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Why Factor Models?

To decompose risk and return into explainable and unexplainable components.
Generate estimates of abnormal returns.
Describe the covariance structure of returns

without factors: the covariance matrix for N stocks requires N(N + 1)/2 parameters (e.g.,
500(500 + 1)/2 = 125, 250)
with K factors: the covariance matrix for N stocks requires N (K + 1) parameters with
K � N (e.g., 500(3 + 1) = 2, 000)

Predict returns in specified stress scenarios.
Provide a framework for portfolio risk analysis.
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Types of Factor Models

Factor models decompose the asset returns into two parts: low-dimensional factors and
idiosynchratic residual noise.1

Three types:
1 Macroeconomic factor models

factors are observable economic and financial time series
no systematic approach to choose factors

2 Fundamental factor models
factors are created from observable asset characteristics
no systematic approach to define the characteristics

3 Statistical factor models
factors are unobservable and extracted from asset returns
more systematic, but factors have no clear interpretation

1R. S. Tsay, Analysis of Financial Time Series. John Wiley & Sons, 2005.
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Linear Factor Model

Data:
N assets/instruments/indexes: i = 1, . . . ,N
T time periods: t = 1, . . . ,T
N-variate random vector for returns at t: xt = (x1,t , . . . , xN,t)

T .

Factor model for asset i :

xi ,t = αi + β1,i f1,t + · · ·+ βK ,i fK ,t + εi ,t , t = 1, . . . ,T .

K : the number of factors
αi : intercept of asset i
ft = (f1,t , . . . , fK ,t)

T : common factors (same for all assets i)

βi = (β1,i , . . . , βK ,i )
T : factor loading of asset i (independent of t)

εi ,t : residual idiosyncratic term for asset i at time t
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Cross-Sectional Factor Model
Factor model:

xt = α + Bft + εt , t = 1, . . . ,T

where α =

 α1
...
αN

 (N × 1), B =

 βT
1
...

βT
N

 (N × K ), εt =

 ε1,t
...

εN,t

 (N × 1).

α and B are independent of t
the factors {ft} (K -variate) are stationary with

E [ft ] = µf

Cov [ft ] = E [(ft − µf ) (ft − µf )T ] = Σf

the residuals {εt} (N-variate) are white noise with

E [εt ] = 0

Cov [εt , εs ] = E [εtε
T
s ] = Ψδts , Ψ = diag

(
σ2

1, . . . , σ
2
N

)
the two processes {ft} and {εt} are uncorrelated
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Linear Factor Model

Summary of parameters:
α: (N × 1) intercept for N assets
B: (N × K ) factor loading matrix
µf : (K × 1) mean vector of K common factors
Σf : (K × K ) covariance matrix of K common factors
Ψ = diag

(
σ2

1, . . . , σ
2
N

)
: N asset-specific variances

Properties of linear factor model:
the stochastic process {xt} is a stationary multivariate time series with
conditional moments

E [xt | ft ] = α + Bft
Cov [xt | ft ] = Ψ

unconditional moments
E [xt ] = α + Bµf

Cov [xt ] = BΣf BT + Ψ.
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Multivariate Regression

Factor model (using compact matrix notation):

XT = α1T + BFT + ET

where X =

 xT1
...
xTT

 (T × N), F =

 fT1
...
fTT

 (T × K ), E =

 εT1
...
εTT

 (T × N).
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Portfolio Analysis

Let w = (w1, . . . ,wN)T be a vector of portfolio weights (wi is the fraction of wealth in asset i).
The portfolio return is

rp,t = wT rt =
N∑
i=1

wi ri ,t , t = 1, . . . ,T .

Portfolio factor model:

rt = α + Bft + εt ⇒
rp,t = wTα + wTBft + wTεt = αp + βT

p ft + εp,t

where
αp = wTα

βT
p = wTB

εp,t = wTεt

and
var(rp,t) = wT

(
BΣf BT + Ψ

)
w.
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Macroeconomic Factor Models

Recall the factor model for asset i :

xi ,t = αi + βT
i ft + εi ,t , t = 1, . . . ,T .

In this model, the factors {ft} are observed economic/financial time series.

