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Returns

Let us denote the log-returns of N assets at time t with the vector rt ∈ RN .
The time index t can denote any arbitrary period such as days, weeks, months, 5-min
intervals, etc.
Ft−1 denotes the previous historical data.
Financial modeling aims at modeling rt conditional on Ft−1.
rt is a multivariate stochastic process with conditional mean and covariance matrix
denoted as1

µt , E [rt | Ft−1]

Σt , Cov [rt | Ft−1] = E
[
(rt − µt)(rt − µt)

T | Ft−1

]
.

1Y. Feng and D. P. Palomar, A Signal Processing Perspective on Financial Engineering. Foundations and
Trends® in Signal Processing, Now Publishers Inc., 2016.
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I.I.D. Model

For simplicity we will assume that rt follows an i.i.d. distribution (which is not very
inacurate in general).
That is, both the conditional mean and conditional covariance are constant

µt = µ,

Σt = Σ.

Very simple model, however, it is one of the most fundamental assumptions for many
important works, e.g., the Nobel prize-winning Markowitz portfolio theory2.

2H. Markowitz, “Portfolio selection”, J. Financ., vol. 7, no. 1, pp. 77–91, 1952.
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Sample Estimators

Consider the i.i.d. model:
rt = µ + wt ,

where µ ∈ RN is the mean and wt ∈ RN is an i.i.d. process with zero mean and constant
covariance matrix Σ.
The sample estimators (i.e., sample mean and sample covariance matrix) based on T
observations are

µ̂ =
1
T

T∑
t=1

rt

Σ̂ =
1

T − 1

T∑
t=1

(rt − µ̂)(rt − µ̂)T .

Note that the factor 1/ (T − 1) is used instead of 1/T to get an unbiased estimator
(asymptotically for T →∞ they coincide).
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So What is the Problem?

The sample estimates are only good for large T .
The sample mean is particularly a very inefficient estimator, with very noisy estimates.3

In practice, T is not large enough due to either:
unavailability of data
lack of stationarity of data which precludes the use of too much of it.

As a consequence, the sample estimates are really bad due to estimatior errors and a
portfolio design (e.g., Markowitz mean-variance) based on those estimates can be fatal.
Indeed, this is why Markowitz portfolio and similar are rarely used by practitioners.
One solution is to merge those estimates with whatever prior information we may have on
µ and Σ.

3A. Meucci, Risk and Asset Allocation. Springer, 2005.
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Factor Models

Factor models can be seen as a way to include some prior information either based on
explicit factors or some low-rank structural constraints on the covariance matrix.
Recall that factor models assumes the following structure for the returns:

rt = α + Bft + wt ,

where
α denotes a constant vector
ft ∈ RK with K � N is a vector of a few factors that are responsible for most of the
randomness in the market,
B ∈ RN×K denotes how the low dimensional factors affect the higher dimensional market;
wt is a white noise residual vector that has only a marginal effect.

The factors can be explicit or implicit.
Widely used by practitioners (they buy factors at a high premium).
Observe that the covariance matrix will be of the form of a low-rank matrix plus some
residual diagonal matrix: Σ = BBT + Ψ.
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Small Sample Regime

In the large sample regime, i.e., when the number of observations T is large, then the
estimators of µ and Σ are already good enough.
However, in the small sample regime, i.e., when the number of observations T is small
(compared to the dimension of the observations N), then the estimators become noisy and
unreliable.
The error of an estimator can be separated into two terms: the bias and the variance of
the estimator.
In the small sample regime, the main source of error comes from the variance of the
estimator (intuitively, because the estimator is based on a small number of random
samples, it is also too random).4

It is well-known in the estimation literature that lower estimation errors can be achieved by
allowing some bias in exchange of a smaller variance.
This can be implemented by shrinking the estimator to some known target values.

4A. Meucci, Risk and Asset Allocation. Springer, 2005.
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Shrinkage
Let θ denote the parameter to be estimated (in our case, either the mean vector or
covariance matrix) and θ̂ some estimation (e.g., the sample mean or the sample
covariance matrix).5

A shrinkage estimator is typically defined as

θ̂sh = (1− ρ) θ̂ + ρθtarget

where θtarget is the target (prior information) and ρ is the shrinkage trade-off parameter.
There are two main problems here:

choosing the target θtarget: this is problem dependent and may come from side information
or some discretionary views on the market
choosing the shrinkage factor ρ: even though it looks like a simple problem, tons of ink have
been devoted to it.

Note that the above shrinkage model is actually a linear model and more sophisticated
nonlinear models can be considered at the expense of mathematical complication and/or
computational increase.

