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Cointegration
Cointegration is a very interesting property that can be exploited in finance for trading.
Idea: While it may be difficult to predict individual stocks, it may be easier to predict
relative behavior of stocks.
Illustrative example: A drunk man is wandering the streets (random walk) with a dog.
Both paths of man and dog are nonstationary and difficult to predict, but the distance
between them is mean-reverting and stationary.
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Correlation vs. cointegration

Everybody is familiar with the concept of correlation between two random variables:
correlation is high when they co-move
correlation is zero when they move independently

So what is cointegration?
cointegration is high when two quantities move together or remain close to each other
cointegration is inexistent if the two quantities do not stay together

Clear? You can see why this concept may be difficult to grasp at first, but the truth is
that it’s easy.1
In the financial context:

Cointegration of (log-)prices yt refers to long-term co-movements.
Correlation of (log-)returns ∆yt = yt − yt−1 characterizes short-term co-movements in
(log-)prices yt.

1Y. Feng and D. P. Palomar, A Signal Processing Perspective on Financial Engineering. Foundations and
Trends in Signal Processing, Now Publishers, 2016.
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Correlation vs. cointegration
Example of high correlation with no cointegration:
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ỹ1t − y2t

D. Palomar (HKUST) Pairs Trading 6 / 63



Correlation vs. cointegration
Indeed the returns are highly correlated, see scatter plot:
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Correlation vs. cointegration
Opposite example of high cointegration with no correlation:
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Correlation vs. cointegration
Indeed the returns are not correlated, see scatter plot:
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Cointegration

A time series is called integrated of order p, denoted as I(p), if the time series obtained
by differencing the time series p times is weakly stationary,
while by differencing the time series p − 1 times is not weakly stationary.

Example: stock log-prices yt are integrated of order I(1) because
log-prices are not stationary
but log-returns yt − yt−1 are stationary (at least for some period of time).

A multivariate time series is said to be cointegrated if it has at least one linear
combination being integrated of a lower order, e.g., yt is not stationary but wTyt is
stationary for some weights w.
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Cointegration
Consider the following two nonstationary time series (e.g., log-prices of stocks):

y1t = γxt + w1t

y2t = xt + w2t

with a stochastic common trend defined as a random walk:
xt = xt−1 + wt

where w1t, w2t, wt are i.i.d. residual terms mutually independent.
The coefficient γ is the secret ingredient here.
If γ is known, then we can define the so-called “spread”

zt = y1t − γy2t = w1t − γw2t

which is stationary and mean reverting.
Interestingly, the differences (i.e., log-returns) ∆y1t and ∆y2t can have an arbitrarily small
correlation: ρ = 1/

(√
1 + 2σ2

1/σ2
√

1 + 2σ2
2/σ2

)
.
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Cointegration

The log-prices y1t and y2t are cointegrated and the spread zt = y1t − γy2t is stationary
(assume γ = 1):
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Basic Idea of Pairs Trading

Recall that if two time series are cointegrated, then in the long term they remain close to
each other.
In other words, the spread zt = y1t − γy2t is mean reverting.
This mean-reverting property of the spread can be exploited for trading and it is
commonly referred to as “pairs trading” or “statistical arbitrage”.
The idea behind pairs trading is to

short-sell the relatively overvalued stocks and buy the relatively undervalued stocks,
unwind the position when they are relatively fairly valued.
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Trading the spread

Suppose the spread zt = y1t − γy2t is mean-reverting with zero mean.
Stat-arb trading:

if spread is low (zt < −s0), then stock 1 is undervalued and stock 2 overvalued:
buy the spread (i.e., buy stock 1 and short-sell stock 2)
unwind the positions when it reverts to zero after i time steps zt+i = 0

if spread is high (zt > s0), then stock 1 is overvalued and stock 2 undervalued:
short-sell the spread (i.e., short-sell stock 1 and buy stock 2)
unwind the positions when it reverts to zero after i time steps zt+i = 0

The profit, say, from buying low and unwinding at zero is zt+i − zt = s0. So easy!
Indeed zt+i − zt = −γ(y2,t+i − y2t) + (y1,t+i − y1t), so the whole process is like having

used a portfolio with weigths w =
[

1
−γ

]
.

