Sparsity via Convex Optimization

Ying Sun and Prof. Daniel P. Palomar The Hong Kong University of Science and Technology (HKUST)

> ELEC5470/IEDA6100A - Convex Optimization Fall 2020-21, HKUST, Hong Kong

1 Optimization with Sparsity

- General Formulation
- A Glance at Applications

2 Algorithms for Sparsity Problems

- ℓ_1 -Norm Heuristic
- Interpretation of ℓ_1 -Norm Heuristic
- Iterative Reweighted ℓ_1 -Norm Heuristic

- Statistics and Data Analysis
- Bioinformatics, Image Processing, and Computer Vision
- Others

1 Optimization with Sparsity

- General Formulation
- A Glance at Applications

2 Algorithms for Sparsity Problems

- ℓ_1 -Norm Heuristic
- Interpretation of ℓ_1 -Norm Heuristic
- Iterative Reweighted ℓ_1 -Norm Heuristic

- Statistics and Data Analysis
- Bioinformatics, Image Processing, and Computer Vision
- Others

A World with Sparsity

- Many scenarios where sparsity exists:
 - Genetic mutation detection
 - Outlier detection
 - Computer vision
 - Data mining
 - Sudoku
 - ...
- Question: What can we do with sparsity as a prior information?
- Answer: Enforce sparsity via cardinality proxies, i.e., ℓ_1 -norm.

1 Optimization with Sparsity

General Formulation

• A Glance at Applications

2 Algorithms for Sparsity Problems

- ℓ_1 -Norm Heuristic
- Interpretation of ℓ_1 -Norm Heuristic
- Iterative Reweighted ℓ_1 -Norm Heuristic

- Statistics and Data Analysis
- Bioinformatics, Image Processing, and Computer Vision
- Others

• Problem:

 $\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & f\left(\mathbf{x}\right) \\ \text{subject to} & \mathbf{x} \in \mathscr{C} \\ & \text{card}\left(\mathbf{x}\right) \leq k \end{array}$

where cardinality is defined as $\operatorname{card}(\mathbf{x}) = \sum_{i} \mathbb{1}_{\{x_i \neq 0\}}$, i.e., number of nonzero elements in \mathbf{x} , and $\operatorname{supp}(\mathbf{x})$ is defined as the positions with nonzero values.

• Variations:

 $\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & \operatorname{card}(\mathbf{x}) \\ \text{subject to} & f(\mathbf{x}) \leq \varepsilon \\ & \mathbf{x} \in \mathscr{C} \end{array}$

 $\begin{array}{ll} \underset{\mathbf{x}}{\operatorname{minimize}} & f\left(\mathbf{x}\right) + \lambda \operatorname{card}\left(\mathbf{x}\right) \\ \text{subject to} & \mathbf{x} \in \mathscr{C} \end{array}$

• Problem:

 $\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & f\left(\mathbf{x}\right) \\ \text{subject to} & \mathbf{x} \in \mathscr{C} \\ & \text{card}\left(\mathbf{x}\right) \leq k \end{array}$

where cardinality is defined as $\operatorname{card}(\mathbf{x}) = \sum_{i} \mathbb{1}_{\{x_i \neq 0\}}$, i.e., number of nonzero elements in \mathbf{x} , and $\operatorname{supp}(\mathbf{x})$ is defined as the positions with nonzero values.

• Variations:

 $\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & \operatorname{card}(\mathbf{x}) \\ \text{subject to} & f(\mathbf{x}) \leq \varepsilon \\ & \mathbf{x} \in \mathscr{C} \end{array}$

 $\begin{array}{ll} \underset{\mathbf{x}}{\operatorname{minimize}} & f\left(\mathbf{x}\right) + \lambda \operatorname{card}\left(\mathbf{x}\right) \\ \text{subject to} & \mathbf{x} \in \mathscr{C} \end{array}$

1 Optimization with Sparsity

- General Formulation
- A Glance at Applications

2 Algorithms for Sparsity Problems

- ℓ_1 -Norm Heuristic
- Interpretation of ℓ_1 -Norm Heuristic
- Iterative Reweighted ℓ_1 -Norm Heuristic

- Statistics and Data Analysis
- Bioinformatics, Image Processing, and Computer Vision
- Others

A Glance at Applications

- Statistics and data analysis
 - Compressed sensing
 - Estimation with outliers
 - Piecewise constant fitting
 - Piecewise linear fitting
 - Feature selection
- Optimization modeling
 - Minimum number of violations
- Bioinformatics
 - Medical testing design
- Image processing and computer vision
 - Robust face recognition

- Despite widely applicable areas, solving cardinality constrained problems is not a trivial work.
- Most of cardinality related problems are NP-hard:
 - given $supp\,(x)$ we can solve the problem efficiently, but the choice of $supp\,(x)$ grows exponentially with $\dim\,(x).$
- What can we do?
 - Exhaustive Search: doable only if the variable dimension is small
 - Branch and Bound: in the worst case its complexity is of the same order as exhaustive search
 - Convex Relaxation.

Optimization with Sparsity

- General Formulation
- A Glance at Applications

2 Algorithms for Sparsity Problems

- ℓ_1 -Norm Heuristic
- Interpretation of ℓ_1 -Norm Heuristic
- Iterative Reweighted ℓ_1 -Norm Heuristic

- Statistics and Data Analysis
- Bioinformatics, Image Processing, and Computer Vision
- Others

Optimization with Sparsity

- General Formulation
- A Glance at Applications

2 Algorithms for Sparsity Problems

- ℓ_1 -Norm Heuristic
- Interpretation of ℓ_1 -Norm Heuristic
- Iterative Reweighted ℓ_1 -Norm Heuristic

- Statistics and Data Analysis
- Bioinformatics, Image Processing, and Computer Vision
- Others

- $\bullet\,$ The cardinality operator $card\,(x)$ is nonnonvex.
- Usually referred to as ℓ_0 -norm: $\|\mathbf{x}\|_0$ (although it is not a norm).
- Instead of using the ℓ_0 -norm, use ℓ_1 -norm, i.e., $\operatorname{card}(\mathbf{x}) = \|\mathbf{x}\|_0 \longleftrightarrow \gamma \|\mathbf{x}\|_1$ with γ being a tuning parameter:
 - often called in literature ℓ_1 -norm regularization, ℓ_1 penalty, shrinkage, etc.
 - convex relaxation of cardinality constraint
 - convex envelope of ℓ_0 -norm
 - in some cases, relaxation is not tight, but works well in practice.

