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Optimization Problem

General optimization problem in standard form:

minimize
x

f0 (x)

subject to fi (x) ≤ 0 i = 1, . . . ,m
hi (x) = 0 i = 1, . . . , p

where
x = (x1, . . . , xn) is the optimization variable
f0 : Rn −→ R is the objective function
fi : Rn −→ R, i = 1, . . . ,m are inequality constraint
functions
hi : Rn −→ R, i = 1, . . . , p are equality constraint
functions.

Goal: find an optimal solution x? that minimizes f0 while satisfying all
the constraints.
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Examples

Convex optimization is currently used in many different areas:
circuit design (start-up named Barcelona in Silicon Valley)
signal processing (e.g., filter design)
communication systems (e.g., transceiver design, beamforming design,
ML detection, power control in wireless)
financial engineering (e.g., portfolio design, index tracking)
image proc. (e.g., deblurring, compressive sensing, blind separation)
robust designs under uncertainty
sparse and low-rank optimization
machine learning
graph learning from data
biomedical applications (e.g., analysis of DNA)
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Examples: Elements in the Formulation

An optimization problem has three basic elements:
1 variables,
2 constraints, and
3 objective.

Example: device sizing in electronic circuits:
variables: device widths and lengths
constraints: manufacturing limits, timing requirements, max area
objective: power consumption

Example: portfolio optimization:
variables: amounts invested in different assets
constraints: budget, max investments per asset, min return
objective: overall risk or return variance.
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Example: Power Control in Wireless Networks

Consider a wireless network with n logical transmitter/receiver pairs:

Goal: design the power allocation so that each receiver receives
minimum interference from the other links.
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Example: Power Control in Wireless Networks

The signal-to-inerference-plus-noise-ratio (SINR) at the ith receiver is

sinri =
piGii∑

j 6=i pjGij + σ2
i

where
pi is the power used by the ith transmitter
Gij is the path gain from transmitter j to receiver i
σ2
i is the noise power at the ith receiver.

Problem: maximize the weakest SINR subject to power constraints
0 ≤ pi ≤ pmax

i :

maximize
p

min
i=1,...,n

piGii∑
j 6=i pjGij+σ

2
i

subject to 0 ≤ pi ≤ pmax
i i = 1, . . . , n.
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Solving Optimization Problems

General optimization problems are very difficult to solve (either long
computation time or not finding the best solution).
Exceptions: least-squares problems, linear programming problems, and
convex optimization problems.

Least-squares (LS) [Gauss, 1795]:

minimize
x

‖Ax − b‖22

solving LS problems: closed-form solution x? =
(
ATA

)−1
ATb for

which there are reliable and efficient algorithms; mature technology
using LS: easy to recognize
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Solving Optimization Problems

Linear Programming (LP):

minimize
x

cT x

subject to aTi x ≤ bi , i = 1, . . . ,m

solving LP problems: no closed-form solution, but reliable and efficient
algorithms and software; mature technology
using LP: not as easy to recognize as LS problems, a few standard
tricks to convert problems into LPs

Convex optimization:

minimize
x

f0 (x)

subject to fi (x) ≤ bi , i = 1, . . . ,m

solving convex problems: no closed-form solution, but still reliable and
efficient algorithms and software; almost a technology
using convex optimization: often difficult to recognize, many tricks for
transforming problems into convex form.
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Nonconvex Optimization

Nonconvex optimization problems are generally very difficult to solve,
although there are some rare exceptions.

In general, they require either a long computation time or the
compromise of not always finding the optimal solution:

local optimization: fast algorithms, but no guarantee of global
optimality, only local solution around the initial point
global optimization: worst-case complexity grows exponentially with
problem size, but finds global solution.
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Example: Lamp Illumination Problem

Consider m lamps illuminating n small flat patches:

Goal: achieve a desired illumination Ides on all patches with bounded
lamp powers.
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Example: Lamp Illumination Problem

The intensity Ik at patch k depends linearly on the lamp powers pj :

Ik =
m∑
j=1

akjpj

where the coefficients akj are given by akj = cos θkj/r
2
kj .

Problem formulation: since the illumination is perceived
logarithmically by the eye, a good formulation of the problem is

minimize
I1,...,In,p1,...,pm

max k |log Ik − log Ides|

subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m
Ik =

∑m
j=1 akjpj , k = 1, . . . , n.

How to solve the problem?
Answer: It depends on how much you know about optimization.
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Example: Lamp Illumination Problem

1 If you don’t know anything, then you just take a heuristic guess like
using a uniform power pj = p, perhaps trying different values of p.