5Y. Feng and D. P. Palomar, A Signal Processing Perspective on Financial Engineering. Foundations and
Trends® in Signal Processing, Now Publishers Inc., 2016.
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Shrinkage Factor

The choice of the shrinkage factor ρ is critical for the success of the shrinkage estimator.
Of course the target is also important, but ironically even when the target is something
totally uninformative, the results can still be surprisingly good.
There are two main philophies for the choice of ρ:

Cross-validation: this is a practical approach widely used in machine learning to choose
many of the parameters that usually have to be tuned. The idea is simple: 1) compute the
estimate θ̂ from the training data, 2) try different values of ρ and assess its performance
using another set of data called cross-validation data to choose the best value, and 3) use
the best ρ in yet a different set of new data called test data for the actual final performance.
Random Matrix Theory (RMT): this is based on a heavy dose of mathematics going back
to Wigner in 1955 who introduced the topic to model the nuclei of heavy atoms. This
approach allows for a clean computation of ρ which is valid under a number of assumptions
and in the limit of large T and N.
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Shrinkage for the Mean
Consider the sample mean estimator:

µ̂ =
1
T

T∑
t=1

rt

It is well-known from the central limit theorem that

µ̂ ∼ N
(
µ,

1
T
Σ

)
and the MSE is E

[
‖µ̂− µ‖2

]
=

1
T
Tr (Σ) .

The sample mean estimator is the least square solution as well as the maximum likelihood
estimator under a Gaussian distribution.
However, it was a shock when Stein proved in 19566 that in terms of MSE this approach is
suboptimal.

6C. Stein, “Inadmissibility of the usual estimator for the mean of a multivariate normal distribution”,
Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, no. 399,
pp. 197–206, 1956.
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James-Stein Estimator

Stein developed the estimator in 19567 and was later improved by James and Stein in
19618.
It can be shown that the James-Stein estimator dominates the least squares estimator, i.e.,
that it has a lower mean square error (at the expense of some bias).
The James-Stein estimator is a member of a class of Bayesian estimators that dominate
the maximum likelihood estimator.
The James-Stein estimator is

µ̂JS = (1− ρ) µ̂ + ρt

where t is the shrinkage target and 0 ≤ ρ ≤ 1 is the amount of shrinkage.

7C. Stein, “Inadmissibility of the usual estimator for the mean of a multivariate normal distribution”,
Proceedings of the Third Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, no. 399,
pp. 197–206, 1956.

8W. James and C. Stein, “Estimation with quadratic loss”, in Proceedings of the Fourth Berkeley Symposium
on Mathematical Statistics and Probability, vol. 1, 1961, pp. 361–379.
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James-Stein Estimator

It can be shown9 that a choice of ρ so that E
[∥∥µ̂JS − µ

∥∥2
]
≤ E

[
‖µ̂− µ‖2

]
is

ρ =
1
T

Nλ̄− 2λmax

‖µ̂− t‖2

where λ̄ = 1
NTr(Σ) and λmax are the average and maximum values, respectively, of the

eigenvalues of Σ.
Observe that ρ vanishes as T increases and the shrinkage estimator gets closer to the
sample mean.
Choices for the target include:

any arbitrary choice: for example t = 0 or t = 0.1× 1
grand mean: t = 1T µ̂

N × 1

volatility-weighted grand mean: t = 1T Σ̂−1µ̂

1T Σ̂−11
× 1

9A. Meucci, Risk and Asset Allocation. Springer, 2005.
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Example of James-Stein Estimator

Comparison of t = 0.2× 1, the grand mean, and the volatility grand mean:10
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10Y. Feng and D. P. Palomar, A Signal Processing Perspective on Financial Engineering. Foundations and
Trends® in Signal Processing, Now Publishers Inc., 2016.
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Shrinkage for the Covariance Matrix

We will now assume that the mean is known and the goal is to estimate the covariance
matrix or scatter matrix.
The shrinkage estimator has the form

Σ̂sh = (1− ρ) Σ̂ + ρT

where Σ̂ is the sample covariance matrix, T is the shrinkage target, and 0 ≤ ρ ≤ 1 is the
amount of shrinkage.
As usual with shrinkage, we need to determine both the target and ρ.
Choices for the target include:

any arbitrary choice: for example, the identity matrix T = I
scaled identity: T = 1

NTr(Σ̂)× I
diagonal with variances: T = Diag(Σ̂)

To determine ρ one can use an empirical approach like cross-validation or a more
mathematical-based approach like RMT.
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Shrinkage Factor via RMT

