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A World with Sparsity

Many scenarios where sparsity exists:
Genetic mutation detection
Outlier detection
Computer vision
Data mining
Sudoku
...

Question: What can we do with sparsity as a prior information?
Answer: Enforce sparsity via cardinality proxies, i.e., `1-norm.

Y. Sun and D. Palomar Sparsity via CvxOpt 4 / 61



Outline

1 Optimization with Sparsity
General Formulation
A Glance at Applications

2 Algorithms for Sparsity Problems
`1-Norm Heuristic
Interpretation of `1-Norm Heuristic
Iterative Reweighted `1-Norm Heuristic

3 Applications
Statistics and Data Analysis
Bioinformatics, Image Processing, and Computer Vision
Others



General Formulation

Problem:
minimize

x
f (x)

subject to x ∈ C
card(x)≤ k

where cardinality is defined as card(x) = ∑i 1{xi 6=0}, i.e., number of nonzero elements in x,
and supp(x) is defined as the positions with nonzero values.

Variations:

minimize
x

card(x)
subject to f (x)≤ ε

x ∈ C

minimize
x

f (x)+λcard(x)
subject to x ∈ C
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A Glance at Applications

Statistics and data analysis
Compressed sensing
Estimation with outliers
Piecewise constant fitting
Piecewise linear fitting
Feature selection

Optimization modeling
Minimum number of violations

Bioinformatics
Medical testing design

Image processing and computer vision
Robust face recognition
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Combinatorial Nature

Despite widely applicable areas, solving cardinality constrained problems is not a trivial
work.
Most of cardinality related problems are NP-hard:

given supp(x) we can solve the problem efficiently, but the choice of supp(x) grows
exponentially with dim(x).

What can we do?
Exhaustive Search: doable only if the variable dimension is small
Branch and Bound: in the worst case its complexity is of the same order as exhaustive search
Convex Relaxation.
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`1-Norm Heuristic

The cardinality operator card(x) is nonnonvex.
Usually referred to as `0-norm: ‖x‖0 (although it is not a norm).
Instead of using the `0-norm, use `1-norm, i.e., card(x) = ‖x‖0←→ γ ‖x‖1 with γ being a
tuning parameter:

often called in literature `1-norm regularization, `1 penalty, shrinkage, etc.
convex relaxation of cardinality constraint
convex envelope of `0-norm
in some cases, relaxation is not tight, but works well in practice.
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Polishing After Application of `1-Norm Heuristic

After the approximation of the cardinality operator with the `1-norm γ ‖x‖1, we will obtain
a solution where some elements are very small, almost zero.

Fix the sparsity pattern by setting the very small elements to zero.

Re-solve the (now convex) optimization problem with the fixed sparsity pattern to obtain
the final (heuristic) solution.
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Variations of `1-Norm

The `1-norm proxy of `0-norm seeks a trade-off between sparsity and problem tractability.

More sophisticated versions include:
Weighted `1-norm: ∑i wi |xi|
Asymmetric weighted `1-norm: ∑i wi (xi)

++∑i vi (xi)
−, where w, v are positive weights.
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Interpretation of `1-Norm Heuristic as Convex Relaxation

Start with the original formulation (and a bound on x)

minimize
x

card(x)
subject to x ∈ C , ‖x‖

∞
≤ R.

Rewrite it as the mixed Boolean convex problem

minimize
x,z

1Tz

subject to |xi| ≤ Rzi, zi ∈ {0,1} , i = 1, · · · ,n
x ∈ C .
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Interpretation of `1-Norm Heuristic as Convex Relaxation

Now relax zi ∈ {0,1} to zi ∈ [0,1] to obtain

minimize
x,z

1Tz

subject to |xi| ≤ Rzi, 0≤ zi ≤ 1, i = 1, . . . ,n
x ∈ C .

Since the optimal solution of the problem above satisfies |xi|= Rzi, the problem is
equivalent to

minimize
x

(1/R)‖x‖1

subject to x ∈ C

which is the `1-norm heuristic and provides a lower bound on the original problem.
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Interpretation of `1-Norm Heuristic via Convex Envelope

The convex envelope of a function f on set C is the largest convex function that is an
underestimator of f on C .
For x scalar, |x| is the convex envelope of card(x) on [−1,1].
For x ∈ Rm, (1/R)‖x‖1 is the convex envelope of card(x) on {x | ‖x‖

∞
≤ R}.