- After the approximation of the cardinality operator with the ℓ_1 -norm $\gamma \|\mathbf{x}\|_1$, we will obtain a solution where some elements are very small, almost zero.
- Fix the sparsity pattern by setting the very small elements to zero.
- Re-solve the (now convex) optimization problem with the fixed sparsity pattern to obtain the final (heuristic) solution.

- The ℓ_1 -norm proxy of ℓ_0 -norm seeks a trade-off between sparsity and problem tractability.
- More sophisticated versions include:
 - Weighted ℓ_1 -norm: $\sum_i w_i |x_i|$
 - Asymmetric weighted ℓ_1 -norm: $\sum_i w_i (x_i)^+ + \sum_i v_i (x_i)^-$, where **w**, **v** are positive weights.

Optimization with Sparsity

- General Formulation
- A Glance at Applications

2 Algorithms for Sparsity Problems

- ℓ_1 -Norm Heuristic
- Interpretation of ℓ_1 -Norm Heuristic
- Iterative Reweighted ℓ_1 -Norm Heuristic

- Statistics and Data Analysis
- Bioinformatics, Image Processing, and Computer Vision
- Others

• Start with the original formulation (and a bound on x)

 $\begin{array}{ll} \underset{\mathbf{x}}{\mathsf{minimize}} & \mathsf{card}\left(\mathbf{x}\right) \\ \mathsf{subject to} & \mathbf{x} \in \mathscr{C}, \qquad \|\mathbf{x}\|_{\infty} \leq R. \end{array}$

• Rewrite it as the mixed Boolean convex problem

$$\begin{array}{ll} \underset{\mathbf{x},\mathbf{z}}{\text{minimize}} & \mathbf{1}^{T}\mathbf{z} \\ \text{subject to} & |x_{i}| \leq Rz_{i}, \quad z_{i} \in \{0,1\}, \quad i = 1, \cdots, n \\ & \mathbf{x} \in \mathscr{C}. \end{array}$$

• Start with the original formulation (and a bound on x)

 $\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & \operatorname{card}\left(\mathbf{x}\right) \\ \text{subject to} & \mathbf{x} \in \mathscr{C}, \qquad \|\mathbf{x}\|_{\infty} \leq R. \end{array}$

• Rewrite it as the mixed Boolean convex problem

$$\begin{array}{ll} \underset{\mathbf{x},\mathbf{z}}{\text{minimize}} & \mathbf{1}^{T}\mathbf{z} \\ \text{subject to} & |x_{i}| \leq Rz_{i}, \quad z_{i} \in \{0,1\}, \quad i = 1, \cdots, n \\ & \mathbf{x} \in \mathscr{C}. \end{array}$$

• Now relax $z_i \in \{0,1\}$ to $z_i \in [0,1]$ to obtain

$$\begin{array}{ll} \underset{\mathbf{x},\mathbf{z}}{\text{minimize}} & \mathbf{1}^{T}\mathbf{z} \\ \text{subject to} & |x_{i}| \leq Rz_{i}, \quad 0 \leq z_{i} \leq 1, \quad i = 1, \dots, n \\ & \mathbf{x} \in \mathscr{C}. \end{array}$$

• Since the optimal solution of the problem above satisfies $|x_i| = Rz_i$, the problem is equivalent to

 $\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & (1/R) \|\mathbf{x}\|_{1} \\ \text{subject to} & \mathbf{x} \in \mathscr{C} \end{array}$

which is the ℓ_1 -norm heuristic and provides a lower bound on the original problem.

• Now relax $z_i \in \{0,1\}$ to $z_i \in [0,1]$ to obtain

$$\begin{array}{ll} \underset{\mathbf{x},\mathbf{z}}{\text{minimize}} & \mathbf{1}^{T}\mathbf{z} \\ \text{subject to} & |x_{i}| \leq Rz_{i}, \quad 0 \leq z_{i} \leq 1, \quad i = 1, \dots, n \\ & \mathbf{x} \in \mathscr{C}. \end{array}$$

• Since the optimal solution of the problem above satisfies $|x_i| = Rz_i$, the problem is equivalent to

 $\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & (1/R) \|\mathbf{x}\|_{1} \\ \text{subject to} & \mathbf{x} \in \mathscr{C} \end{array}$

which is the ℓ_1 -norm heuristic and provides a lower bound on the original problem.

Interpretation of ℓ_1 -Norm Heuristic via Convex Envelope

- The convex envelope of a function f on set $\mathscr C$ is the largest convex function that is an underestimator of f on $\mathscr C$.
- For x scalar, |x| is the convex envelope of card (x) on [-1,1].
- For $\mathbf{x} \in \mathsf{R}^m$, $(1/R) \|\mathbf{x}\|_1$ is the convex envelope of card (\mathbf{x}) on $\{\mathbf{x} \mid \|\mathbf{x}\|_{\infty} \leq R\}$.
- Now suppose we know lower and upper bounds on x_i over \mathscr{C} , $l_i \le x_i \le u_i$ (can be found by solving 2n convex problems). Then, assuming $l_i < 0$, $u_i > 0$ (otherwise card $(x_i) = 1$), the convex envelope is

$$\sum_{i=1}^{n} \left(\frac{(x_i)^+}{u_i} + \frac{(x_i)^-}{-l_i} \right)$$

Interpretation of ℓ_1 -Norm Heuristic via Convex Envelope

• Convex envelope of ℓ_0 -norm on interval [-R, R]:

Optimization with Sparsity

- General Formulation
- A Glance at Applications

2 Algorithms for Sparsity Problems

- ℓ_1 -Norm Heuristic
- Interpretation of ℓ_1 -Norm Heuristic
- \bullet Iterative Reweighted $\ell_1\text{-Norm}$ Heuristic

- Statistics and Data Analysis
- Bioinformatics, Image Processing, and Computer Vision
- Others

Algorithm

```
set \mathbf{w} = \mathbf{1} repeat

minimize<sub>x</sub> \|\text{Diag}(\mathbf{w})\mathbf{x}\|_1 subject to \mathbf{x} \in \mathscr{C}

w_i = 1/(\varepsilon + |x_i|)

until convergence to local point
```

- Interpretation:
 - $\bullet\,$ the first iteration is the basic $\ell_1\text{-norm}$ heuristic
 - then, for the next iteration:
 - for small $|x_i|$, the weight increases (enforcing even smaller $|x_i|$)
 - for large $|x_i|$, the weight decreases (allowing it to be larger if necessary)
- Typically, it converges in 5 of fewer steps with some modest improvement.

