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@ MOTIVATION



Basic Problem

@ Task: estimate mean and covariance matrix from data {x;}.

o Difficulties: outlier corrupted observation (heavy-tailed underlying
distribution).
1-dimensional Probability Distribution Function
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Sample Average

@ A straight-forward solution

p=E(x) R=E(x-p)(x—pn)"
I

1 N 1 N
~ 3 A_ 3 ~ . ~ ’
u—Nélx, R—Nél(x,—u)(x,—u) .

@ Works well for i.i.d. Gaussian distributed data.
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Influence of Qutliers

@ What if the data is corrupted?

o A real-life example: Kalman filter lost track of the spacecraft during

an Apollo mission because of outlier observation (caused by system
noise).

EXAMPLE 1: SYMMETRICALLY DISTRIBUTED OUTLIERS

x ~ HeavyTail (1, R)

1 05
R={ g5 5]
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True location and shape




Location and shape estimated by sample average
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Location and shape estimated by Cauchy MLE
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Influence of Qutliers

o What if the data is corrupted?

EXAMPLE 2: ASYMMETRICALLY DISTRIBUTED OUTLIERS

x ~ 0.9N (1,R) + 0.1N (i, R)

o el W O
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True location and shape

*




Location and shape estimated by sample average




Location and shape estimated by Cauchy MLE

*
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But Is Financial Data Really Heavy-Tailed?

@ Histograms of S&P 500 log-returns:

Histogram of daily log-returns Histogram of weekly log-returns

Histogram of biweekly log-returns
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Heavy-tailness

e QQ plots of S&P 500 log-returns:

QQ plot of daily log-returns

QQ plot of weekly log-returns

QQ plot of biweekly log-returns
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‘Sample Quanies
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Theoretical Quanties.

QQ plot of bimonthly log-returns
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QQ plot of quarterly log-returns
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Heavy-tailness vs frequency

o Kurtosis of S&P 500 log-returns vs frequency:

Kurtosis of SP500 log-returns

10

excess kurtosis
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© ROBUST COVARIANCE MATRIX ESTIMATORS
@ Robust M-estimator



@ Recall the Gaussian distribution
_1 1 14
f(x) = Cdet(X) 2exp —5X X x ).
o Negative log-likelihood function

N
L(X) = 7 logdet (¥) + ZXTZ X.

@ Sample covariance matrix

N
A 1 T
= N E XiX;
i=1
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M-estimator (1960'’s)

e Minimizer of loss function [Mar-Mar-Yoh'06]:

N

L(X) = g log det (X) + Zp (x,T}:_lx,-> :
i=1

@ Solution to fixed-point equation:

e If p is differentiable
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© ROBUST COVARIANCE MATRIX ESTIMATORS

@ Tyler's M-estimator for Elliptical Distributions



Sample Covariance Matrix

@ SCM can be viewed as:

= E WiX;X
i=1
with w; = &, Vi.

@ MLE of a Gaussian distribution with loss function
N log det (X) + Z x] T 71x;
2 I

@ Why is SCM sensitive to outliers? ®
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Sample Covariance Matrix

o Consider distance

di =4/ XI-TZ_IX,'.

ow,':ﬁ

normal samples and
outliers contribute to X
equally.

@ Quadratic loss.
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Tyler’'s M-estimator

e Given f (x) — use MLE.
e x; ~ elliptical (0, X), what shall we do?
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Tyler’'s M-estimator

e Given f (x) — use MLE.
e x; ~ elliptical (0, X), what shall we do?

A X;

@ Normalized sample s; = e
ill2

pdf Loss function

1 —K/2
f(s) = Cdet(R)" 2 (sTR_ls) N KU -
5 log det (Z)—'—E ; log (s,- b s,-)

x’.TZ*lx,-

o Tyler [TylI'87] proposed covariance estimator % as solution to

N K
.
=D waixl W= e
i=1 i !