Now suppose we know lower and upper bounds on xi over C , li ≤ xi ≤ ui (can be found by
solving 2n convex problems). Then, assuming li < 0, ui > 0 (otherwise card(xi) = 1), the
convex envelope is

n

∑
i=1

(
(xi)

+

ui
+

(xi)
−

−li

)
.

Y. Sun and D. Palomar Sparsity via CvxOpt 18 / 61



Interpretation of `1-Norm Heuristic via Convex Envelope

Convex envelope of `0-norm on interval [−R,R]:
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Iterative Reweighted `1-Norm Heuristic

Algorithm
set w = 1 repeat
minimizex ‖Diag(w)x‖1 subject to x ∈ C
wi = 1/(ε + |xi|)

until convergence to local point

Interpretation:
the first iteration is the basic `1-norm heuristic
then, for the next iteration:

for small |xi|, the weight increases (enforcing even smaller |xi|)
for large |xi|, the weight decreases (allowing it to be larger if necessary)

Typically, it converges in 5 of fewer steps with some modest improvement.
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Derivation of Iterative Reweighted `1-Norm Heuristic

First of all, “w.l.o.g.”, we can assume x≥ 0 (if not, just write x = x+−x− with x+,x− ≥ 0
and use x̃ = (x+,x−)).

Then, we can use the (nonconvex) approximation

card(z)≈ log(1+ z/ε)

where ε > 0 and z≥ 0.

 

 

0x

x

1x

1

log 1
x


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Derivation of Iterative Reweighted `1-Norm Heuristic

Using this approximation, we get the nonconvex problem

minimize
x

∑
n
i=1 log(1+ xi/ε)

subject to x ∈ C , x≥ 0.

This problem is then solved by an iterative convex approximation:
approximate nonconvex problem around current point x(k) with a convex problem (which in
this case will be a linear approximation of the log function)
solve approximated convex problem to get next point x(k+1)

repeat until convergence to get a local solution.
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Derivation of Iterative Reweighted `1-Norm Heuristic

To approximate the nonconvex problem, linearize the objective at current point x(k)

n

∑
i=1

log(1+ xi/ε)≈
n

∑
i=1

log
(

1+ x(k)i /ε

)
+

n

∑
i=1

xi− x(k)i

ε + x(k)i

Solve the resulting convex problem

minimize
x

∑
n
i=1

xi−x(k)i

ε+x(k)i

subject to x ∈ C , x≥ 0

or, equivalently,
minimize

x
∑

n
i=1 wixi

subject to x ∈ C , x≥ 0

where wi = 1/(ε + x(k)i ).
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Interpretation by Majorization-Minimization

Consider the objective function f (x) that we want to minimize
The Majorization Minimization algorithm [1, 2]:

finds a function g that majorizes f in the kth step in the following sense:
g
(
xk−1|xk−1)= f

(
xk−1);

∇g
(
xk−1|xk−1)= ∇f

(
xk−1);

g
(
x|xk−1)≥ f (x);

then solves the majorized problem: xk = argming
(
x|xk−1

)
.

In our particular problem, since the log function is concave monotone increasing, the
linearized objective majorizes f .

Y. Sun and D. Palomar Sparsity via CvxOpt 25 / 61



Outline

1 Optimization with Sparsity
General Formulation
A Glance at Applications

2 Algorithms for Sparsity Problems
`1-Norm Heuristic
Interpretation of `1-Norm Heuristic
Iterative Reweighted `1-Norm Heuristic

3 Applications
Statistics and Data Analysis
Bioinformatics, Image Processing, and Computer Vision
Others



Outline

1 Optimization with Sparsity
General Formulation
A Glance at Applications

2 Algorithms for Sparsity Problems
`1-Norm Heuristic
Interpretation of `1-Norm Heuristic
Iterative Reweighted `1-Norm Heuristic

3 Applications
Statistics and Data Analysis
Bioinformatics, Image Processing, and Computer Vision
Others



Compressed Sensing I

Consider the following linear equations: y = Ax, with A ∈ Rm×n . By fundamental linear
algebra:

if m≥ n and A is full rank, the system admits a unique solution or has no solution
if m < n, the problem is ill-posed and have infinitely many solutions x̂.

Classical solution: x̂ = argminy=Ax ‖x‖2, closed form solution x̂ = A†y.

However in many applications, x̂ is not good and x is required to be sparse.
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Compressed Sensing II

Question: How to incorporate sparsity as prior information?

Answer: x? = argminy=Ax ‖x‖0.