2 If you know about least-squares, then approximate the problem as

minimize
I1,...,In,p1,...,pm

∑n
k=1 (Ik − Ides)

2

subject to Ik =
∑m

j=1 akjpj , k = 1, . . . , n.

and then clip pj if pj > pmax or pj < 0.

3 If you know about linear programming, then approximate the problem
as

minimize
I1,...,In,p1,...,pm

max k |Ik − Ides|

subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m
Ik =

∑m
j=1 akjpj , k = 1, . . . , n,

which may not look as an LP but it is!
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Example: Lamp Illumination Problem

4 If you know about convex optimization, after staring at the problem
long enough, you may realize that you can actually reformulate the
original problem in convex form and then find the global solution:

minimize
I1,...,In,p1,...,pm

max k h (Ik/Ides)

subject to 0 ≤ pj ≤ pmax, j = 1, . . . ,m
Ik =

∑m
j=1 akjpj , k = 1, . . . , n,

where h (u) = max {u, 1/u}.
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Example: Lamp Illumination Problem

Additional constraints: does adding the constraints below
complicate the problem?

(a) no more than half of total power is in any 10 lamps
(b) no more than half of the lamps are on (pj > 0).

Answer:
(a) does not complicate the problem, whereas

(b) makes the problem extremely difficult.

Moral: untrained intuition doesn’t always work; one needs to obtain
the proper background and develop the right intuition to discern
between difficult and easy problems.
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Historical Snapshop of Convex Optimization

Theory (convex analysis): ca1900-1970 (e.g. Rockafellar)
Algorithms:

1947: simplex algorithm for linear programming (Dantzig)
1960s: early interior-point methods (Fiacco & McCormick, Dikin)
1970s: ellipsoid method and other subgradient methods
1980s: polynomial-time interior-point methods for linear programming
(Karmakar 1984)
late 1980s-now: polynomial-time interior-point methods for nonlinear
convex optimization (Nesterov & Nemirovski 1994)

Applications:
before 1990s: mostly in operations research; few in engineering
since 1990: many new applications in engineering and new problem
classes (SDP, SOCP, robust optim.)
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Definition of Convex Set

A set C ∈ Rn is said to be convex if the line segment between any
two points is in the set: for any x , y ∈ C and 0 ≤ θ ≤ 1,

θx + (1− θ) y ∈ C .
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Examples: Hyperplanes and Halfspaces

Hyperplane:
C =

{
x | aT x = b

}
where a ∈ Rn, b ∈ R.
Halfspace:

C =
{
x | aT x ≤ b

}
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Example: Polyhedra

Polyhedron:

C = {x | Ax ≤ b, Cx = d}

where A ∈ Rm×n, C ∈ Rp×n, b ∈ Rm, d ∈ Rp.
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Examples: Euclidean Balls and Ellipsoids

Euclidean ball with center xc and radius r :

B (xc , r) = {x | ‖x − xc‖2 ≤ r} = {xc + ru | ‖u‖2 ≤ 1} .

Ellipsoid:

E (xc ,P) =
{
x | (x − xc)

T P−1 (x − xc) ≤ 1
}
= {xc + Au | ‖u‖2 ≤ 1}

with P ∈ Rn×n � 0 (positive definite).
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Convex Combination and Convex Hull

Convex combination of x1, . . . , xk : any point of the form

x = θ1x1 + θ2x2 + · · ·+ θkxk

with θ1 + · · ·+ θk = 1, θi ≥ 0.
Convex hull of a set: set of all convex combinations of points in the
set.
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Convex Cones

A set C ∈ Rn is said to be a convex cone if the ray from each point
in the set is in the set: for any x1, x2 ∈ C and θ1, θ2 ≥ 0,

θ1x1 + θ2x2 ∈ C .
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Norm Balls and Norm Cones

Norm ball with center xc and radius r : {x | ‖x − xc‖ ≤ r} where ‖·‖
is a norm.
Norm cone:

{
(x , t) ∈ Rn+1 | ‖x‖ ≤ t

}
.

Euclidean norm cone or second-order cone (aka ice-cream cone):
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Positive Semidefinite Cone

Positive semidefinite (PSD) cone:

Sn
+ =

{
X ∈ Rn×n | X = XT � 0

}
.