Recall that the return of a portfolio w is wT∆yt.
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Trading the spread
Illustration on how to trade the spread zt = y1t − γy2t:2
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Sell to unwind

2G. Vidyamurthy, Pairs Trading: Quantitative Methods and Analysis. John Wiley & Sons, 2004.
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Pairs trading or statistical arbitrage
Statistical arbitrage can be used in practice with profits:3
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3M. Avellaneda and J.-H. Lee, “Statistical arbitrage in the US equities market,” Quantitative Finance,
vol. 10, no. 7, pp. 761–782, 2010.
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But how to discover cointegrated pairs and γ?

One interesting approach is based on a VECM modeling of the universe of stocks: From
the parameter β contained in the low-rank matrix Π = αβT one can extract a
cointegration subspace. After that, one can design some portfolio within that
cointegration subspace.4

A simpler approach to discover pairs is by brute force, i.e., try exhaustively different
combinations of pairs of stocks and see if they are cointegrated.
But, given a potential pair, how do we obtain the “secret” γ?
Easy! Just a simple LS regression!

Recall that
γ is needed to form the spread to be traded (i.e., portfolio)
the spread mean µ is needed to determine the thresholds for entering a trade and unwind
later the position.

4Z. Zhao and D. P. Palomar, “Mean-reverting portfolio with budget constraint,” IEEE Trans. Signal
Process., vol. 66, no. 9, pp. 2342–2357, 2018.
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Design of a pairs trading strategy

We first focus on pairs trading (i.e., statistical arbitrage between two stocks) as the
example to introduce the main steps of statistical arbitrage.
In practice, pairs trading contains three main steps5:

Pairs selection: identify stock pairs that could potentially be cointegrated.
Cointegration test: test whether the identified stock pairs are indeed cointegrated or not.
Trading strategy design: study the spread dynamics and design proper trading rules.

5G. Vidyamurthy, Pairs Trading: Quantitative Methods and Analysis. John Wiley & Sons, 2004.
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Pairs selection: normalized price distance

Normalized price distance6 (as a rough proxy to measure cointegration):

NPD ≜
T∑

t=1
(p̃1t − p̃2t)2

where the normalized price p̃1t of stock 1 is given by p̃1t = p1t/p10. The normalized prices
of stock 2 defined similarly.
One can easily (i.e., cheaply) compute the NPD for all the possible combination of pairs
and select some pairs with smallest NPD as the potentially cointegrated pairs.
Later one can use a more refined measure of cointegration (more computationally
demanding).

6E. Gatev, W. N. Goetzmann, and K. G. Rouwenhorst, “Pairs trading: Performance of a relative-value
arbitrage rule,” Review of Financial Studies, vol. 19, no. 3, pp. 797–827, 2006.

D. Palomar (HKUST) Pairs Trading 22 / 63



Outline
1 Cointegration

2 Basic Idea of Pairs Trading

3 Design of Pairs Trading

Pairs selection
Cointegration test
Optimum threshold

4 LS Regression and Kalman for Pairs Trading

5 From Pairs Trading to Statistical Arbitrage (StatArb)∗

VECM
Optimization of mean-reverting portfolio (MRP)

6 Summary



Least Squares (LS) regression
If the spread zt is stationary, it can be written as7

zt = y1t − γy2t = µ + ϵt

where
µ represents the equilibrium value and
ϵt is a zero-mean residual.

Equivalently, it can be written as

y1t = µ + γy2t + ϵt

which now has the typical form of linear regression.
Least squares (LS) regression over T observations:

minimize
µ,γ

T∑
t=1

(y1t − (µ + γy2t))2

7G. Vidyamurthy, Pairs Trading: Quantitative Methods and Analysis. John Wiley & Sons, 2004.
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Cointegration test

LS regression is used to estimate the parameters µ and γ, obtaining the estimates µ̂ and
γ̂.
If y1t and y2t are I(1) and are cointegrated, then the estimates converge to the true values
as the number of observations goes to infinity8.
Using the estimated parameters µ̂ and γ̂, we can compute the residuals

ϵ̂t = y1t − γ̂y2t − µ̂.