RMT can be used to determine ρ in a theoretical way, which becomes valid for large T
and N.
The first step is to choose some criterion to minimize and then one can try to use the
RMT tools.
We will consider the following criteria (but the literature on other criteria is very
extensive):

MSE of covariance matrix
Quadratic loss of precision matrix
Sharpe ratio.
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MSE of Covariance Matrix
Ledoit and Wolf made popular in 200311 and 200412 the use of RMT in financial
econometrics.
They considered shrinkage of the sample covariance matrix Σ̂ towards the identity matrix:

Σ̂sh = (1− ρ) Σ̂ + ρI

More precisely, they considered the following formulation:

minimize
ρ1,ρ2

E

[∥∥∥Σ̂sh −Σ
∥∥∥2

F

]
subject to Σ̂sh = ρ1I + ρ2Σ̂

whose objective is uncomputable since it requires knowledge of the true Σ!
11O. Ledoit and M. Wolf, “Improved estimation of the covariance matrix of stock returns with an application

to portfolio selection”, Journal of Empirical Finance, vol. 10, no. 5, pp. 603–621, 2003.
12O. Ledoit and M. Wolf, “A well-conditioned estimator for large-dimensional covariance matrices”, Journal of

multivariate analysis, vol. 88, no. 2, pp. 365–411, 2004.
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MSE of Covariance Matrix

If we ignore this little detail (lol), they obtained the optimal solution (termed oracle
estimator) as

Σ̂sh = (1− ρ) Σ̂ + ρT

with T = 1
NTr(Σ)× I and ρ =

E
[
‖Σ̂−Σ‖2

F

]
E
[
‖Σ̂−T‖2

F

] .
Obviously the previous solution is useless as it requires knowledge of the true Σ.
One could be tempted to simply use the sample covariance matrix Σ̂ in lieu of Σ.
However, that would be a big mistake since it would lead to a non-consistent estimator (in
fact, in this particular case it would lead to ρ = 0!).
This is where the magic of RMT comes into play: it turns out that asymptotically for large
T and N, one can derive a consistent estimator that does not require knowledge of Σ.

D. Palomar Shrinkage and Black-Litterman 22 / 57



Ledoit-Wolf Estimator

Ledoit and Wolf further derived the consistent estimator (termed LW estimator):

Σ̂sh = (1− ρ) Σ̂ + ρT

with

T =
1
N
Tr(Σ̂)× I

ρ = min

(
1,

1
T 2

∑T
t=1 ||Σ̂− rtrTt ||2F
||Σ̂− T||2F

)
.

D. Palomar Shrinkage and Black-Litterman 23 / 57



Example of Ledoit-Wolf Estimator

Comparison of sample covariance matrix, oracle estimator, and LW estimator:13
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Quadratic Loss of Precision Matrix

In many cases, it is the precision matrix (i.e., the inverse of the covariance matrix) that we
really care about. For example, if our goal is to design a portfolio like the minimum
variance portfolio:

wMV =
Σ̂−11

1T Σ̂−11
.

Aiming at minimizing the MSE in the estimation of Σ, E
[∥∥∥Σ̂sh −Σ

∥∥∥2

F

]
, may not be the

best strategy if one really cares about its inverse since the inversion operation can
dramatically amplify the estimation error.
It is more sensible to minimize the estimation error in the precision matrix directly∥∥∥(Σ̂sh)−1 −Σ−1

∥∥∥2

F
as formulated by Zhang et al.14

14M. Zhang, F. Rubio, and D. P. Palomar, “Improved calibration of high-dimensional precision matrices”,
IEEE Transactions on Signal Processing, vol. 61, no. 6, pp. 1509–1519, 2013.
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Quadratic Loss of Precision Matrix

Consider then the following formulation:15

minimize
ρ≥0,W�0

1
N

∥∥∥(Σ̂sh)−1 −Σ−1
∥∥∥2

F

subject to Σ̂sh = ρI + 1
T RWRT

W diagonal

where R =
[
r1 · · · rT

]
is the N × T data matrix and W is a T × T diagonal matrix

that allows for a weighting of the different samples.
Note that here the target matrix is T = 1

T RWRT , i.e., a weighted sample covariance
matrix.
This formulation is much harder because, even if Σ was known, there is no closed-form
solution as before. We will use the magic of RMT...