@ Why is Tyler's estimator robust to outliers? ©
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Tyler’'s M-estimator

o Consider distance :
= /xTE 1x; &f
di = /%] T77x;. epsilon
contribution

o w; x 1/d?

Outliers are down-weighted.

@ Logarithmic loss.
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Tyler’'s M-estimator

@ Tyler's M-estimator solves fixed-point equation

N
K x;x]

z _ 1
N xI ¥ 1x
=1 1
o Existence condition: N > K.
@ No closed-form solution.
o lterative algorithm
5 K N x,-x,-T
t+1 — 5 TTe—1_
N = x/ 2 x;

Y1 =%41/Tr (it—l-l) .
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@ Unsolved Problems



Unsolved Problems

PROBLEM 1
What if the mean value is unknown? J
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Unsolved Problems

PROBLEM 1
What if the mean value is unknown? J
PROBLEM 2
How to deal with small sample scenario? J
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Unsolved Problems

PROBLEM 1
What if the mean value is unknown?

PROBLEM 2
How to deal with small sample scenario?

PROBLEM 3

How to incorporate prior information?
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© ROBUST MEAN-COVARIANCE ESTIMATORS
@ Introduction



Robust M-estimators for Location and Scatter

e Maronna's M-estimators [Mar'76]:

2| -
.MZ
=

—_

Il
—

— ) R (xi — 1)) (xi — ) =

1
N -

IIMZ

wam—mTwwn—m)m—uﬂm—mTzR
@ Special examples:

e Huber's loss function.
o MLE for Student’s t-distribution.
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MLE of the Student’s t-distribution

@ Student's t-distribution with degree of freedom v:

_Ktv
2

f(x) = Cdet (R)_% (1 + % (x—p) R (x— u,))
o Negative log-likelihood

N
LY (pu,R) = > log det (R)
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MLE of the Student’s t-distribution

o Estimating equations

K+1/N Xj — [

=0
N 2ot R p)
Kevsn  ommbo-m’ g
N ,;w( T R

o Weight w; (v) = &~ . u+(x,~—u)T1R*1(x,-—u) decreases in v.

@ Unique solution for v > 1.

ROBUST SHRINKAGE MEAN-COVARIANCE ESTIMATION

D. PALOMAR



© ROBUST MEAN-COVARIANCE ESTIMATORS

@ Joint Mean-Covariance Estimation for Elliptical Distributions



Joint Mean-Covariance Estimation

@ Assumption: x; ~ elliptical (149, Ro)-
@ Goal: jointly estimate mean and covariance
o Robust to outliers.
o Easy to implement.
o Provable convergence.
@ A natural idea:
MLE of heavy-tailed distributions.
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Joint Mean-Covariance Estimation

e Method: fitting {x;} to Cauchy (Student’s t-distribution with v = 1)
likelihood function.
o Conservative fitting.

o Trade-off: robustness < efficiency.
o Tractability.

) ﬁ — CRO
¢ depends on the unknown shape of the underlying distribution —>
estimate R/Tr (R) instead.

e Existence condition N > K + 1 [Ken-Tyl'91].
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Algorithm

@ No closed-form solution.
o Numerical algorithm [Ken-Tyl-Var'94]:

_ ZIIVZ]_ wi (Nn Rt) Xj

Her1 =
Z,{V:]_ Wi (P’t’ Rt)
N
K+1 T
Riy1 = N Wi (H‘t: Rt) (Xi - .Ut+1) (Xi - Nt+1)
i=1
with
1
Wi (l"’ R) =
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@ SMALL SAMPLE REGIME
@ Shrinkage Robust Estimator with Known Mean



Regularization-Known Mean

@ Problem:
insufficient | | estimator | algorithms
observations| | does not exist | |fail to converge

@ Methods:

o Diagonal loading.
o Penalized or regularized loss function.
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Diagonal Loading

e Modified Tyler's iteration [Abr-Spe'07]
N
~ K x;xI
i1=— ) ———+pl
tH1 = 2 XTE, x; +p

2= )~:t+1/Tr (s:t-s-l) .