Then, one has to decide whether the spread is stationary, i.e., ϵt is stationary. In practice,
the estimated residuals are used ϵ̂t

There are many well-defined mathematical tests for the stationarity of ϵ̂t, e.g., augmented
Dicky-Fuller (ADF) test, Johansen test, etc.

8R. F. Engle and C. W. J. Granger, “Co-integration and error correction: Representation, estimation, and
testing,” Econometrica: Journal of the Econometric Society, pp. 251–276, 1987.
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Optimum threshold

Once some identified pairs have passed the cointegration test, one still needs to decide
the entry and exit thresholds to open and unwind the positions, respectively.
For the sake of concreteness, we focus on studying the entry threshold:

open positions when the spread diverges from its long-term mean by s0
unwind the position when it reverts to its mean

Thus, the key problem now is how to design the value of s0 such that the total profit is
maximized.
Total profit:

profit of each trade × number of trades

profit of each trade is s0
number of trades is related to the zero crossings, which can be analized theoretically as well
as empirically.

We focus now on estimating the number of trades.
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Optimum threshold s0: Parametric approach∗

Suppose the spread follows a standard Normal distribution.
The probability that the spread deviates above from the mean by s0 or more is

1 − Φ(s0)

where Φ(·) is the c.d.f. of the standard Normal distribution.
For a path with T days, the number of tradable events is

T(1 − Φ(s0)).

For each trade, the profit is s0 and then the total profit is s0T(1 − Φ(s0)).
Then the optimal threshold is s⋆

0 = arg maxs0 {s0T(1 − Φ(s0))}.
In practice, one cannot know the true distribution but can estimate the distribution
parameters.
Then one can compute the total profit based on estimated distribution.
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Optimum threshold s0: Parametric approach∗

Optimal threshold s⋆
0 maximizes the total profit:
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Optimum threshold s0: Non-parametric approach∗

Suppose the observed sample path has length T: z1, z2, . . . , zT.
We consider J discretized threshold values as s0 ∈ {s01, s02, . . . , s0J} and the empirical
trading frequency for the threshold s0j is

f̄j =
∑T

t=1 1{zt>s0j}

T .

The empirical values f̄j may not be a smoothed enough and the resulted profit function
may not be accurate enough.
Smooth the trading frequency function by regularization:

minimize
f

J∑
j=1

(̄fj − fj)2 + λ
J−1∑
j=1

(fj − fj+1)2
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Optimum threshold s0: Non-parametric approach∗

The problem can be rewritten as

minimize
f

∥̄f − f∥2
2 + λ ∥Df∥2

2

where

D =


1 −1

1 −1
. . . . . .

1 −1

 ∈ R(J−1)×J.

Setting the derivative of the objective w.r.t. f to zero yields the optimal solution
f⋆ = (I + λDTD)−1f̄.
The optimal threshold is the one maximizes the total profit:

s⋆
0 = arg max

s0j∈{s01,s02,...,s0J}
{s0jfj} .
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Optimum threshold s0: Non-parametric approach∗

Optimal threshold s⋆
0 maximizes the total profit:
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LS regression for pairs trading
If the spread zt is stationary, it can be written as

zt = y1t − γy2t = µ + ϵt

where
µ represents the equilibrium value and
ϵt is a zero-mean residual.