15M. Zhang, F. Rubio, and D. P. Palomar, “Improved calibration of high-dimensional precision matrices”,
IEEE Transactions on Signal Processing, vol. 61, no. 6, pp. 1509–1519, 2013.
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Quadratic Loss of Precision Matrix
It was proved16 that the optimal weights are W = αI, so no need for different weights, and
the following is an asymptotic consistent formulation (without Σ):

minimize
ρ,α≥0,δ

1
N

∥∥∥(Σ̂sh)−1 − Σ̂−1
∥∥∥2

F

+ 2
NTr

(
ρ−1

(
δ(Σ̂sh)−1 − (1− cN) Σ̂−1

)
+ Σ̂−1(Σ̂sh)−1

)
−
(
2cN − c2

N

) 1
NTr(Σ̂−2)

−
(
cN − c2

N

) ( 1
NTr(Σ̂−1)

)2

subject to Σ̂sh = ρI + αΣ̂

δ = α
(
1− 1

T Tr(αΣ̂(Σ̂sh)−1)
)

where cN = N/T .
The problem is highly nonconvex but it can be easily solved in practice via exhaustive
search over ρ and α.

16M. Zhang, F. Rubio, and D. P. Palomar, “Improved calibration of high-dimensional precision matrices”,
IEEE Transactions on Signal Processing, vol. 61, no. 6, pp. 1509–1519, 2013.
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Example of Precision Matrix Estimator

Comparison of sample covariance matrix, LW estimator, the previous estimator (ZRP), and the
oracle:17

60 70 80 90 100 110 120
10

15

20

25

30

35

Number of samples

Q
u

a
d

ra
ti
c
 l
o

s
s
 i
n

 d
b

 

 

SCM

LW

ZRP

Oracle

17Y. Feng and D. P. Palomar, A Signal Processing Perspective on Financial Engineering. Foundations and
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Maximizing the Sharpe Ratio

The previous formulations were based on selecting the shrinkage trade-off parameter ρ to
improve the covariance or precision estimation accuraty based on some measure of error
(e.g., the Frobenius norm).
However, the ultimate goal of estimating the covariance matrix is to employ it for some
portfolio design that is supposed to have a good out-of-sample performance.
Since the most common way to measure the performance of a portfolio is the Sharpe ratio,
we can precisely use it as our criterion of interest to choose ρ:

SR =
wTµ√
wTΣw

.

The portfolio that maximizes the Sharpe ratio is

wSR ∝ Σ−1µ.

In practice, of course µ and Σ are unknown and one must use some estimates, for
example, the sample mean µ̂ and a shrinkage estimator for the covariance matrix
Σ̂sh = ρ1I + ρ2Σ̂.
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Maximizing the Sharpe Ratio

Since the Sharpe ratio is invariant in w, we can arbitrarily set ρ2 = 1 to eliminate one
parameter to be chosen:

Σ̂sh = ρ1I + Σ̂

The optimal portfolio becomes then

wSR ∝ (Σ̂sh)−1µ̂.

And the realized out-of-sample Sharpe ratio is

SR =
µ̂T (Σ̂sh)−1µ√

µ̂T (Σ̂sh)−1Σ(Σ̂sh)−1µ̂
.
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Maximizing the Sharpe Ratio

We can finally formulate the problem as18

maximize
ρ1≥0

µ̂T (Σ̂sh)−1µ√
µ̂T (Σ̂sh)−1Σ(Σ̂sh)−1µ̂

subject to Σ̂sh = ρ1I + Σ̂

Again, this problem formulation is useless in practice because it requires knowledge of the
true µ and Σ.
But again this is where the magic of RMT comes into play...

18M. Zhang, F. Rubio, D. P. Palomar, and X. Mestre, “Finite-sample linear filter optimization in wireless
communications and financial systems”, IEEE Transactions on Signal Processing, vol. 61, no. 20,
pp. 5014–5025, 2013.
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Maximizing the Sharpe Ratio
The following formulation is computable and leads to a consistent estimator19

maximize
ρ1≥0

µ̂T (Σ̂sh)−1µ̂−δ√
bµ̂T (Σ̂sh)−1Σ̂(Σ̂sh)−1µ̂

subject to Σ̂sh = ρ1I + Σ̂
δ = D/(1− D)

D = 1
T Tr(Σ̂(Σ̂sh)−1)

b = T
Tr(W(I+δW)−2)

where W = I− 1
T 11T .

The interpretation is that one uses the estimations µ̂ and Σ̂ in lieu of the true unknown
quantities µ and Σ, but then some corrections terms are needed, i.e., δ in the numerator
and b in the denominator.
This problem is now computable but it is nonconvex. However, it is easy to solve it via an
exhaustive search over the scalar ρ1.