Econometric problems:
choice of factors
estimation of mean vector and covariance matrix of factors µf and Σf from observed
history of factors
estimation of factor betas βi ’s and residual variances σ2

i ’s using time series regression
techniques
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Macroeconomic Factor Models

Single factor model of Sharpe (1964) (aka CAPM):

xi ,t = αi + βiRM,t + εi ,t , t = 1, . . . ,T

where
RM,t is the return of the market (in excess of the risk-free asset rate): market risk factor
(typically a value weighted index like the S&P 500)
xi ,t is the return of asset i (in excess of the risk-free rate)
K = 1 and the single factor is f1,t = RM,t

the unconditional cross-sectional covariance matrix of the assets is

Cov [xt ] = Σ = σ2
MββT + Ψ

where
σ2
M = var (RM,t)

β = (β1, . . . , βN)T

Ψ = diag
(
σ2

1 , . . . , σ
2
N

)
.
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Macroeconomic Factor Models

Estimation of single factor model:

xi = 1T α̂i + β̂i rM + ε̂i , i = 1, . . . ,N

where rM = (RM,1, . . . ,RM,T ) with estimates:

β̂i = ĉov (xi ,t ,RM,t) /v̂ar (RM,t)

α̂i = x̄i − β̂i r̄M
σ̂2
i = 1

T−2 ε̂
T
i ε̂i , Ψ̂ = diag

(
σ̂2

1, . . . , σ̂
2
N

)
The estimated single factor model covariance matrix is

Σ̂ = σ̂2
M β̂β̂T + Ψ̂.
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Macroeconomic Factor Models: Market Neutrality

Recall the single factor model:

xt = α + βRM,t + εt , t = 1, . . . ,T

When designing a portfolio w, it is common to have a market-neutral constraint:

βTw = 0.

This is to avoid exposure to the market risk. The resulting risk is given by

wTΨw.
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Capital Asset Pricing Model: AAPL vs SP500

AAPL regressed against the SP500 index (using risk-free rate rf = 2%/252):
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Macroeconomic Factor Models

General multifactor model:

xi ,t = αi + βT
i ft + εi ,t , t = 1, . . . ,T .

where the factors {ft} represent macro-economic variables such as2

market risk
price indices (CPI, PPI, commodities) / inflation
industrial production (GDP)
money growth
interest rates
housing starts
unemployment

In practice, there are many factors and in most cases they are very expensive to obtain.
Typically, investment funds have to pay substantial subscription fees to have access to them
(not available to small investors).

2Chen, Ross, Roll (1986). “Economic Forces and the Stock Market”
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Macroeconomic Factor Models

Estimation of multifactor model (K > 1):

xi = 1Tαi + Fβi + εi , i = 1, . . . ,N

= F̃γi + εi

where F̃ =
[
1T F

]
and γi =

[
αi

βi

]
.

Estimates:
γ̂i = (F̃T F̃)−1F̃T xi , B̂ =

[
β̂1 · · · β̂N

]T
ε̂i = xi − F̃γ̂i

σ̂2
i = 1

T−K−1 ε̂
T
i ε̂i , Ψ̂ = diag

(
σ̂2

1, . . . , σ̂
2
N

)
Σ̂f = 1

T−1
∑T

t=1
(
ft − f̄

) (
ft − f̄

)T , f̄ = 1
T

∑T
t=1 ft

The estimated multifactor model covariance matrix is

Σ̂ = B̂Σ̂f B̂T + Ψ̂.
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Fundamental Factor Models

Fundamental factor models use observable asset specific characteristics (fundamentals) like
industry classification, market capitalization, style classification (value, growth), etc., to
determine the common risk factors {ft}.

factor loading betas are constructed from observable asset characteristics (i.e., B is known)
factor realizations {ft} are then estimated/constructed for each t given B
note that in macroeconomic factor models the process is the opposite, i.e., the factors {ft}
are given and B is estimated
in practice, fundamental factor models are estimated in two ways: BARRA approach and
Fama-French approach.
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Fama-French Approach

This approach was introduced by Eugene Fama and Kenneth French (1992):
For a given observed asset specific characteristics, e.g. size, determine factor realizations
for each t with the following two steps:

1 sort the cross-section of assets based on that attribute
2 form a hedge portfolio by longing in the top quintile and shorting in the bottom quintile of

the sorted assets

Define the common factor realizations with the return of K of such hedge portfolios
corresponding to the K fundamental asset attributes.
Then estimate the factor loadings using time series regressions (like in macroeconomic
factor models).
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BARRA Industry Factor Model
Consider a stylized BARRA-type industry factor model with K mutually exclusive industries.
Define the K factor loadings as

βi ,k =

{
1 if asset i is in industry k

0 otherwise

The industry factor model is (note that α = 0)

xt = Bft + εt , t = 1, . . . ,T

LS estimation (inefficient due to heteroskedasticity in Ψ):

f̂t = (BTB)−1BT xt , t = 1, . . . ,T

but since BTB = diag (N1, . . . ,NK ), where Nk is the count of assets in industry k
(
∑K

k=1 Nk = N), then f̂t is a vector of industry averages!!
The residual covariance matrix unbiased estimator is Ψ̂ = diag