Derivation of Iterative Reweighted ℓ_1 -Norm Heuristic

- First of all, "w.l.o.g.", we can assume $x \ge 0$ (if not, just write $x = x^+ x^-$ with $x^+, x^- \ge 0$ and use $\tilde{x} = (x^+, x^-)$).
- Then, we can use the (nonconvex) approximation

 $\operatorname{card}(z) \approx \log\left(1 + z/\varepsilon\right)$

where $\varepsilon > 0$ and $z \ge 0$.

• Using this approximation, we get the nonconvex problem

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & \sum_{i=1}^{n} \log \left(1 + x_i / \varepsilon\right) \\ \text{subject to} & \mathbf{x} \in \mathscr{C}, \quad \mathbf{x} \geq \mathbf{0}. \end{array}$$

- This problem is then solved by an iterative convex approximation:
 - approximate nonconvex problem around current point $\mathbf{x}^{(k)}$ with a convex problem (which in this case will be a linear approximation of the log function)
 - solve approximated convex problem to get next point $\mathbf{x}^{(k+1)}$
 - repeat until convergence to get a local solution.

Derivation of Iterative Reweighted ℓ_1 -Norm Heuristic

• To approximate the nonconvex problem, linearize the objective at current point $\mathbf{x}^{(k)}$

$$\sum_{i=1}^{n} \log\left(1 + x_i/\varepsilon\right) \approx \sum_{i=1}^{n} \log\left(1 + x_i^{(k)}/\varepsilon\right) + \sum_{i=1}^{n} \frac{x_i - x_i^{(k)}}{\varepsilon + x_i^{(k)}}$$

• Solve the resulting convex problem

$$\begin{array}{lll} \underset{\mathbf{x}}{\text{minimize}} & \sum_{i=1}^{n} \frac{x_{i} - x_{i}^{(k)}}{\varepsilon + x_{i}^{(k)}} \\ \text{subject to} & \mathbf{x} \in \mathscr{C}, \quad \mathbf{x} \ge \mathbf{0} \\ \underset{\mathbf{x}}{\text{minimize}} & \sum_{i=1}^{n} w_{i} x_{i} \\ \text{subject to} & \mathbf{x} \in \mathscr{C}, \quad \mathbf{x} \ge \mathbf{0} \end{array}$$

where $w_i = 1/(\varepsilon + x_i^{(k)})$.

or, equivalently,

- Consider the objective function $f(\mathbf{x})$ that we want to minimize
- The Majorization Minimization algorithm [1, 2]:
 - finds a function g that majorizes f in the kth step in the following sense:

•
$$g\left(\mathbf{x}^{k-1}|\mathbf{x}^{k-1}\right) = f\left(\mathbf{x}^{k-1}\right);$$

•
$$\nabla g\left(\mathbf{x}^{k-1}|\mathbf{x}^{k-1}\right) = \nabla f\left(\mathbf{x}^{k-1}\right);$$

•
$$g\left(\mathbf{x}|\mathbf{x}^{k-1}\right) \geq f\left(\mathbf{x}\right);$$

- then solves the majorized problem: $\mathbf{x}^k = \arg\min g\left(\mathbf{x} | \mathbf{x}^{k-1} \right).$
- In our particular problem, since the log function is concave monotone increasing, the linearized objective majorizes *f*.

Optimization with Sparsity

- General Formulation
- A Glance at Applications

2 Algorithms for Sparsity Problems

- ℓ_1 -Norm Heuristic
- Interpretation of ℓ_1 -Norm Heuristic
- Iterative Reweighted ℓ_1 -Norm Heuristic

- Statistics and Data Analysis
- Bioinformatics, Image Processing, and Computer Vision
- Others

Optimization with Sparsity

- General Formulation
- A Glance at Applications

2 Algorithms for Sparsity Problems

- ℓ_1 -Norm Heuristic
- Interpretation of ℓ_1 -Norm Heuristic
- Iterative Reweighted ℓ_1 -Norm Heuristic

- Statistics and Data Analysis
- Bioinformatics, Image Processing, and Computer Vision
- Others

- Consider the following linear equations: $\mathbf{y} = \mathbf{A}\mathbf{x}$, with $\mathbf{A} \in \mathsf{R}^{m \times n}$. By fundamental linear algebra:
 - if $m \ge n$ and A is full rank, the system admits a unique solution or has no solution
 - if m < n, the problem is ill-posed and have infinitely many solutions $\hat{\mathbf{x}}$.
- Classical solution: $\hat{x} = \arg\min_{y=Ax} \|x\|_2$, closed form solution $\hat{x} = A^{\dagger}y.$
- However in many applications, $\hat{\mathbf{x}}$ is not good and \mathbf{x} is required to be sparse.

• Question: How to incorporate sparsity as prior information?

- Answer: $\mathbf{x}^{\star} = \operatorname{arg\,min}_{\mathbf{y}=\mathbf{A}\mathbf{x}} \|\mathbf{x}\|_{0}$.
- \bullet Question: Any efficient algorithm for $\ell_0\text{-norm}$ minimization problem?
- Answer: Relax $\ell_0\text{-norm}$ by its convex envelope, i.e., $\tilde{x} = \arg\min_{y=Ax} \|x\|_1.$
- Question: Under what condition is the relaxation tight?
- Answer: Roughly speaking, measurement matrix A is required to be sufficiently "incoherent" (i.e., number of measurements $(\dim(y))$ greater than certain threshold). Not going to be covered in this course, refer to compressed sensing literature.