Question: Any efficient algorithm for `0-norm minimization problem?

Answer: Relax `0-norm by its convex envelope, i.e., x̃ = argminy=Ax ‖x‖1.

Question: Under what condition is the relaxation tight?

Answer: Roughly speaking, measurement matrix A is required to be sufficiently
“incoherent” (i.e., number of measurements (dim(y)) greater than certain threshold). Not
going to be covered in this course, refer to compressed sensing literature.
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Compressed Sensing III

Illustration in two dimensions with exact recovery:

 

b 

x

x̂

y Ax
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Estimation with Outliers

Consider measurements yi = aT
i x+ vi, i = 1, . . . ,m under Gaussian noise vi ∼N

(
0,σ2

)
.

In practice, however, we have outliers: incorrect measurements for some unknown and expected
reasons. This can be modeled as

yi = aT
i x+ vi +wi, i = 1, . . . ,m

where the only assumption on the outlier error w is sparsity: card(w)≤ k.

Problem formulation that takes into account k possible outliers:

minimize
x,w

‖y−Ax−w‖2

subject to card(w)≤ k .

Y. Sun and D. Palomar Sparsity via CvxOpt 31 / 61



Estimation with Outliers

Consider measurements yi = aT
i x+ vi, i = 1, . . . ,m under Gaussian noise vi ∼N

(
0,σ2

)
.

In practice, however, we have outliers: incorrect measurements for some unknown and expected
reasons. This can be modeled as

yi = aT
i x+ vi +wi, i = 1, . . . ,m

where the only assumption on the outlier error w is sparsity: card(w)≤ k.

Problem formulation that takes into account k possible outliers:

minimize
x,w

‖y−Ax−w‖2

subject to card(w)≤ k .

Y. Sun and D. Palomar Sparsity via CvxOpt 31 / 61



Estimation with Outliers

Consider measurements yi = aT
i x+ vi, i = 1, . . . ,m under Gaussian noise vi ∼N

(
0,σ2

)
.

In practice, however, we have outliers: incorrect measurements for some unknown and expected
reasons. This can be modeled as

yi = aT
i x+ vi +wi, i = 1, . . . ,m

where the only assumption on the outlier error w is sparsity: card(w)≤ k.

Problem formulation that takes into account k possible outliers:

minimize
x,w

‖y−Ax−w‖2

subject to card(w)≤ k .

Y. Sun and D. Palomar Sparsity via CvxOpt 31 / 61



Piecewise Constant Fitting

Problem: fit corrupted xcor by a piecewise constant signal x̂ with k or fewer jumps.
Convex if jump locations are known, but not otherwise.

Property: x̂ piecewise constant with ≤ k jumps ⇐⇒ card(Dx̂)≤ k, where

D =


1 −1

1 −1
. . . . . .

1 −1

 ∈ R(n−1)×n.

Problem formulation:
minimize

x̂
‖x̂−xcor‖2

subject to card(Dx̂)≤ k.
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Total Variation Reconstruction

The total variation (TV) reconstruction is just another name for the piecewise constant
fitting.
Problem: given a corrupted signal xcor = x+n, recover the original one x.
The trick is the assumption that original signal x is smooth (except some occasional
jumps), whereas noise n is not smooth.
Problem formulation:

minimize
x̂

‖x̂−xcor‖2 + γ ‖Dx̂‖1

Widely used in signal processing and image processing.
The term ‖Dx̂‖1 is called total variation of signal x̂.

Y. Sun and D. Palomar Sparsity via CvxOpt 33 / 61



Total Variation Reconstruction: Numerical Example

Consider the original and corrupted signals (n = 2000):
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Total Variation Reconstruction: Numerical Example

The total variation reconstruction is (for three values of γ)
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Piecewise Linear Fitting

Problem: fit corrupted xcor by a piecewise linear signal x̂ with k or fewer kinks.

The derivative of a piecewise linear signal Dx̂ is piecewise constant, so the second derivative ∇x̂
is sparse.

Problem formulation:
minimize

x̂
‖x̂−xcor‖2

subject to card(∇x̂)≤ k

where

∇ =


−1 2 −1

−1 2 −1
. . . . . . . . .

−1 2 −1

 .
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Feature Selection

Problem: fit vector y ∈ R as a linear combination of k regressors (chosen from p possible
regressors):

minimize
β

∥∥y−XTβ
∥∥2

2

subject to card(β )≤ k.