(
σ̂2

1, . . . , σ̂
2
N

)
where

ε̂t = xt − Bf̂t and
σ̂2
i =

1
T − 1

T∑
t=1

(
ε̂i ,t − ¯̂εi

) (
ε̂i ,t − ¯̂εi

)T and ¯̂εi =
1
T

T∑
t=1

ε̂i ,t .
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Statistical Factor Models: Factor Analysis

In statistical factor models, both the common-factors {ft} and the factor loadings B are
unknown. The primary methods for estimation of factor structure are

Factor Analysis (via maximum likelihood EM algorithm)
Principal Component Analysis (PCA)

Both methods model the covariance matrix Σ by focusing on the sample covariance matrix
Σ̂SCM computed as follows:

XT =
[
x1 · · · xT

]
(N × T )

X̄T = XT

(
I− 1

T
1T1TT

)
(demeaned by row)

Σ̂SCM =
1

T − 1
X̄T X̄.
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Factor Analysis Model

Linear factor model as cross-sectional regression:

xt = α + Bft + εt , t = 1, . . . ,T

with E [ft ] = µf and Cov [ft ] = Σf .

Invariance to linear transformations of ft :
The solution we seek for B and {ft} is not unique (this problem was not there when only B
or {ft} had to be estimated).
For any K × K invertible matrix H we can define f̃t = Hft and B̃ = BH−1.
We can write the factor model as

xt = α + Bft + εt = α + B̃f̃t + εt

with
E [̃ft ] = E [Hft ] = Hµf

Cov [̃ft ] = Cov [Hft ] = HΣfHT .
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Factor Analysis Model

Standard formulation of factor analysis:
Orthogonal factors: Σf = IK
This is achieved by choosing H = Λ−1/2ΓT , where Σf = ΓΛΓT is the spectral/eigen
decomposition with orthogonal K × K matrix Γ and diagonal matrix
Λ = diag (λ1, . . . , λK ) with λ1 ≥ λ2 ≥ · · · ≥ λK .
Zero-mean factors: µf = 0
This is achieved by adjusting α to incorporate the mean contribution from the factors:
α̃ = α + Bµf .

Under these assumptions, the unconditional covariance matrix of the observations is

Σ = BBT + Ψ.
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Factor Analysis: MLE

Maximum likelihood estimation:
Consider the model

xt = α + Bft + εt , t = 1, . . . ,T

where
α and B are vector/matrix constants
all random variables are Gaussian/Normal:

ft i.i.d. N (0, I)
εt i.i.d. N (0,Ψ) with Ψ = diag

(
σ2

1 , . . . , σ
2
N

)
xt i.i.d. N

(
α,Σ = BBT + Ψ

)
Probability density function (pdf):

p (x1, . . . , xT | α,Σ) =
T∏
t=1

p (xt | α,Σ)

=
T∏
t=1

(2π)−
N
2 |Σ|−

1
2 exp

(
−1
2

(xt −α)T Σ−1 (xt −α)

)
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Factor Analysis: MLE

Likelihood of the factor model:
The log-likelihood of the parameters (α,Σ) given the T i.i.d. observations is

L (α,Σ) = log p (x1, . . . , xT | α,Σ)

= −TN

2
log (2π)− T

2
log |Σ| − 1

2

T∑
t=1

(xt −α)T Σ−1 (xt −α)

Maximum likelihood estimation (MLE):

minimize
α,Σ,B,Ψ

T
2 log |Σ|+ 1

2
∑T

t=1 (xt −α)T Σ−1 (xt −α)

subject to Σ = BBT + Ψ

Note that without the constraint, the solution would be

α̂ =
1
T

T∑
t=1

xt and Σ̂ =
1
T

T∑
t=1

(xt − α̂) (xt − α̂)T .
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Factor Analysis: MLE

MLE solution:

minimize
α,Σ,B,Ψ

T
2 log |Σ|+ 1

2
∑T

t=1 (xt −α)T Σ−1 (xt −α)

subject to Σ = BBT + Ψ

Employ the Expectation-Maximization (EM) algorithm to compute α̂, B̂, and Ψ̂.
Estimate factor realization {ft} using, for example, the GLS estimator:

f̂t = (B̂T Ψ̂−1B̂)−1B̂T Ψ̂−1xt , t = 1, . . . ,T .

The number of factors K can be estimated with a variety of methods such as the likelihood
ratio (LR) test, Akaike information criterion (AIC), etc. For example:

LR(K ) = −(T − 1− 1
6

(2N + 5)− 2
3
K )
(

log |Σ̂SCM| − log |B̂B̂T + Ψ̂|
)

which is asymptotically chi-square with 1
2((N − K )2 − N − K ) degrees of freedom.