- Question: How to incorporate sparsity as prior information?
- Answer: $\mathbf{x}^{\star} = \operatorname{arg\,min}_{\mathbf{y} = \mathbf{A}\mathbf{x}} \|\mathbf{x}\|_{0}$.
- \bullet Question: Any efficient algorithm for $\ell_0\text{-norm}$ minimization problem?
- \bullet Answer: Relax $\ell_0\text{-norm}$ by its convex envelope, i.e., $\tilde{x} = \arg\min_{y=Ax} \|x\|_1.$
- Question: Under what condition is the relaxation tight?
- Answer: Roughly speaking, measurement matrix A is required to be sufficiently "incoherent" (i.e., number of measurements $(\dim(y))$ greater than certain threshold). Not going to be covered in this course, refer to compressed sensing literature.

- Question: How to incorporate sparsity as prior information?
- Answer: $\mathbf{x}^{\star} = \arg\min_{\mathbf{y} = \mathbf{A}\mathbf{x}} \|\mathbf{x}\|_0$.
- \bullet Question: Any efficient algorithm for $\ell_0\text{-norm}$ minimization problem?
- Answer: Relax $\ell_0\text{-norm}$ by its convex envelope, i.e., $\tilde{x} = \text{arg}\min_{y=Ax} \|x\|_1.$
- Question: Under what condition is the relaxation tight?
- Answer: Roughly speaking, measurement matrix A is required to be sufficiently "incoherent" (i.e., number of measurements $(\dim(y))$ greater than certain threshold). Not going to be covered in this course, refer to compressed sensing literature.

- Question: How to incorporate sparsity as prior information?
- Answer: $\mathbf{x}^{\star} = \operatorname{arg\,min}_{\mathbf{y} = \mathbf{A}\mathbf{x}} \|\mathbf{x}\|_{0}$.
- \bullet Question: Any efficient algorithm for $\ell_0\text{-norm}$ minimization problem?
- Answer: Relax $\ell_0\text{-norm}$ by its convex envelope, i.e., $\tilde{x} = arg\min_{y=Ax} \|x\|_1.$
- Question: Under what condition is the relaxation tight?
- Answer: Roughly speaking, measurement matrix A is required to be sufficiently "incoherent" (i.e., number of measurements $(\dim(y))$ greater than certain threshold). Not going to be covered in this course, refer to compressed sensing literature.

- Question: How to incorporate sparsity as prior information?
- Answer: $\mathbf{x}^{\star} = \operatorname{arg\,min}_{\mathbf{y}=\mathbf{A}\mathbf{x}} \|\mathbf{x}\|_{0}$.
- \bullet Question: Any efficient algorithm for $\ell_0\text{-norm}$ minimization problem?
- Answer: Relax $\ell_0\text{-norm}$ by its convex envelope, i.e., $\tilde{x} = \arg\min_{y=Ax} \|x\|_1.$
- Question: Under what condition is the relaxation tight?
- Answer: Roughly speaking, measurement matrix A is required to be sufficiently "incoherent" (i.e., number of measurements $(\dim(y))$ greater than certain threshold). Not going to be covered in this course, refer to compressed sensing literature.
- Question: How to incorporate sparsity as prior information?
- Answer: $\mathbf{x}^{\star} = \arg\min_{\mathbf{y} = \mathbf{A}\mathbf{x}} \|\mathbf{x}\|_0$.
- \bullet Question: Any efficient algorithm for $\ell_0\text{-norm}$ minimization problem?
- Answer: Relax $\ell_0\text{-norm}$ by its convex envelope, i.e., $\tilde{x} = \arg\min_{y=Ax} \|x\|_1.$
- Question: Under what condition is the relaxation tight?
- Answer: Roughly speaking, measurement matrix A is required to be sufficiently "incoherent" (i.e., number of measurements $(\dim(y))$ greater than certain threshold). Not going to be covered in this course, refer to compressed sensing literature.

Compressed Sensing III

• Illustration in two dimensions with exact recovery:

Estimation with Outliers

- Consider measurements $y_i = \mathbf{a}_i^T \mathbf{x} + v_i$, i = 1, ..., m under Gaussian noise $v_i \sim \mathcal{N}(0, \sigma^2)$.
- In practice, however, we have *outliers*: incorrect measurements for some unknown and expected reasons. This can be modeled as

$$y_i = \mathbf{a}_i^T \mathbf{x} + v_i + w_i, \quad i = 1, \dots, m$$

where the only assumption on the outlier error \mathbf{w} is sparsity: card (\mathbf{w}) $\leq k$.

• Problem formulation that takes into account *k* possible outliers:

$$\begin{array}{ll} \underset{\mathbf{x},\mathbf{w}}{\text{minimize}} & \|\mathbf{y} - \mathbf{A}\mathbf{x} - \mathbf{w}\|_2 \\ \text{subject to} & \operatorname{card}\left(\mathbf{w}\right) \leq k \ . \end{array}$$

Estimation with Outliers

- Consider measurements $y_i = \mathbf{a}_i^T \mathbf{x} + v_i$, i = 1, ..., m under Gaussian noise $v_i \sim \mathcal{N}(0, \sigma^2)$.
- In practice, however, we have *outliers*: incorrect measurements for some unknown and expected reasons. This can be modeled as

$$y_i = \mathbf{a}_i^T \mathbf{x} + v_i + w_i, \quad i = 1, \dots, m$$

where the only assumption on the outlier error \mathbf{w} is sparsity: card (\mathbf{w}) $\leq k$.

• Problem formulation that takes into account *k* possible outliers:

Estimation with Outliers

- Consider measurements $y_i = \mathbf{a}_i^T \mathbf{x} + v_i$, i = 1, ..., m under Gaussian noise $v_i \sim \mathcal{N}(0, \sigma^2)$.
- In practice, however, we have *outliers*: incorrect measurements for some unknown and expected reasons. This can be modeled as

$$y_i = \mathbf{a}_i^T \mathbf{x} + v_i + w_i, \quad i = 1, \dots, m$$

where the only assumption on the outlier error \mathbf{w} is sparsity: card (\mathbf{w}) $\leq k$.