19M. Zhang, F. Rubio, D. P. Palomar, and X. Mestre, “Finite-sample linear filter optimization in wireless
communications and financial systems”, IEEE Transactions on Signal Processing, vol. 61, no. 20,
pp. 5014–5025, 2013.
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Example of Sharpe Ratio based Estimator

Consider the daily returns of 45 stocks under the Hang Seng Index from 03-Jun-2009 to
31-Jul-2011.
The portfolio is updated on a rolling window basis every 10 days and the past
T = 75, 76, . . . , 95 days are used to design the portfolios at each update period.
We compare the following portfolios:20

based on the proposed method (RMT)
based on LW estimator
based on the sample covariance matrix
uniform portfolio.

20Y. Feng and D. P. Palomar, A Signal Processing Perspective on Financial Engineering. Foundations and
Trends® in Signal Processing, Now Publishers Inc., 2016.
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Example of Sharpe Ratio based Estimator

The proposed method is the best, but note that, for T > 81, the performance starts to
degrade. This is probably because the lack of stationarity.
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Example of Sharpe Ratio based Estimator

A sparse portfolio was considered (forcing to zero all the portfolio weights that had an
absolute value less than 5% of the summed absolute values):
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Beyond Linear Shrinkage

Recall the the shrinkage covariance matrix estimation

Σ̂sh = (1− ρ) Σ̂ + ρI

It can be interpreded as a linear shrinkage of the eigenvalues (while keeping the same
eigenvectors) towards one:

λi (Σ̂
sh) = (1− ρ)λi (Σ̂) + ρ1

One can wonder whether a more general shrinkage of the eigenvalues is possible.
Precisely, recent promising results have been in the direction of nonlinear shrinkage of
eigenvalues based on very sophisticated RMT:

J. Bun, J.-P. Bouchaud, and M. Potters, “Cleaning correlation matrices”, Risk Management,
2006
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What is RMT Anyway?

Linear shrinkage of the covariance matrix Σ̂sh = (1− ρ) Σ̂ + ρI can be seen in terms of
eigenvalues:

λi (Σ̂
sh) = (1− ρ)λi (Σ̂) + ρ

And it is precisely about distribution of eigenvalues that RMT has a lot to say.
The topic is too mathematically involved to survey here, but it is interesting to see the
starting point of the whole theory.
A good reference of RMT applied to the cleaning of covariance and correlation matries
with the financial application in mind is:

J. Bun, J.-P. Bouchaud, and M. Potters, Cleaning Large Correlation Matrices: Tools from
Random Matrix Theory. Oxford Univ. Press, 2016
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Wishart Matrix

A Wishart matrix is a random symmetric matrix M of the form (i.e., a sample covariance
matrix):

M =
1
T
XTX

where X is an T × N random matrix of i.i.d. Gaussian elements Xij ∼ N (0, 1).
The population matrix of the data is Σ , E [M] = I, i.e., it has all eigenvalues identical to
1.
Matrix M is clearly random so, in principle, there is not much we can say about it.
However, for a fixed dimension N and in the limit of large T (i.e., T � N), we can say
that M→ Σ = I
But when N is not small compared to T , then this convergence result does not hold
anymore. In fact, for T ,N →∞ the matrix M is still random and does not converge to
anything.
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Wishart Matrix

RMT precisely considers the case when T ,N →∞ but their ratio q = N/T is not
vanishingly small. This is often called the large dimension limit.
In the case q = 0, such as the case of fixed N, we have already seen that the sample
eigenvalues converge to the population eigenvalues.
But what happens when q > 0?
The first result is due to the seminal work of Marcenko and Pastur in 1967.21

It turns out that the sample eigenvalues become noisy estimators of the “true”
(population) eigenvalues no matter how large T is!
Note that one specific element of the covariance matrix can be estimated with vanishing
error for large T , but because we have more and more entries as N also grows, the
eigenvalues always have some nonvanishing error.
This is also called “the curse of dimensionality”.

21V. A. Marcenko and L. A. Pastur, “Distribution of eigenvalues for some sets of random matrices”, Mat. Sb,
vol. 72, no. 4, pp. 507–536, 1967.
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Marcenko-Pastur Law for Wishart Matrices

Marcenko and Pastur showed in 196722 that in the limit when T ,N →∞ while N/T
converges to a fixed value q ∈ (0, 1), the empirical distribution of eigenvalues of
M = 1

T XTX converges almost surely to

ρMP (ν) =
1
2π

√
(ν+ − ν) (ν − ν−)

qν
, ν ∈ [ν−, ν+]

where ν± =
(
1±√q

)2.
Whereas for q ≥ 1, it is clear that M is a singular matrix with N − T zero eigenvalues,
which contribute

(
1− q−1) δ (ν) to the density above:

ρMP (ν) = max
(
1− q−1, 0

)
δ (ν) +

1
2π

√
(ν+ − ν) (ν − ν−)

qν
1 [ν−, ν+] .