Equivalently, it can be written as
y1t = µ + γy2t + ϵt

which now has the typical form for linear regression.
Least squares (LS) regression over T observations:

minimize
µ,γ

T∑
t=1

(y1t − (µ + γy2t))2

By stacking the T observations in the vectors y1 and y2, we can finally write:
minimize

µ,γ
∥y1 − (µ1 + γy2)∥2
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LS regression for pairs trading

Using the estimated parameters µ̂ and γ̂, we can compute the residuals
ϵ̂t = y1t − µ̂ − γ̂y2t.
Then, one has to decide whether the cointegration is acceptable or not so move to the
trading part.
There are many well-defined mathematical tests for the stationarity of ϵ̂t, e.g., augmented
Dicky-Fuller (ADF) test, Johansen test, etc.
Total profit:

profit of each trade × number of trades

profit of each trade is s0
number of trades is related to the zero crossings, which can be analized theoretically as well
as empirically.

Ideally, we want residuals with large amplitude (variance) as well as a strong mean
reversion because they directly affect the profit.
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LS regression for pairs trading
One good case:
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LS regression for pairs trading
But also a bad case:
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LS regression for pairs trading

The problem with the LS regression is that it assumes that µ and γ are constant.
In practice, they can change with time, resulting in a spread that drifts from equilibrim
never to revert back with huge potential losses.
Thus, in practice, µ and γ are time-varying and have to be tracked.
How to track time-varying parameters?

Of course… Kalman!!!
Well, you can also try a rolling regression or exponential smoothing, but Kalman works
better.
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Kalman for pairs trading

Recall the previous static relationship for cointegrated series y1t and y2t:

y1t = µ + γy2t + ϵt

Let’s make it time-varying:
y1t = µt + γty2t + ϵt

Let’s further assume that the parameters µt and γt change slowly over time:

µt+1 = µt + η1t

γt+1 = γt + η2t

Obviously, this fits nicely the Kalman framework!
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Interlude: The Kalman filter

Kalman filter consist of two equations that model the time-varying hidden state xt and
the observations yt:

xt+1 = Ttxt + ηt
yt = Ztxt + ϵt

The observation equation yt = Ztxt + ϵt relates the observation yt to the hidden state xt
as a linear relationship, where Zt is the time-varying observation matrix and ϵt is a
zero-mean Gaussian error ϵt ∼ N (0, R) with covariance matrix R.
The state transition equation xt+1 = Ttxt + ηt expresses the transition of the hidden
state from xt to xt+1 as a linear relationship, where Tt is the time-varying transition
matrix and ηt is a zero-mean Gaussian error ηt ∼ N (0, Q) with covariance matrix Q.
The Kalman filter is extremely versatile in modeling a variety of real-life processes.9

9J. Durbin and S. J. Koopman, Time Series Analysis by State Space Methods, 2nd Ed. Oxford University
Press, 2012.
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Kalman for pairs trading
Kalman filter (state transition equation and observation equation):

xt+1 = Txt + ηt
y1t = Ztxt + ϵt

where
xt ≜

[
µt
γt

]
is the hidden state

T ≜
[

1 0
0 1

]
is the state transition matrix

ηt ∼ N (0, Q) is the i.i.d. state transition noise with Q =
[

σ2
1 0

0 σ2
2

]
Zt ≜

[
1 y2t

]
is the observation coefficient matrix

ϵt ∼ N
(
0, σ2

ϵ

)
is the i.i.d. observation noise

Note that this is a time-varying Kalman filter since Zt is time-varying.
Parameters σ2

1, σ2
2, σ2

ϵ can be estimated using the EM algorithm using historical data for
calibration.
The hidden state path xt gives the sought time-varying coefficients.
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Kalman for pairs trading
Log-prices of ETFs EWH and EWZ:
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Kalman for pairs trading
Tracking of µ and γ by LS, rolling LS, and Kalman:

Aug 01
2000

Nov 01
2000

Feb 01
2001

May 01
2001

Aug 01
2001

Nov 01
2001

Feb 01
2002

May 01
2002

Aug 01
2002

Nov 01
2002

Feb 03
2003

May 01
2003

Aug 01
2003

Nov 03
2003

Tracking of mu 2000−08−01 / 2003−12−31

0.4

0.6

0.8

1.0

0.4

0.6

0.8

1.0

mu.LS
mu.rolling.LS
mu.Kalman

Aug 01
2000

Nov 01
2000

Feb 01
2001

May 01
2001

Aug 01
2001

Nov 01
2001

Feb 01
2002

May 01
2002

Aug 01
2002

Nov 01
2002

Feb 03
2003

May 01
2003

Aug 01
2003

Nov 03
2003

Tracking of gamma 2000−08−01 / 2003−12−31

0.3

0.4

0.5

0.6

0.3

0.4

0.5

0.6
gamma.LS
gamma.rolling.LS
gamma.Kalman

D. Palomar (HKUST) Pairs Trading 43 / 63



Kalman for pairs trading

Spreads achieved by LS, rolling LS, and Kalman:
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Kalman for pairs trading
Trading of spread from LS:

Aug 01
2000

Nov 01
2000

Feb 01
2001

May 01
2001

Aug 01
2001

Nov 01
2001

Feb 01
2002

May 01
2002

Aug 01
2002

Nov 01
2002

Feb 03
2003

May 01
2003

Aug 01
2003

Nov 03
2003

Z−score and trading on spread based on LS 2000−08−01 / 2003−12−31

−3

−2

−1

 0

 1

 2

−3

−2

−1

 0

 1

 2Z−score
signal

Aug 01
2000

Nov 01
2000

Feb 01
2001

May 01
2001

Aug 01
2001

Nov 01
2001

Feb 01
2002

May 01
2002

Aug 01
2002

Nov 01
2002

Feb 03
2003

May 01
2003

Aug 01
2003

Nov 03
2003

Cum P&L for spread based on LS 2000−08−01 / 2003−12−31

1.0

1.5

2.0

2.5

1.0

1.5

2.0

2.5

D. Palomar (HKUST) Pairs Trading 45 / 63



Kalman for pairs trading
Trading of spread from rolling LS:
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Kalman for pairs trading
Trading of spread from Kalman:
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Kalman for pairs trading
Wealth comparison:
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Kalman filter in finance

The Kalman filter can and has been used in many aspects of financial time-series
modeling as one could expect.10

Examples of univariate time series: rate of inflation, national income, level of
unemployment, etc.
Typical models include: local model, trend-cycle decompositions, seasonality, etc.
Examples of multivariate time series: inflation and national income.
Multiple time series allows for more sophisticated models including common factors,
cointegration, etc.
Also data irregularities can be easily handled, e.g., missing observations, outliers, mixed
frequencies.
Plenty of applications for nonlinear and non-Gaussian models as well, e.g., GARCH
modeling and stochastic volatility modeling.

10A. Harvey and S. J. Koopman, “Unobserved components models in economics and finance: The role of the
Kalman filter in time series econometrics,” IEEE Control Systems Magazine, vol. 29, no. 6, pp. 71–81, 2009.
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From pairs trading to statistical arbitrage

Pairs trading focuses on finding cointegration between two stocks.
A more general idea is to extend this statistical arbitrage from two stocks to more stocks.

The idea is still based on cointegration:
Try to construct a linear combination of the log-prices of multiple (more than two)
stocks such that it is a cointegrated mean-reversion process.

In the case of two assets, the spread is zt = y1t − γy2t, which can be understood as a

portfolio with weights: w =
[

1
−γ

]
.

In the general case of many assets, one has to properly design the portfolio w.
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VECM

Denote the log-prices of multiple stocks as yt and the log-returns as rt = ∆yt = yt − yt−1.
Most of the multivariate time-series models attempt to model the log-returns rt (because
the log-prices are nonstationary whereas the log-returns are weakly stationary, at least
over some time horizon).
However, it turns out that differencing the log-prices may destroy part of the structure.
The VECM11 tries to fix that issue by including an additional term in the model:

rt = ϕ0 + Πyt−1 +
p−1∑
i=1

Φ̃irt−i + wt,

where the term Πyt−1 is called error correction term.