• Problem formulation that takes into account *k* possible outliers:

$$\begin{array}{ll} \underset{\mathbf{x},\mathbf{w}}{\text{minimize}} & \|\mathbf{y} - \mathbf{A}\mathbf{x} - \mathbf{w}\|_2 \\ \text{subject to} & \operatorname{card}\left(\mathbf{w}\right) \leq k \ . \end{array}$$

Piecewise Constant Fitting

- Problem: fit corrupted \mathbf{x}_{cor} by a piecewise constant signal $\hat{\mathbf{x}}$ with k or fewer jumps.
- Convex if jump locations are known, but not otherwise.
- Property: $\hat{\mathbf{x}}$ piecewise constant with $\leq k$ jumps $\iff \operatorname{card} (\mathbf{D}\hat{\mathbf{x}}) \leq k$, where

$$\mathbf{D} = \begin{bmatrix} 1 & -1 & & \\ & 1 & -1 & \\ & & \ddots & \ddots & \\ & & & 1 & -1 \end{bmatrix} \in \mathsf{R}^{(n-1) \times n}.$$

• Problem formulation:

 $\begin{array}{ll} \underset{\hat{\mathbf{x}}}{\text{minimize}} & \|\hat{\mathbf{x}} - \mathbf{x}_{\text{cor}}\|_2 \\ \text{subject to} & \text{card} \left(\mathbf{D}\hat{\mathbf{x}}\right) \leq k. \end{array}$

Piecewise Constant Fitting

- Problem: fit corrupted \mathbf{x}_{cor} by a piecewise constant signal $\hat{\mathbf{x}}$ with k or fewer jumps.
- Convex if jump locations are known, but not otherwise.
- Property: $\hat{\mathbf{x}}$ piecewise constant with $\leq k$ jumps $\iff \operatorname{card}(\mathbf{D}\hat{\mathbf{x}}) \leq k$, where

• Problem formulation:

 $\begin{array}{ll} \underset{\hat{\mathbf{x}}}{\text{minimize}} & \|\hat{\mathbf{x}} - \mathbf{x}_{\text{cor}}\|_2 \\ \text{subject to} & \text{card} \left(\mathbf{D}\hat{\mathbf{x}}\right) \leq k. \end{array}$

Piecewise Constant Fitting

- Problem: fit corrupted \mathbf{x}_{cor} by a piecewise constant signal $\hat{\mathbf{x}}$ with k or fewer jumps.
- Convex if jump locations are known, but not otherwise.
- Property: $\hat{\mathbf{x}}$ piecewise constant with $\leq k$ jumps $\iff \operatorname{card}(\mathbf{D}\hat{\mathbf{x}}) \leq k$, where

• Problem formulation:

$$\begin{array}{ll} \min _{\hat{\mathbf{x}}} & \|\hat{\mathbf{x}} - \mathbf{x}_{\mathsf{cor}}\|_2 \\ \text{subject to} & \mathsf{card}\left(\mathbf{D}\hat{\mathbf{x}}\right) \leq k. \end{array}$$

- The total variation (TV) reconstruction is just another name for the piecewise constant fitting.
- \bullet Problem: given a corrupted signal $x_{\mathsf{cor}} = x + n,$ recover the original one x.
- The trick is the assumption that original signal \mathbf{x} is smooth (except some occasional jumps), whereas noise \mathbf{n} is not smooth.
- Problem formulation:

$$\underset{\hat{\mathbf{x}}}{\mathsf{minimize}} \quad \|\hat{\mathbf{x}} - \mathbf{x}_{\mathsf{cor}}\|_2 + \gamma \|\mathbf{D}\hat{\mathbf{x}}\|_1$$

- Widely used in signal processing and image processing.
- The term $\|\mathbf{D}\hat{\mathbf{x}}\|_1$ is called total variation of signal $\hat{\mathbf{x}}$.

Total Variation Reconstruction: Numerical Example

• Consider the original and corrupted signals (n = 2000):

Total Variation Reconstruction: Numerical Example

• The total variation reconstruction is (for three values of γ)

Piecewise Linear Fitting

- Problem: fit corrupted \mathbf{x}_{cor} by a piecewise linear signal $\hat{\mathbf{x}}$ with k or fewer kinks.
- The derivative of a piecewise linear signal $D\hat{x}$ is piecewise constant, so the second derivative $\nabla \hat{x}$ is sparse.
- Problem formulation:

where

$$\begin{array}{ll} \underset{\hat{\mathbf{x}}}{\text{minimize}} & \|\hat{\mathbf{x}} - \mathbf{x}_{\text{cor}}\|_2 \\ \text{subject to} & \operatorname{card}\left(\nabla \hat{\mathbf{x}}\right) \leq k \end{array}$$

$$\overline{V} = \begin{bmatrix} -1 & 2 & -1 & & \\ & -1 & 2 & -1 & & \\ & \ddots & \ddots & \ddots & \\ & & & -1 & 2 & -1 \end{bmatrix}$$

Piecewise Linear Fitting

- Problem: fit corrupted \mathbf{x}_{cor} by a piecewise linear signal $\hat{\mathbf{x}}$ with k or fewer kinks.
- The derivative of a piecewise linear signal $D\hat{x}$ is piecewise constant, so the second derivative $\nabla \hat{x}$ is sparse.
- Problem formulation:

where

$$\begin{array}{ll} \min \limits_{\hat{\mathbf{x}}} & \| \hat{\mathbf{x}} - \mathbf{x}_{\rm cor} \|_2 \\ \mbox{subject to} & \mbox{card} \left(\nabla \hat{\mathbf{x}} \right) \leq k \end{array}$$

$$\nabla = \begin{bmatrix} -1 & 2 & -1 & & \\ & -1 & 2 & -1 & & \\ & & \ddots & \ddots & \ddots & \\ & & & -1 & 2 & -1 \end{bmatrix}$$