@ Provable convergence [Che-Wie-Her'11].

Systematic way of choosing parameter p [Che-Wie-Her'11].

But without a clear motivation.
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Penalized Loss Function |

@ Wiesel's penalty [Wie'l2]
h(X) = logdet (X) + Klog Tr (X7'T) ,

Y « T minimizes h(X).

@ Penalized loss function
Wiesel N T
L () = Iogdet Zlog< )2 x)
a (logdet (X) + K log Tr (X71T)).

o Algorithm

N Kn xix] . 20 KT
N+20 N = xTE x; N+20Tr(X,'T)

zt—l—l =
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Penalized Loss Function |l

o Alternative penalty: KL-divergence
h(X) = logdet (X) + Tr (Z7'T),
Y = T minimizes h(X).
@ Penalized loss function
KL N Te-1,.
LH(X) = 5 logdet (X) + Zlog x| X1
+a (logdet (X) + Tr (Z 'T)).

e Algorithm?
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Questions

Existence & Uniqueness? J
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Questions

Existence & Uniqueness? J

Which one is better? )
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Existence & Uniqueness? J

Which one is better? )

Algorithm convergence? J ’
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Existence and Uniqueness for Wiesel’'s Shrinkage

Estimator

THEOREM [SUN-BAB-PAL’14|

Wiesel's shrinkage estimator exists a.s., and is also unique up to a positive
scale factor, if and only if the underlying distribution is continuous and
N > K—2a.
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Existence and Uniqueness for Wiesel’'s Shrinkage

Estimator

THEOREM [SUN-BAB-PAL’14|

Wiesel's shrinkage estimator exists a.s., and is also unique up to a positive
scale factor, if and only if the underlying distribution is continuous and
N > K—2a.

e Existence condition for Tyler's estimator: N > K

o Regularization relaxes the requirement on the number of samples.

o Setting o = 0 (no regularization) reduces to Tyler's condition.

o Stronger confidence on the prior information = less number of samples
required.
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Existence and Uniqueness for KL-Shrinkage

Estimator

THEOREM [SUN-BAB-PAL’14|

KL-shrinkage estimator exists a.s., and is also unique, if and only if the
underlying distribution is continuous and N > K—2«

D. PALOMAR
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Existence and Uniqueness for KL-Shrinkage

Estimator

THEOREM [SUN-BAB-PAL’14|

KL-shrinkage estimator exists a.s., and is also unique, if and only if the
underlying distribution is continuous and N > K—2«

Compared with Wiesel's shrinkage estimator:
@ Share the same existence condition.

@ Without scaling ambiguity.

D. PALOMAR
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Existence and Uniqueness for KL-Shrinkage

Estimator

THEOREM [SUN-BAB-PAL’14|

KL-shrinkage estimator exists a.s., and is also unique, if and only if the
underlying distribution is continuous and N > K—2«

Compared with Wiesel's shrinkage estimator:
@ Share the same existence condition.

@ Without scaling ambiguity.

Any connection? Which one is better?
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Equivalence

THEOREM [SUN-BAB-PAL’14| J

Wiesel's shrinkage estimator and KL-shrinkage estimator are equivalent.
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Equivalence

THEOREM [SUN-BAB-PAL’14| J

Wiesel's shrinkage estimator and KL-shrinkage estimator are equivalent.