The solution chooses subset of k regressors that best fit y (role of expert).

In principle, this could be solved by trying all
(

p
k

)
choices, but not practical for large n.

Variations:
minimize card(β ) subject to

∥∥y−XTβ
∥∥2

2

minimize
∥∥y−XTβ

∥∥2
2 +λcard(β ).
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LASSO

Relaxing the cardinality constraint in the objective, we get the famous LASSO regression
(least absolute shrinkage and selection operator) [Tibshirani’96]:

β̂ LASSO = argmin
∥∥y−XTβ

∥∥2
2 + γ ‖β‖1

biased but more stable estimator (bias variance tradeoff)
results in sparse β since `1-norm ball is pointy
interpretable parsimonious model, variable selection.

Extensions:
Fused LASSO [Tibshirani-etal’2005]
Group LASSO [Yuan-Lin’2006].
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Coordinate Descent Algorithm for LASSO

LASSO is a QP and can be solved efficiently with a QP solver.

Problem: when N is extremely large, a universally applicable convex programming
algorithm is no longer satisfactory.

Solution: Seeking problem specific structure to speed up and beat the Newton type
method [Friedman-etal’07].

Consider LASSO with univariate predictor, i.e., x is a scalar. It has the closed-form
solution:
Threshold least square: β̂ LASSO = sign

(
β̂ OLS

)(∣∣∣β̂ OLS

∣∣∣−2γ

)+
.
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Coordinate Descent Algorithm for LASSO

Coordinate Descent for LASSO
Initialize β 0, set k,r = 1 repeat

repeat

β k
r = argmin

∥∥∥y−XT
−rβ

k
−r−XT

r βr

∥∥∥2

2
+ γ ‖βr‖1

r = r+1, β
k =

(
β k

1 , . . . ,β
k
r ,β

k−1
r+1 , . . . ,β

k−1
p
)

until r = p
k = k+1, r = 1
until convergence

Faster than calling off-the-shelf convex problem solver.

Y. Sun and D. Palomar Sparsity via CvxOpt 40 / 61



Minimum Number of Violations

Consider a set of convex inequalities

f1 (x)≤ 0, . . . , fm (x)≤ 0, x ∈ C .

Determining whether they are feasible or not is easy: convex feasibility problem. But what
if they are infeasible?

Problem formulation to find the minimum number of violated inequalities:

minimize
x,t

card(t)

subject to fi (x)≤ ti, i = 1, . . . ,m
x ∈ C , t≥ 0.
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Rare Allele Identification in Medical Testing I

Problem: reconstruct the genotypes of N individuals at a specific locus. N is a large
number and DNA sequencing is expensive.

Solution: pool blood sample of multiple individuals in a single DNA sequencing experiment
[7].
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Rare Allele Identification in Medical Testing II

Test procedure:
Sequence DNA fragments of sample pools instead of each individual.
Reads of the fragments of DNA of each sample pool are mapped back to the reference
genome.

Genotype vector x ∈ {0,1,2}N , xi for the genotype of the ith individual at a specific locus:
Reference allele AA is coded as 0;
Heterozygous allele Aa is coded as 1;
Homozygous alternative allele aa is coded as 2.

Genetic mutation is rare ⇐⇒ x is a sparse vector.
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Rare Allele Identification in Medical Testing III

Bernoulli sensing matrix M:
Mij ∈ {0,1}: whether individual j’s blood sample is included in the ith experiment or not
Mi,:x is the number of a alleles (rare alleles)
2∑

N
j=1 Mij is the number of alleles (each person has two)

normalized sensing matrix (by the number of people in a test) M̂: M̂ij =
Mij

∑
N
j=1 Mij

proportion of rare alleles: Mi,:x/
(

2∑
N
j=1 Mij

)
= 1

2 M̂i,:x

Test output:
z: number of reads containing rare allele a.
r: total number of reads covering locus of interest in each pool.
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Rare Allele Identification in Medical Testing IV

Problem formulation:
minimize
x∈{0,1,2}N

‖x‖0

subject to
∥∥1

2 M̂x− z
r

∥∥
2 ≤ ε

Relaxation:
minimize

x
‖x‖1

subject to
∥∥1

2 M̂x− z
r

∥∥
2 ≤ ε

Heuristic post-processing: rounding x to integer value.
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Rare Allele Identification in Medical Testing V

The obteined result x̂ is real-valued.

Straingtforward heuristic:
rounding to the nearest integer in {0,1,2}.