Piecewise Linear Fitting

- Problem: fit corrupted \mathbf{x}_{cor} by a piecewise linear signal $\hat{\mathbf{x}}$ with k or fewer kinks.
- The derivative of a piecewise linear signal $D\hat{x}$ is piecewise constant, so the second derivative $\nabla \hat{x}$ is sparse.
- Problem formulation:

where

$$\nabla = \begin{bmatrix} -1 & 2 & -1 \\ & \ddots & \ddots & \ddots \\ & & & -1 & 2 & -1 \\ & & \ddots & \ddots & \ddots \\ & & & & -1 & 2 & -1 \end{bmatrix}.$$

• Problem: fit vector $y \in \mathbb{R}$ as a linear combination of k regressors (chosen from p possible regressors):

$$\begin{array}{ll} \underset{\beta}{\text{minimize}} & \left\| \mathbf{y} - \mathbf{X}^T \boldsymbol{\beta} \right\|_2^2 \\ \text{subject to} & \operatorname{card} \left(\boldsymbol{\beta} \right) \leq k. \end{array}$$

- The solution chooses subset of k regressors that best fit y (role of expert).
- In principle, this could be solved by trying all $\begin{pmatrix} p \\ k \end{pmatrix}$ choices, but not practical for large n.
- Variations:
 - minimize card (β) subject to $\|\mathbf{y} \mathbf{X}^T \beta\|_2^2$
 - minimize $\|\mathbf{y} \mathbf{X}^T \boldsymbol{\beta}\|_2^2 + \lambda \operatorname{card}(\boldsymbol{\beta}).$

- Relaxing the cardinality constraint in the objective, we get the famous LASSO regression (least absolute shrinkage and selection operator) [Tibshirani'96]:
 - $\hat{\boldsymbol{\beta}}_{LASSO} = \arg\min \|\mathbf{y} \mathbf{X}^T \boldsymbol{\beta}\|_2^2 + \gamma \|\boldsymbol{\beta}\|_1$
 - biased but more stable estimator (bias variance tradeoff)
 - results in sparse eta since ℓ_1 -norm ball is pointy
 - interpretable parsimonious model, variable selection.
- Extensions:
 - Fused LASSO [Tibshirani-etal'2005]
 - Group LASSO [Yuan-Lin'2006].

- LASSO is a QP and can be solved efficiently with a QP solver.
- Problem: when N is extremely large, a universally applicable convex programming algorithm is no longer satisfactory.
- Solution: Seeking problem specific structure to speed up and beat the Newton type method [Friedman-etal'07].
- Consider LASSO with univariate predictor, i.e., *x* is a scalar. It has the closed-form solution:

Threshold least square:
$$\hat{\beta}_{LASSO} = \operatorname{sign}\left(\hat{\beta}_{OLS}\right)\left(\left|\hat{\beta}_{OLS}\right| - 2\gamma\right)^+$$
.

Coordinate Descent for LASSO

```
Initialize \beta_0, set k, r = 1 repeat

repeat

\beta_r^k = \arg \min \left\| \mathbf{y} - \mathbf{X}_{-r}^T \boldsymbol{\beta}_{-r}^k - \mathbf{X}_r^T \boldsymbol{\beta}_r \right\|_2^2 + \gamma \|\boldsymbol{\beta}_r\|_1

r = r + 1, \ \boldsymbol{\beta}^k = (\boldsymbol{\beta}_1^k, \dots, \boldsymbol{\beta}_r^k, \boldsymbol{\beta}_{r+1}^{k-1}, \dots, \boldsymbol{\beta}_p^{k-1})

until r = p

k = k + 1, \ r = 1

until convergence
```

• Faster than calling off-the-shelf convex problem solver.

Minimum Number of Violations

• Consider a set of convex inequalities

$$f_1(\mathbf{x}) \leq 0, \ldots, f_m(\mathbf{x}) \leq 0, \qquad \mathbf{x} \in \mathscr{C}.$$

- Determining whether they are feasible or not is easy: convex feasibility problem. But what if they are infeasible?
- Problem formulation to find the minimum number of violated inequalities:

$$\begin{array}{ll} \underset{\mathbf{x},\mathbf{t}}{\text{minimize}} & \mathsf{card}\left(\mathbf{t}\right) \\ \text{subject to} & f_{i}\left(\mathbf{x}\right) \leq t_{i}, \quad i = 1, \dots, m \\ & \mathbf{x} \in \mathscr{C}, \quad \mathbf{t} \geq \mathbf{0}. \end{array}$$

Minimum Number of Violations

• Consider a set of convex inequalities

$$f_1(\mathbf{x}) \leq 0, \ldots, f_m(\mathbf{x}) \leq 0, \qquad \mathbf{x} \in \mathscr{C}.$$

- Determining whether they are feasible or not is easy: convex feasibility problem. But what if they are infeasible?
- Problem formulation to find the minimum number of violated inequalities:

$$\begin{array}{ll} \underset{\mathbf{x},\mathbf{t}}{\text{minimize}} & \mathsf{card}\left(\mathbf{t}\right) \\ \text{subject to} & f_{i}\left(\mathbf{x}\right) \leq t_{i}, \quad i = 1, \dots, m \\ & \mathbf{x} \in \mathscr{C}, \quad \mathbf{t} \geq \mathbf{0}. \end{array}$$

Outline

Optimization with Sparsity

- General Formulation
- A Glance at Applications

2 Algorithms for Sparsity Problems

- ℓ_1 -Norm Heuristic
- Interpretation of ℓ_1 -Norm Heuristic
- Iterative Reweighted ℓ_1 -Norm Heuristic

3 Applications

• Statistics and Data Analysis

• Bioinformatics, Image Processing, and Computer Vision

• Others

Rare Allele Identification in Medical Testing I

- Problem: reconstruct the genotypes of N individuals at a specific locus. N is a large number and DNA sequencing is expensive.
- Solution: pool blood sample of multiple individuals in a single DNA sequencing experiment [7].