Example:
[
x y
y z

]
∈ S2

+
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Operations that Preserve Convexity

How do we establish the convexity of a given set?
1 Applying the definition:

x , y ∈ C , 0 ≤ θ ≤ 1 =⇒ θx + (1− θ) y ∈ C

which can be cumbersome.
2 Showing that C is obtained from simple convex sets (hyperplanes,

halfspaces, norm balls, etc.) by operations that preserve convexity:
intersection
affine functions
perspective function
linear-fractional functions
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Intersection

Intersection: if S1, S2, . . . ,Sk are convex, then S1 ∩ S2 ∩ · · · ∩ Sk is
convex.
Example: a polyhedron is the intersection of halfspaces and
hyperplanes.
Example:

S = {x ∈ Rn | |px (t)| ≤ 1 for |t| ≤ π/3}

where px (t) = x1 cos t + x2 cos 2t + · · ·+ xn cos nt.
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Affine Function

Affine composition: the image (and inverse image) of a convex set
under an affine function f (x) = Ax + b is convex:

S ⊆ Rn convex =⇒ f (S) = {f (x) | x ∈ S} convex.

Examples: scaling, translation, projection.
Example:

{
(x , t) ∈ Rn+1 | ‖x‖ ≤ t

}
is convex, so is{

x ∈ Rn | ‖Ax + b‖ ≤ cT x + d
}
.

Example: solution set of LMI: {x ∈ Rn | x1A1 + · · ·+ xnAn � B}.
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References on Convex Sets
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Definition of Convex Function

A function f : Rn −→ R is said to be convex if the domain, dom f , is
convex and for any x , y ∈ dom f and 0 ≤ θ ≤ 1,

f (θx + (1− θ) y) ≤ θf (x) + (1− θ) f (y) .

f is strictly convex if the inequality is strict for 0 < θ < 1.
f is concave if −f is convex.
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Examples on R

Convex functions:
affine: ax + b on R
powers of absolute value: |x |p on R, for p ≥ 1 (e.g., |x |)
powers: xp on R++, for p ≥ 1 or p ≤ 0 (e.g., x2)
exponential: eax on R
negative entropy: x log x on R++

Concave functions:
affine: ax + b on R
powers: xp on R++, for 0 ≤ p ≤ 1
logarithm: log x on R++
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Examples on Rn

Affine functions f (x) = aT x + b are convex and concave on Rn.
Norms ‖x‖ are convex on Rn (e.g., ‖x‖∞, ‖x‖1, ‖x‖2).
Quadratic functions f (x) = xTPx + 2qT x + r are convex Rn if and
only if P � 0.
The geometric mean f (x) = (

∏n
i=1 xi )

1/n is concave on Rn
++.

The log-sum-exp f (x) = log
∑

i e
xi is convex on Rn (it can be used

to approximate max
i=1,...,n

xi ).

Quadratic over linear: f (x , y) = x2/y is convex on Rn × R++.
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Examples on Rn×n

Affine functions: (prove it!)

f (X ) = Tr (AX ) + b

are convex and concave on Rn×n.
Logarithmic determinant function: (prove it!)

f (X ) = logdet (X )

is concave on Sn = {X ∈ Rn×n | X � 0}.
Maximum eigenvalue function: (prove it!)

f (X ) = λmax (X ) = sup
y 6=0

yTXy

yT y

is convex on Sn.
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Epigraph

The epigraph of f if the set

epi f =
{
(x , t) ∈ Rn+1 | x ∈ dom f , f (x) ≤ t

}
.

Relation between convexity in sets and convexity in functions:

f is convex⇐⇒ epi f is convex
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Restriction of a Convex Function to a Line

f : Rn −→ R is convex if and only if the function g : R −→ R

g (t) = f (x + tv) , dom g = {t | x + tv ∈ dom f }

is convex for any x ∈ dom f , v ∈ Rn.
In words: a function is convex if and only if it is convex when
restricted to an arbitrary line.
Implication: we can check convexity of f by checking convexity of
functions of one variable!
Example: concavity of logdet (X ) follows from concavity of log (x).
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Restriction of a Convex Function to a Line

Example: concavity of logdet (X ) :

g (t) = logdet (X + tV ) = logdet (X ) + logdet
(
I + tX−1/2VX−1/2

)
= logdet (X ) +

n∑
i=1

log (1+ tλi )

where λi ’s are the eigenvalues of X−1/2VX−1/2.
The function g is concave in t for any choice of X � 0 and V ; therefore, f
is concave.
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First and Second Order Condition

Gradient (for differentiable f ):

∇f (x) =
[

∂f (x)
∂x1

· · · ∂f (x)
∂xn

]T
∈ Rn.

Hessian (for twice differentiable f ):

∇2f (x) =

(
∂2f (x)

∂xi∂xj

)
ij

∈ Rn×n.