22V. A. Marcenko and L. A. Pastur, “Distribution of eigenvalues for some sets of random matrices”, Mat. Sb,
vol. 72, no. 4, pp. 507–536, 1967.
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Marcenko-Pastur Law for Wishart Matrices
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Figure 1.1. Plot of the sample eigenvalues and the corresponding sample eigenvalues density under the
null hypothesis with N = 500. The blue line (q = 0) corresponds to a perfect estimation of the population
eigenvalues. The larger is the observation ratio q, the wider is the sample density. We see that even for
T = 4N , the deviation from the population eigenvalues is significant.

the edge of the bulk of eigenvalues is very rigid in the sense that the position of the edge has very
small fluctuations of order T�2/3. This provides a very simple recipe to distinguish meaningful
eigenvalues (beyond the edge) from noisy ones (inside the bulk) [27, 23]. This method is known
as “eigenvalue clipping”: all eigenvalues in the bulk of the Marčenko-Pastur spectrum are deemed
as noise and thus replaced by a constant value whereas the principal components outside of the
bulk (the spikes) are left unaltered. This very simple method provides robust out-of-sample per-
formance [28] and emphasizes that the notion of regularization – or cleaning – is very important in
high-dimension.

Even if the spiked covariance matrix model provides quite satisfactory results in many di↵erent
contexts [28], one may want to work without such an assumption on the structure of C using the
Marčenko-Pastur equation to reconstruct numerically the spectrum of C [29]. However, this is
particularly di�cult in practice since the Marčenko-Pastur equation is easy to solve in the other
direction, i.e. knowing the spectrum of C, we easily get the spectrum of E. In that respect, many
studies attempting to “invert” the Marčenko-Pastur equation appeared since 2008 [28, 30, 31, 32].
The first one consists in finding a parametric “true” spectral density that fits the data [28]. The
method of [30], further improved in [31], is completely di↵erent. Under the assumption that the
spectrum of C consists of a finite number of eigenvalues, an exact analytical estimator of each
population eigenvalue is provided. However, this method requires some very strong assumptions on
the structure of the spectrum of C. The last approach can be considered as a nonparametric method
and seems to be very appealing. Indeed, El Karoui proposed a “consistent” numerical scheme to
invert the Marčenko-Pastur equation using the observed sample eigenvalues [32]. Nevertheless,
while the method is very informative, it turns out that the algorithm also needs prior knowledge
on the location of the true eigenvalues which makes the implementation di�cult in practice.

9

Observe that the distortion becomes more and more substantial as q becomes large.
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Wigner’s Semicircle Law for Gaussian Matrices

Wigner’s semi-circle law from 1951 states that the empirical distribution of the eigenvalues
of X converges almost surely to

ρW (ν) =
1
2π

√
4− ν2, |ν| < 2

-2 -1 0 1 2
λ

0

0.1

0.2

0.3

0.4

0.5

ρ(
λ)

Wigner

Figure 2.2. Wigner semi-circle density (2.36) compared with empirical results with N = 500 (histogram)
from one sample, illustrating the convergence of the ESD at finite N to the asymptotic LSD.

2.2.3. The Marčenko-Pastur law. As stated in the introduction, the study of random matrices
began with John Wishart [8]. More precisely, let us consider the N ⇥ T matrix Y consisting of T
independent realizations of random centered Gaussian vectors of size N and covariance C, then the
Wishart matrix is defined as the N ⇥ N matrix M as M ..= T�1YY⇤. In multivariate statistics,
this matrix M is better known as the sample covariance matrix (see Chapter 3). For any N and
T > N , Wishart derived the exact PDF of the entries M which reads:

Pw(M|C) =
1

2NT/2�N (T/2)

det(M)
T�N�1

2

det(C)T/2
e�

T
2 TrC�1M. (2.38)

As alluded in the introduction, we say that M (given C) follows a Wishart(N, T, C/T ) distribution.
In the “isotropic” case, i.e., when C = IN , we can deduce from (2.38)

Pw(M|IN ) / det(M)
T�N�1

2 e�
T
2 TrM := e�

T
2 TrM+ T�N�1

2 Tr log M, (2.39)

which clearly belongs to the class of Boltzmann ensembles (2.1). Throughout the following, we shall
denote by W the N ⇥N matrix whose distribution is given by (2.39). Ignoring sub-leading terms,
the corresponding potential function is given by:

V (z) =
1

2q
[z � (1� q) log z] , with q := N/T. (2.40)