- Test procedure:
 - Sequence DNA fragments of sample pools instead of each individual.
 - Reads of the fragments of DNA of each sample pool are mapped back to the reference genome.
- Genotype vector $\mathbf{x} \in \{0, 1, 2\}^N$, x_i for the genotype of the *i*th individual at a specific locus:
 - Reference allele AA is coded as 0;
 - Heterozygous allele *Aa* is coded as 1;
 - Homozygous alternative allele *aa* is coded as 2.
- \bullet Genetic mutation is rare $\Longleftrightarrow x$ is a sparse vector.

• Bernoulli sensing matrix M:

- $M_{ij} \in \{0,1\}$: whether individual j's blood sample is included in the *i*th experiment or not
- **M**_{*i*,:}**x** is the number of *a* alleles (rare alleles)
- $2\sum_{j=1}^{N} M_{ij}$ is the number of alleles (each person has two)
- normalized sensing matrix (by the number of people in a test) $\hat{\mathbf{M}}$: $\hat{M}_{ij} = \frac{M_{ij}}{\sum_{i=1}^{N} M_{ij}}$

• proportion of rare alleles:
$$\mathbf{M}_{i,:}\mathbf{x}/\left(2\sum_{j=1}^{N}M_{ij}
ight)=rac{1}{2}\mathbf{\hat{M}}_{i,:}\mathbf{x}$$

- Test output:
 - z: number of reads containing rare allele a.
 - r: total number of reads covering locus of interest in each pool.

Rare Allele Identification in Medical Testing IV

• Problem formulation:

$$\begin{array}{ll} \underset{\mathbf{x} \in \{0,1,2\}^{N}}{\text{minimize}} & \|\mathbf{x}\|_{0} \\ \text{subject to} & \left\|\frac{1}{2}\hat{\mathbf{M}}\mathbf{x} - \frac{\mathbf{z}}{r}\right\|_{2} \leq \varepsilon \end{array}$$

• Relaxation:

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & \|\mathbf{x}\|_{1} \\ \text{subject to} & \left\|\frac{1}{2}\hat{\mathbf{M}}\mathbf{x} - \frac{\mathbf{z}}{r}\right\|_{2} \leq \varepsilon \end{array}$$

• Heuristic post-processing: rounding \mathbf{x} to integer value.

- $\bullet\,$ The obteined result \hat{x} is real-valued.
- Straingtforward heuristic:
 - rounding to the nearest integer in $\{0, 1, 2\}$.
- What the paper does:
 - $\bullet\,$ rank all non-zero values of $\hat{x},$
 - round the largest s non-zero values to $\{0,1,2\}$, set all other remaining values to 0 to get \mathbf{x}^s .
 - compute error $e_s = \left\| \frac{1}{2} \hat{\mathbf{M}} \mathbf{x}^s \frac{\mathbf{z}}{r} \right\|_2$.
 - select s such that \mathbf{x}^s minimizes e_s .

Robust Face Recognition I

- Problem: given n_i face pictures of the *i*th individual with *k* individuals in total as training set, figure out the class a test image belongs to.
- Difficulties: noise, occlusion.
- Solution: Robust face recognition via ℓ_1 -norm [Wright-etal'09].

Robust Face Recognition II

- Construct matrix $\mathbf{A}_i = (\mathbf{v}_{i1}, \dots, \mathbf{v}_{in_i}) \in \mathbb{R}^{m \times n_i}$ for the *i*th individual, each \mathbf{v}_{ij} represents the *j*th training image of individual *i* (stack all the pixel values of the image into a single vector).
- Group all the A_i 's to get $A = (A_1, \dots, A_k)$.
- For the testing image y, solve:

 $\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & \|\mathbf{x}\|_{1} \\ \text{subject to} & \mathbf{y} = \mathbf{A}\mathbf{x} \end{array}$

- Interpretation: use the minimum number of linear combination of images from the traing set to express the testing image.
- The non-zero entry of x indicates the class that the testing image belongs to.

- Given $\hat{x} = \arg\min_{y=Ax} \|x\|_1$, we need to identify which class (person) y belongs to by the following steps:
 - Reconstruct image by $\hat{x}.$
 - For the *i*th class, define vector $\delta_i(\hat{\mathbf{x}})$ that keeps coefficients corresponding to the *i*th class unchanged and maps the other entries to 0.
 - Reconstructed image $\hat{\mathbf{y}} = \mathbf{A} \delta_i(\hat{\mathbf{x}})$.
 - Residual $r_i(\mathbf{y}) = \|\mathbf{y} \mathbf{A} \delta_i(\hat{\mathbf{x}})\|_2$.
 - Identify the class as $i^{\star} = \arg \min_i r_i(\mathbf{y})$.

Robust Face Recognition IV

• Small dense noise:

$$\begin{array}{ll} \underset{\mathbf{x}}{\text{minimize}} & \|\mathbf{x}\|_{1} \\ \text{subject to} & \|\mathbf{y} - \mathbf{A}\mathbf{x}\|_{2} \leq \varepsilon \end{array}$$

- Occlusion or corruption:
 - Assumption: Sparse error w.r.t. some basis $A_{\mathcal{E}}$.
 - Test image: $\mathbf{y} = \mathbf{y}_0 + \mathbf{e}_0 = \mathbf{A}\mathbf{x}_0 + \mathbf{e}_0$.
 - Define matrix $\mathbf{B} = (\mathbf{A}, \mathbf{A}_{\boldsymbol{\varepsilon}})$, solve

 $\begin{array}{ll} \underset{\mathbf{w}}{\text{minimize}} & \|\mathbf{w}\|_{1} \\ \text{subject to} & \mathbf{y} = \mathbf{B}\mathbf{w} \end{array}$

- $\bullet~w$ reveals both the class testing image y belongs to and the error.
- Similar technique in speech recognition [Gemmeke-etal'10].

Outline

Optimization with Sparsity

- General Formulation
- A Glance at Applications

2 Algorithms for Sparsity Problems

- ℓ_1 -Norm Heuristic
- Interpretation of ℓ_1 -Norm Heuristic
- Iterative Reweighted ℓ_1 -Norm Heuristic

3 Applications

- Statistics and Data Analysis
- Bioinformatics, Image Processing, and Computer Vision
- Others

- We have discussed classical sparsity problems in different applications, as well as resolution techniques.
- The story always begins with: find something that is sparse...
- A rich literature on this kind of problems, what is next?
- Some seemingly unrelated problems can be formulated via sparsity.