11R. F. Engle and C. W. J. Granger, “Co-integration and error correction: Representation, estimation, and
testing,” Econometrica: Journal of the Econometric Society, pp. 251–276, 1987.
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VECM - Matrix Π

The matrix Π is of extreme importance.
Notice that from the model rt = ϕ0 + Πyt−1 +

∑p−1
i=1 Φ̃irt−i + wt one can conclude that

Πyt must be stationary even though yt is not!!!
If that happens, it is said that yt is cointegrated.
There are three possibilities for Π:

rank (Π) = 0: This implies Π = 0, thus yt is not cointegrated (so no mystery here) and the
VECM reduces to a VAR model on the log-returns.
rank (Π) = N: This implies Π is invertible and thus yt must be stationary already.
0 < rank (Π) < N: This is the interestinc case and Π can be decomposed as Π = αβT with
α, β ∈ RN×r with full column rank. This means that yt has r linearly independent
cointegrated components, i.e., βTyt, each of which can be used for pairs trading.
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Mean-reverting portfolio (MRP)

In the case of two assets, the spread is zt = y1t − γy2t, which can be understood as a

portfolio with weights: w =
[

1
−γ

]
.

In the general case of many assets, one has to properly design the portfolio w.
One interesting approach is based on a VECM modeling of the universe of stocks:

From the parameter β contained in the low-rank matrix Π = αβT one can simply use any
column of β (even all of them)
Even better, β defines a cointegration subspace and we can then optimize the portfolio
within that cointegration subspace.12,13

12Z. Zhao and D. P. Palomar, “Mean-reverting portfolio with budget constraint,” IEEE Trans. Signal
Process., vol. 66, no. 9, pp. 2342–2357, 2018.

13Z. Zhao, R. Zhou, and D. P. Palomar, “Optimal mean-reverting portfolio with leverage constraint for
statistical arbitrage in finance,” IEEE Trans. Signal Process., vol. 67, no. 7, pp. 1681–1695, 2019.
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Mean-reverting portfolio (MRP)

Consider the log-prices yt and use β to extract several spreads st = βTyt.
Let’s now use a portfolio w to extract the best mean-reverting spread from st as
zt = wTst.
To design the the portfolio w we have two main objectives (recall that total profit equals:
profit of each trade × number of trades):

we want large variance (profit of each trade): wTM0w, where
Mi = E

[
(st − E [st]) (st+i − E [st+i])T

]
we want strong mean reversion (number of trades): many proxies exist like the Portmanteau
statistics or crossing statistics.
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Mean-reverting portfolio (MRP)

For example, if we use the Portmanteau statistics as a proxy for the mean reversion, the
problem formulation becomes:

minimize
w

∑p
i=1

(
wTMiw
wTM0w

)2

subject to wTM0w = ν
w ∈ W.

Using other proxies, the formulation can be expressed more generally as14

minimize
w

wTHw + λ
∑p

i=1
(
wTMiw

)2

subject to wTM0w = ν
w ∈ W.

14Z. Zhao and D. P. Palomar, “Mean-reverting portfolio with budget constraint,” IEEE Trans. Signal
Process., vol. 66, no. 9, pp. 2342–2357, 2018.
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MRP in practice
Observe several stock log-prices and the spreads obtained from β:
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MRP in practice
Observe several stock log-prices and the spreads obtained from β:
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Summary

First of all, we have discovered the concept of cointegration.
We have learned the basic idea of pairs trading for cointegrated assets:

searching for a cointegrated spread is the first step
making sure that the chosen spread remains cointegrated is key (cointegrated tests)
obtaining the cointegration ratio γ and the entering and exiting thresholds are important
details.

We have learned of the use of Kalman (initially developed for tracking missiles) filtering
for improved pairs trading.
We have briefly explored the extension of pairs trading (for two stocks) to statistical
arbitrage (for more than two stocks):

VECM modeling is an important multivariate time-series modeling tool
sophisticated portfolio designs on the cointegration subspace are possible.

D. Palomar (HKUST) Pairs Trading 62 / 63



Thanks

For more information visit:

https://www.danielppalomar.com
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