23
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RMT in Finance

The Marcenko-Pastur law has clearly relevance in finance because a key quantity in
portfolio design is the covariance matrix of the log-returns, which could be modeled as
Gaussian.
In fact, even for non-Gaussian distributions with heavier tails like in finance, the
Marcenko-Pastur law still seems to hold if one uses robust estimators against heavy tails.
However, from factor modeling, we know that returns have a strong market component
and perhaps other few factors plus the idiosyncratic component:

the idiosyncratic component, called the “bulk”, has a distribution that follows the
Marcenko-Pastur law
the market (and other strong factors) are sometimes referred to as outliers and are totally
separated from the bulk.
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Black-Litterman Model
The Black-Litterman model23 allows to incorporate investor’s views about the expected
return µ.
Market Equilibrium: One source of information for µ is the market, e.g., the sample
estimate µ̂ = 1

T

∑T
t=1 rt . We can then explicitly write the estimate π = µ̂ in terms of the

actual µ and the estimation error:

π = µ + w, w ∼ N (0, τΣ)

where the error has been statistically modeled with a covariance matrix equal to a scaled
Σ (which is assumed known for simplicity).
Investor’s View: Suppose we have K views summarized from some investors written in
the following form:

v = Pµ + e, e ∼ N (0,Ω)

where P ∈ RK×N and v ∈ RK characterize the absolute or relative K views and
Ω ∈ RK×K measures the uncertainty in the views.

23F. Black and R. Litterman, “Asset allocation: Combining investor views with market equilibrium”, The
Journal of Fixed Income, vol. 2, no. 1, pp. 7–18, 1991.
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Example of Investor’s Views

Suppose there are N = 5 stocks and two independent views on them:24

Stock 1 will have a return of 1.5% with standard deviation of 1%
Stock 3 will outperform Stock 2 by 4% with a standard deviation of 1%

Mathematically, we can express these two views as[
1.5%
4%

]
=

[
1 0 0 0 0
0 −1 1 0 0

]
µ + e

where e ∼ N (0,Ω) and Ω =

[
1%2 0
0 1%2

]
.

The parameter τ also has to be specified: some researchers set τ ∈ [0.01, 0.05], others
τ = 1, while some suggest τ = 1/T (i.e., the more observations the less uncertainty on
the market equilibrium).25

24F. J. Fabozzi, S. M. Focardi, and P. N. Kolm, Quantitative Equity Investing: Techniques and Strategies.
Wiley, 2010.

25T. M. Idzorek, “A step-by-step guide to the Black-Litterman model”, Forecasting Expected Returns in the
Financial Markets, p. 17, 2002.
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Example of Investor’s Views

In some occasions, the investor may only have qualitative views (as opposed to
quantitative ones), i.e., only P is available.
Then, one can choose:26

vi = (Pπ)i + ηi

√
(PΣPT )ii , i = 1, . . . ,N

where ηi ∈ {−β,−α,+α,+β} defines “very bearish”, “bearish”, “bullish”, and “very bullish”
views, respectively. Typical choices are α = 1 and β = 2.
As for the uncertainty:

Ω =
1
c
PΣPT

where the scatter structure of uncertainty is inherited from the market volatilities and
correlations and c ∈ (0,∞) represents the overall level of confidence in the views.

26A. Meucci, Risk and Asset Allocation. Springer, 2005.
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Alternative to Marquet Equilibrium: CAPM

An alternative market equilibrium can be obtained from CAPM:

E [ri ,t ]− rf = βi (E [rM,t ]− rf )

where rf is the return of the risk-free asset and rM,t is the market return which can be
expressed as rM,t = wT

M rt with wM being the market portfolio.
Then

π = µ̂mkt − rf = β (E [rM,t ]− rf )

with
β = Cov (rt , rM,t) /Var (rM,t)

Thus
π = δCov (rt , rM,t) = δΣwM

with δ = (E [rM,t ]− rf ) /Var (rM,t).
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Black-Litterman Model - Weighted LS Approach
Let us combine the two equations

π = µ + w, w ∼ N (0, τΣ)

and v = Pµ + e, e ∼ N (0,Ω)

in a more compact form as

y = Xµ + ε, ε ∼ N (0,V)

with y =

[
π
v

]
, X =

[
I
P

]
, and V =

[
τΣ 0
0 Ω

]
.