Subspace Clustering Problem I

- Problem: given data points \mathbf{x}_i , i = 1, ..., N, figure out the subspaces that data lies in.
- Solution: ℓ_1 -norm minimization [Soltanolkotabi-Candes'12].

Subspace Clustering Problem II

- Observation: data in the same subspace \iff can be expressed as linear combination of others.
- Solution: define $\mathbf{X} = \begin{bmatrix} \mathbf{x}_1 & \cdots & \mathbf{x}_N \end{bmatrix}$
 - for each \mathbf{x}_i , solve

$$\begin{array}{ll} \underset{\mathbf{z}}{\text{minimize}} & \left\| \mathbf{z}^{(i)} \right\|_{1} \\ \text{subject to} & \mathbf{X} \mathbf{z}^{(i)} = \mathbf{x}_{i} \\ & \mathbf{z}^{(i)}_{i} = \mathbf{0} \end{array}$$

- construct matrix $\mathbf{Z} = \begin{bmatrix} \mathbf{z}^{(1)}, \dots, \mathbf{z}^{(N)} \end{bmatrix}$;
- form affinity graph G with nodes representing N data points and edge weights given by $\mathbf{W} = |\mathbf{Z}| + |\mathbf{Z}|^T$;
- apply a spectral clustering technique to G.
- Flexible model for error and missing data.
- Tolerable of large quantity of outliers and can detect them.

Sudoku: Let's Play a Game

- Rules for Sudoku: fill in the blanks such that digits 1,...,9 occur only once in each row, each column, each 3 × 3 box.
- Example of a 9×9 Sudoku puzzle:

	1		7		8	9		
3	8							
		9			5	6		
	9			7				
	3	1					2	
			4	5			8	
	5			6	2	4	9	
6	7	3		4	9		5	1
	4							3

Solving Sudoku by ℓ_1 -Norm

- For cell *n*, define the content as $S_n \in \{1, 2, ..., 9\}$ and the indication vector $\mathbf{i}_n = (1_{\{S_n=1\}}, ..., 1_{\{S_n=9\}})^T$.
- $\bullet\,$ Stack indicator vector of all cells in row order, denote as x.
- \bullet Objective: Find sparse x satisfies game rules.
- Equivalence between Sudoku and Optimization Problem [Babu-Pelckmans-Stoica'2010]:

Game:	Programming:			
Objective: Solve the puzzle.	Objective: Minimize $\ \mathbf{x}\ _0$			
Rules:	Constraints:			
digits 1,,9 occur only once				
each row	$\mathbf{A}_{\mathrm{row}}\mathbf{x} = 1$			
each column	$\mathbf{A}_{\mathrm{col}}\mathbf{x} = 1$			
each box	$A_{\text{box}} \mathbf{x} = 1$			
each cell needs to be filled	$A_{cell}x = 1$			
some given clue	$A_{clue}x = 1$			
- What have we done?
 - Introduced cardinality constrained problems.
 - $\bullet\,$ Given algorithms to solve this kind of problems via $\ell_1\text{-norm}$ minimization.
 - Shown many examples related to sparsity that can be nicely solved.
- Attention:
 - "All models are wrong, but some are useful", be cautious with the assumptions.
 - ℓ_1 -norm relaxation is not supposed to work in all cases, it depends on the problem.
 - Examples provided in the slides are just a sketch, for details please refer to the references.

- D. R. Hunter and K. Lange, "A tutorial on MM algorithms," *The American Statistician*, vol. 58, no. 1, pp. 30–37, 2004.
- Y. Sun, P. Babu, and D. P. Palomar, "Majorization-Minimization Algorithms in Signal Processing, Communications, and Machine Learning," *IEEE Trans. on Signal Processing*, vol. 65, no. 3, pp. 794-816, Feb. 2017.
- R. Tibshirani, "Regression shrinkage and selection via the lasso," Journal of the Royal Statistical Society. Series B (Methodological), pp. 267–288, 1996.
- R. Tibshirani, M. Saunders, S. Rosset, J. Zhu, and K. Knight, "Sparsity and smoothness via the fused lasso," *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, vol. 67, no. 1, pp. 91–108, 2005.
- M. Yuan and Y. Lin, "Model selection and estimation in regression with grouped variables," *Journal of the Royal Statistical Society: Series B (Statistical Methodology)*, vol. 68, no. 1, pp. 49–67, 2006.
- J. Friedman, T. Hastie, H. Höfling, and R. Tibshirani, "Pathwise coordinate optimization," *The Annals of Applied Statistics*, vol. 1, no. 2, pp. 302–332, 2007.
- N. Shental, A. Amir, and O. Zuk, "Identification of rare alleles and their carriers using compressed se (que) nsing," *Nucleic acids research*, vol. 38, no. 19, pp. e179–e179, 2010.

- J. Wright, A. Y. Yang, A. Ganesh, S. S. Sastry, and Y. Ma, "Robust face recognition via sparse representation," *IEEE Transactions on Pattern Analysis and Machine Intelligence*, vol. 31, no. 2, pp. 210–227, 2009.
- J. F. Gemmeke, H. Van Hamme, B. Cranen, and L. Boves, "Compressive sensing for missing data imputation in noise robust speech recognition," *IEEE Journal of Selected Topics in Signal Processing*, vol. 4, no. 2, pp. 272–287, 2010.
- M. Soltanolkotabi and E. J. Candes, "A geometric analysis of subspace clustering with outliers," *The Annals of Statistics*, vol. 40, no. 4, pp. 2195–2238, 2012.
- P. Babu, K. Pelckmans, and P. Stoica, "Linear Systems, Sparse Solutions, and Sudoku," IEEE Signal Processing Letters, vol. 17, no. 1, pp. 40–42, Jan. 2010.

For more information visit:

https://www.danielppalomar.com

