitz’s Portfolio Optimization

5 Summary



Summary
Naive optimization: optimization problems formulated assuming that the parameters are
perfectly known when they are not.

the naive solution x⋆(θ̂) may totally differ from the desired one x⋆ (θ) (or not, depends on
the type of problem)
Optimization under uncertainty of parameters:

stochastic optimization (SO): models the parameters statistically and uses expectations
and probabilities

requires modeling the probability distribution function
expectations only satisfy constraints on average, not for every instance
chance constraints are very hard to manipulate

robust optimization (RO): assumes the true parameter is inside an uncertainty region
centered around the estimation

the shape of the uncertainty region has to be chosen appropriately for the problem at hand
the size of the uncertainty region has to be carefully chosen or the solution may be too
conservative to the point of being meaningless
usually easy to manipulate.
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Thanks

For more information visit:

https://www.danielppalomar.com
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