We can now estimate µ from the observations y = Xµ + ε (a Bayesian interpretation is
also possible).
This is just a weighted least squares (LS) problem:27

minimize
µ

(y − Xµ)T V−1 (y − Xµ)

27Y. Feng and D. P. Palomar, A Signal Processing Perspective on Financial Engineering. Foundations and
Trends® in Signal Processing, Now Publishers Inc., 2016.
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Black-Litterman Model - Weighted LS Approach

The solution is simply

µ̂BL =
(
XTV−1X

)−1
XTV−1y

We can substitute the expressions for y, X, and V, leading to

µ̂BL =
(

(τΣ)−1 + PTΩ−1P
)−1 (

(τΣ)−1 π + PTΩ−1v
)

Consider two extremes:
τ = 0: we give total accuracy to the market equilibrium view and indeed

µ̂BL = π , µ̂mkt

τ →∞: we give no accuracy at all to the market equilibrium view and therefore the
investor’s views dominate

µ̂BL =
(
PTΩ−1P

)−1
PTΩ−1v , µ̂views
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Black-Litterman Model - Weighted LS Approach

We can now rewrite the solution as

µ̂BL =
(

(τΣ)−1 + PTΩ−1P
)−1 (

(τΣ)−1 π + PTΩ−1v
)

=
(

(τΣ)−1 + PTΩ−1P
)−1 (

(τΣ)−1 π + PTΩ−1Pµ̂views

)
= Wmktµ̂mkt + Wviewsµ̂views

where Wmkt =
(

(τΣ)−1 + PTΩ−1P
)−1

(τΣ)−1 and

Wviews =
(

(τΣ)−1 + PTΩ−1P
)−1

PTΩ−1P.

Note that Wmkt + Wviews = I, so the Black-Litterman solution µ̂BL is a combination of the
two extreme solutions µ̂mkt and µ̂views.
The Black-Litterman model is similar to the previous James-Stein shrinkage estimator
where the target comes now from the investor’s views µ̂views and the shrinkage scalar
parameter is now a matrix.
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Black-Litterman Model - Bayesian Approach 1

This is actually the original formulation by Black and Litterman28.
We model the returns as

r ∼ N (µ,Σ)

where the covariance Σ can be estimated from past returns but µ cannot be known with
certainty.
BL then models µ as a random variable normally distributed

µ ∼ N (π, τΣ)

where π represents the best guess for µ and τΣ the uncertainty on this guess. Note that
then r ∼ N (π, (1 + τ)Σ).
The views are modeled as

Pµ ∼ N (v,Ω)
28F. Black and R. Litterman, “Asset allocation: Combining investor views with market equilibrium”, The

Journal of Fixed Income, vol. 2, no. 1, pp. 7–18, 1991.
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Black-Litterman Model - Bayesian Approach 1

Then the posterior distribution for µ is obtained from Bayes formula:

µ | v,Ω ∼ N
(
µBL,Σ

µ
BL

)
where

µBL =
(

(τΣ)−1 + PTΩ−1P
)−1 (

(τΣ)−1 π + PTΩ−1v
)

and
Σµ

BL =
(

(τΣ)−1 + PTΩ−1P
)−1

.

But we really want the posterior for the returns

r | v,Ω ∼ N (µBL,ΣBL)

where ΣBL = Σµ
BL + Σ.

Using the matrix inversion lemma, we can further rewrite

µBL = π + τΣPT (τPΣPT + Ω)−1 (v − Pπ)

ΣBL = (1 + τ)Σ− τ2ΣPT (τPΣPT + Ω)−1PΣ.
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Black-Litterman Model - Bayesian Approach 2

In this case, µ is not modeled as a random variable but simply as µ = π.29

The views are modeled on the random returns rather than on µ: v = Pr + e.
The conditional distribution is modeled as

v | r ∼ N (Pr,Ω)

Applying Bayes we get
r | v,Ω ∼ N (µm

BL,Σ
m
BL)

where

µm
BL = π + ΣPT (PΣPT + Ω)−1 (v − Pπ)

Σm
BL = Σ−ΣPT (PΣPT + Ω)−1PΣ.

29A. Meucci, Risk and Asset Allocation. Springer, 2005.
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Beyond Black-Litterman

The following references by Meucci are recommended for more sophisticated ways to
incorporate views in the portfolio design:

Meucci, Attilio. Beyond Black-Litterman: Views on Non-Normal Markets. November
2005, Available at SSRN: http://ssrn.com/abstract=848407
Meucci, Attilio. Beyond Black-Litterman in Practice: A Five-Step Recipe to Input Views
on non-Normal Markets. May 2006, Available at SSRN:
http://papers.ssrn.com/sol3/papers.cfm?abstract id=872577
Meucci, Attilio. The Black-Litterman Approach: Original Model and Extensions. April
2008, Available at SSRN: http://ssrn.com/abstract=1117574
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Thanks

For more information visit:

https://www.danielppalomar.com
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