What the paper does:
rank all non-zero values of x̂,
round the largest s non-zero values to {0,1,2}, set all other remaining values to 0 to get xs.
compute error es =

∥∥ 1
2 M̂xs− z

r

∥∥
2.

select s such that xs minimizes es.
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Robust Face Recognition I

Problem: given ni face pictures of the ith individual with k individuals in total as training
set, figure out the class a test image belongs to.

Difficulties: noise, occlusion.

Solution: Robust face recognition via `1-norm [Wright-etal’09].
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Robust Face Recognition II

Construct matrix Ai = (vi1, . . . ,vini) ∈ Rm×ni for the ith individual, each vij represents the
jth training image of individual i (stack all the pixel values of the image into a single
vector).

Group all the Ai’s to get A = (A1, . . . ,Ak).

For the testing image y, solve:

minimize
x

‖x‖1

subject to y = Ax

Interpretation: use the minimum number of linear combination of images from the traing
set to express the testing image.

The non-zero entry of x indicates the class that the testing image belongs to.
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Robust Face Recognition III

Given x̂ = argminy=Ax ‖x‖1, we need to identify which class (person) y belongs to by the
following steps:

Reconstruct image by x̂.
For the ith class, define vector δi (x̂) that keeps coefficients corresponding to the ith class
unchanged and maps the other entries to 0.
Reconstructed image ŷ = Aδi (x̂).
Residual ri (y) = ‖y−Aδi (x̂)‖2.

Identify the class as i? = argmini ri (y).
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Robust Face Recognition IV

Small dense noise:
minimize

x
‖x‖1

subject to ‖y−Ax‖2 ≤ ε

Occlusion or corruption:
Assumption: Sparse error w.r.t. some basis Aε .
Test image: y = y0 + e0 = Ax0 + e0.
Define matrix B = (A,Aε), solve

minimize
w

‖w‖1

subject to y = Bw

w reveals both the class testing image y belongs to and the error.

Similar technique in speech recognition [Gemmeke-etal’10].
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What’s Else Can Be Done with Sparsity?

We have discussed classical sparsity problems in different applications, as well as resolution
techniques.

The story always begins with: find something that is sparse...
A rich literature on this kind of problems, what is next?

Some seemingly unrelated problems can be formulated via sparsity.
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Subspace Clustering Problem I

Problem: given data points xi, i = 1, . . . ,N, figure out the subspaces that data lies in.

Solution: `1-norm minimization [Soltanolkotabi-Candes’12].
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Subspace Clustering Problem II

Observation: data in the same subspace ⇐⇒ can be expressed as linear combination of
others.
Solution: define X =

[
x1 · · · xN

]
for each xi, solve

minimize
z

∥∥∥z(i)
∥∥∥

1
subject to Xz(i) = xi

z(i)i = 0

construct matrix Z =
[
z(1), . . . ,z(N)

]
;

form affinity graph G with nodes representing N data points and edge weights given by
W = |Z|+ |Z|T ;
apply a spectral clustering technique to G.

Flexible model for error and missing data.
Tolerable of large quantity of outliers and can detect them.
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Sudoku: Let’s Play a Game

Rules for Sudoku: fill in the blanks such that digits 1, . . . ,9 occur only once in each row,
each column, each 3×3 box.
Example of a 9×9 Sudoku puzzle:
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Solving Sudoku by `1-Norm

For cell n, define the content as Sn ∈ {1,2, . . . ,9} and the indication vector
in =

(
1{Sn=1}, . . . ,1{Sn=9}

)T .
Stack indicator vector of all cells in row order, denote as x.
Objective: Find sparse x satisfies game rules.
Equivalence between Sudoku and Optimization Problem [Babu-Pelckmans-Stoica’2010]:
Game: Programming:
Objective: Solve the puzzle. Objective: Minimize ‖x‖0

Rules: Constraints:
digits 1, . . . ,9 occur only once
each row Arowx = 1
each column Acolx = 1
each box Aboxx = 1
each cell needs to be filled Acellx = 1
some given clue Acluex = 1
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Summary

What have we done?
Introduced cardinality constrained problems.
Given algorithms to solve this kind of problems via `1-norm minimization.
Shown many examples related to sparsity that can be nicely solved.

Attention:
“All models are wrong, but some are useful”, be cautious with the assumptions.
`1-norm relaxation is not supposed to work in all cases, it depends on the problem.
Examples provided in the slides are just a sketch, for details please refer to the references.
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