@ Fixed-point equation for KL-shrinkage estimator

2
T
N+2aNZ T}: X; N+2a

@ The solution satisfies equality
Tr(Z7'T) =K.
o Fixed-point equation for Wiesel's shrinkage estimator

2 KT

x= N+2a/\/Z N+2aTr(>:*1T)'
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Majorization-Minimization (MM)

o Problem:
minimize  f (x)
subjectto x€ X

@ Majorization-minimization:

Xt

g (x|xt)

A 4

Xe1 = arg min g (x|x;)

with

f(xe) = g (xe|x¢)
f(x) <g(x|x:) ¥xe X
' (xe;d) = g’ (x¢;d|x:) Vxe +d € X
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Modified Algorithm for Wiesel’'s Shrinkage

Estimator

@ Surrogate function

N N - Tr(Z7'T)
g(Z|E) = = 5 log det (=) + Zl 7 ; , +a <Iogdet(Z)+KTr(zt1T)
o Update
N

P

2a KT
a N 4 T}:t x N+2aTr (')

zt+1 =

@ Normalization } y
Y= zt+1/Tr (Zt+1)

THEOREM [SUN-BAB-PAL’14|

Under the existence conditions, the modified algorithm for Wiesel's
shrinkage estimator converges to the unique solution.
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Algorithm for KL-Shrinkage Estimator

@ Surrogate function

.
g (Z|%,) = Nlogdet(}: Z I %

txl

o (logdet (X) + Tr (Z T))

o Update

THEOREM [SUN-BAB-PAL’14|

Under the existence conditions, the algorithm for KL-shrinkage estimator
converges to the unique solution.
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Algorithm Convergence

@ Parameters: K =10, N = 8.

10 10
= 10" = 10°
o+ o+
o 40 g 10°
10° 107
10° 10' 10° 10° 10 10° 10' 10° 10° 10
t t
10° 10°
&I’;a 107° &
< <
) o
<& E
107" 10°
10° 10' 10° 10° 10 10° 10' 10° 10° 10*

(a) (B)

FIGURE: (a) when the existence conditions are not satisfied with oy = 0.96, and
(b) when the existence conditions are satisfied with ag = 1.04.
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@ SMALL SAMPLE REGIME

@ Shrinkage Robust Estimator with Unknown Mean



Regularization-Unknown Mean

@ Problem: pg is unknown!
o A simple solution: plug-in fi

e Sample mean
e Sample median

e But...

o Two-step estimation, not jointly optimal.
o Estimation error of fi propagates.

@ To be done: shrinkage estimator for joint mean-covariance estimation
with target (t, T).
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Regularization-Unknown Mean

@ Method: adding shrinkage penalty h(u, R) to loss function (negative
log-likelihood of Cauchy distribution).

@ Design criteria:

o h(p,R) attains minimum at prior (t, T).
o h(t,T)=h(t,rT), Vr>0.

@ Reason:

e R can be estimated up to an unknown scale factor.
o T is a prior for the parameter R/Tr (R).
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Regularization-Unknown Mean

PROPOSED PENALTY FUNCTION
h(p,R) = a (Klog (Tr (R7'T)) + log det (R))

+7log (1 +(p—t) R (p —t)>
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Regularization-Unknown Mean

PROPOSED PENALTY FUNCTION
h(p,R) = a (Klog (Tr (R7'T)) + log det (R))
+7log (1 +(p—t) R (u— t))

PROPOSITION [SUN-BAB-PAL’15]
(t,rT), Yr > 0 are the minimizers of h(u, R).
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Regularization-Unknown Mean

@ Resulting optimization problem:

N
o (K+1) T -1
minim | <1+ i—u)TR ,-—,L>
inimize —— ’_E_l og (xi — ) (xi — n)

+o (K Iog_(Tr (R7'T)) + log det (R))

+v log <1+(u—t)T R™! (p,—t)) —i—g log det (R).

. . L. shrink
@ A minimum satisfies the stationary condition maiu(“’m =0 and
aLShrink(p,R) . 0
OR -
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Regularization-Unknown Mean

o di(1.R) = \/(x — ) R (x; — ), ok (1.R) = \/(t — ) R (t — pa).