D. Palomar Factor Models 30 / 36



Principal Component Analysis

PCA: is a dimension reduction technique used to explain the majority of the information in the
covariance matrix.

N-variate random variable x with E [x] = α and Cov [x] = Σ.
Spectral/eigen decomposition Σ = ΓΛΓT where

Λ = diag (λ1, . . . , λK ) with λ1 ≥ λ2 ≥ · · · ≥ λK
Γ orthogonal K × K matrix: ΓTΓ = IN

Principal component variables: p = ΓT (x−α) with

E [p] = E
[
ΓT (x−α)

]
= ΓT (E [x]−α) = 0

Cov [p] = Cov
[
ΓT (x−α)

]
= ΓTCov [x]Γ = ΓTΣΓ = Λ.

p is a vector of zero-mean, uncorrelated random variables, in order of importance (i.e., the
first components explain the largest portion of the sample covariance matrix)
In terms of multifactor model, the K most important principal components are the factor
realizations.
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Factor Models: Principal Component Analysis

Factor model from PCA:
From PCA, we can write the random vector x as

x = α + Γp

where E [p] = 0 and Cov [p] = Λ = diag (Λ1,Λ2).
Partition Γ =

[
Γ1 Γ2

]
where Γ1 corresponds to the K largest eigenvalues of Σ.

Partition p =

[
p1
p2

]
where p1 contains the first K elements

Then we can write
x = α + Γ1p1 + Γ2p2 = α + Bf + ε

where
B = Γ1, f = p1 and ε = Γ2p2.

This is like a factor model except that Cov [ε] = Γ2Λ2Γ
T
2 , where Λ2 is a diagonal matrix

of last N − K eigenvalues but Cov [ε] is not diagonal...
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Factor Models: Why PCA?

But why is PCA the desired solution to the statistical factor model?
The idea is to obtain the factors from the returns themselves:

xt = α + Bft + εt , t = 1, . . . ,T

ft = CT xt + d

or, more compactly,

xt = α + B
(
CT xt + d

)
+ εt , t = 1, . . . ,T

The problem formulation is

minimize
α,B,C,d

1
T

∑T
t=1 ‖xt −α + B

(
CT xt + d

)
‖2

Solution is involved to derive and is given by: ft = ΓT
1 (xt −α) or, if normalized factors

are desired, ft = Λ
− 1

2
1 ΓT

1 (xt −α).
D. Palomar Factor Models 33 / 36



Factor Models via PCA

1 Compute sample estimates

α̂ =
1
T

T∑
t=1

xt and Σ̂ =
1
T

T∑
t=1

(xt − α̂) (xt − α̂)T .

2 Compute spectral decomposition:

Σ̂ = Γ̂Λ̂Γ̂T , Γ̂ =
[
Γ̂1 Γ̂2

]
3 Form the factor loadings, factor realizations, and residuals (so that xt = α̂ + B̂f̂t + ε̂t):

B̂ = Γ̂1Λ̂
1
2
1 , f̂t = Λ̂

− 1
2

1 Γ̂T
1 (xt − α̂) , ε̂t = xt − α̂− B̂f̂t

4 Covariance matrices:

Σ̂f =
1
T

T∑
t=1

f̂t f̂Tt = IK , Ψ̂ =
1
T

T∑
t=1

ε̂t ε̂
T
t = Γ̂2Λ̂2Γ̂2 (not diagonal!)

Σ̂ = Γ̂1Λ̂1Γ̂1 + Γ̂2Λ̂2Γ̂2 = B̂Σ̂f B̂T + Ψ̂.
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Principal Factor Method

Since the previous method does not lead to a diagonal covariance matrix for the residual, let’s
refine the method with the following iterative approach

1 PCA:
sample mean: α̂ = x̄ = 1

T XT1T
demeaned matrix: X̄T = XT − x̄1TT
sample covariance matrix: Σ̂ = 1

T−1 X̄T X̄
eigen-decomposition: Σ̂ = Γ̂0Λ̂0Γ̂

T
0

set index s = 0
2 Estimates:

B̂(s) = Γ̂(s−1)Λ̂
1
2
(s−1)

Ψ̂(s) = diag(Σ̂− B̂(s)B̂T
(s))

Σ̂(s) = B̂(s)B̂T
(s) + Ψ̂(s)

3 Update the eigen-decomposition as Σ̂− Ψ̂(s) = Γ̂(s)Λ̂(s)Γ̂
T
(s)

4 Update s ← s + 1 and repeat Steps 2-3 generating a sequence of estimates
(B̂(s), Ψ̂(s), Σ̂(s)) until convergence.
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Thanks

For more information visit:

https://www.danielppalomar.com
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