Taylor series:

f (x + δ) = f (x) +∇f (x)T δ + 1
2
δT∇2f (x) δ + o

(
‖δ‖2

)
.
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First and Second Order Condition

First-order condition: a differentiable f with convex domain is
convex if and only if

f (y) ≥ f (x) +∇f (x)T (y − x) ∀x , y ∈ dom f

Interpretation: first-order approximation if a global underestimator.
Second-order condition: a twice differentiable f with convex domain
is convex if and only if

∇2f (x) � 0 ∀x ∈ dom f
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Examples

Quadratic function: f (x) = (1/2) xTPx + qT x + r (with P ∈ Sn)

∇f (x) = Px + q, ∇2f (x) = P

is convex if P � 0.
Least-squares objective: f (x) = ‖Ax − b‖22

∇f (x) = 2AT (Ax − b) , ∇2f (x) = 2ATA

is convex.
Quadratic-over-linear: f (x , y) = x2/y

∇2f (x , y) =
2
y3

[
y
−x

] [
y −x

]
� 0

is convex for y > 0.

D. Palomar Intro to Convex Optimization 42 / 52



Operations that Preserve Convexity

How do we establish the convexity of a given function?
1 Applying the definition.
2 With first- or second-order conditions.
3 By restricting to a line.
4 Showing that the functions can be obtained from simple functions by

operations that preserve convexity:
nonnegative weighted sum
composition with affine function (and other compositions)
pointwise maximum and supremum, minimization
perspective
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Operations that Preserve Convexity

Nonnegative weighted sum: if f1, f2 are convex, then α1f1 + α2f2 is
convex, with α1, α2 ≥ 0.
Composition with affine functions: if f is convex, then f (Ax + b)
is convex (e.g., ‖y − Ax‖ is convex, logdet

(
I + HXHT

)
is concave).

Pointwise maximum: if f1, . . . , fm are convex, then
f (x) = max {f1, . . . , fm} is convex.

Example: sum of r largest components of x ∈ Rn:
f (x) = x[1] + x[2] + · · ·+ x[r ] where x[i ] is the ith largest component of x .
Proof: f (x) = max {xi1 + xi2 + · · ·+ xir | 1 ≤ i1 < i2 < · · · < ir ≤ n}.
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Operations that Preserve Convexity

Pointwise supremum: if f (x , y) is convex in x for each y ∈ A, then

g (x) = sup
y∈A

f (x , y)

is convex.
Example: distance to farthest point in a set C :

f (x) = sup
y∈C
‖x − y‖ .

Example: maximum eigenvalue of symmetric matrix: for X ∈ Sn,

λmax (X ) = sup
y 6=0

yTXy

yT y
.
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Operations that Preserve Convexity

Composition with scalar functions: let g : Rn −→ R and
h : R −→ R, then the function f (x) = h (g (x)) satisfies:

f (x) is convex if
g convex, h convex nondecreasing
g concave, h convex nonincreasing

Minimization: if f (x , y) is convex in (x , y) and C is a convex set,
then

g (x) = inf
y∈C

f (x , y)

is convex (e.g., distance to a convex set).
Example: distance to a set C :

f (x) = inf
y∈C
‖x − y‖

is convex if C is convex.

D. Palomar Intro to Convex Optimization 46 / 52



References on Convex Functions

Chapter 3 of
Stephen Boyd and Lieven Vandenberghe, Convex Optimization.
Cambridge, U.K.: Cambridge University Press, 2004.

https://web.stanford.edu/~boyd/cvxbook/

D. Palomar Intro to Convex Optimization 47 / 52



Outline

1 Optimization Problems

2 Convex Sets

3 Convex Functions

4 Convex Problems



General Optimization Problem

Optimization problem in standard form:

minimize
x

f0 (x)

subject to fi (x) ≤ 0 i = 1, . . . ,m
hi (x) = 0 i = 1, . . . , p

x ∈ Rn is the optimization variable
f0 : Rn −→ R is the objective function
fi : Rn −→ R, i = 1, . . . ,m are inequality constraint
functions
hi : Rn −→ R, i = 1, . . . , p are equality constraint functions.
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Convex Optimization Problem

Convex optimization problem in standard form:

minimize
x

f0 (x)

subject to fi (x) ≤ 0 i = 1, . . . ,m
Ax = b

where f0, f1, . . . , fm are convex and equality constraints are affine.
Local and global optima: any locally optimal point of a convex
problem is globally optimal.
Most problems are not convex when formulated.
Reformulating a problem in convex form is an art, there is no
systematic way.
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Convex Optimization Problem

To be continued...
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