_ 1 L
ow;(u,R)—WWt(“R) 1+d?(u.R)

@ Stationary condition:

N
o Z (1, R) (i — ) (xi — )"
2’y 2aK T
g (R (k- t) (/~L—t)T+N+20K Tr (R1T)

:(K+l)z Y wi (1, R) x; 4 29w (11, R) t
(K+1)ZI 1WI(H7 )+2’7Wt(u,R)
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Existence and Uniqueness

THEOREM [SUN-BAB-PAL’15]

Assuming continuous underlying distribution, the estimator exists under
either of the following conditions:
(i) if v > 71, then a > ag,
(i) if 2 <~y <1, then a > a3 (7),
where |
a1 = § (K - N)7

1 2y + N—-K-1
a() = § (1w 2N,

N—-1

and 71 = 3(K+1), 2=3(K+1-N).
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Existence and Uniqueness

THEOREM [SUN-BAB-PAL’15| J

The shrinkage estimator is unique if v > «.

al fffffffffffff b
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Algorithm in u and R

@ Surrogate function

L(pRlpe Re) =552 5wy (g, Re) (i — )T R72 (i — pa)
e (1, Re) (8= )T R (& - )
+ (¥ + a) logdet (R) + aK%

e Update
u (K+1) E: 1 Wi (p’t? )Xl'+27wt (H’thf)t
L=
(K1), wi (e Re) + 29w (2, Re)
N
K+1 T

Riy1 = m Z Wi (lLu R:) (X" - #t+1) (X" - I‘Lt+1)

i=1

2aK T

2y T
+ g (e R (t- ko) (t-pea) + 550 TR
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Algorithm in u and R

THEOREM [SUN-BAB-PAL’15|

Under the existence and uniqueness conditions, the algorithm in @ and R
for the proposed shrinkage estimator converges to the unique solution.
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Algorithm in X

e Consider case a = v, apply transform

R+pu' p
n’ 1

Xi=[x;1], t=][t;1]

|

e Equivalent loss function

[eheink (5 — (g ) log det (X) + ﬂ Z| og (X,TZ )

+ aK log (Tr (STZ’IST)) +alog (E ) E)

with S:{ I }

01xk

@ [shrink () is scale-invariant.

ROBUST SHRINKAGE MEAN-COVARIANCE ESTIMATION
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Algorithm in X

@ Surrogate function

N
2

_1_

L(E[E,) = (
( r(STETIST) 7% t>
+ «

+ =
Tr(STX;'ST) t7x't

K+1axTx 1%,
+oz> log det (X) + + Z Xi

o Update

N -7
= K+1 XiX;
Z =
t+1 E T}:t %

L2 KSTS™ N it
N+2a \ Tr(STE;'ST) 7% 't

= it+1/ (it+1)

K+1,K+1
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Algorithm in X

THEOREM [SUN-BAB-PAL’15|

Under the existence conditions, which simplifies to N > K + 1 — 2« for
a = 7, the algorithm in X for the proposed shrinkage estimator converges

to the unique solution.
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Simulations

@ Parameters: K = 100
Mo = 1kx1
(Ro); = 0.8

@ Error measurement: KL-distance

err (ﬂ, ﬁ) =E {DKL (N (ﬂ, ﬁ) IV (1o, RO))
+Dxk1 (N(Nm Ro) HN <ﬁ, ﬁ) )}




Performance Comparison for Gaussian
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Performance Comparison for t-distribution (v = 3)

10 T T T

—%— Sample Average

—<]— Maximum Likelihood (exact v)
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Performance Comparison for Elliptical Distribution
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Real Data Simulation

@ Minimum variance portfolio.
@ Training : S&P 500 index components weekly log-returns, K = 40.

o Estimate R
o Construct portfolio weights w

@ Parameter selection: choose « yields minimum variance on validation
set.

@ Collect half a year portfolio returns.

train | validate | test
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Portfolio Variance
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@ In this lecture, we have discussed:
o Robust mean-covariance estimation for heavy-tailed distributions via
Tyler estimator
o Shrinkage estimation in small sample scenario.

o Robust mean-covariance estimation for heavy-tailed distributions via
Cauchy’s MLE estimator
o Shrinkage estimation in small sample scenario.
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