REGULARIZED ROBUST ESTIMATION OF MEAN AND COVARIANCE MATRIX UNDER HEAVY TAILS AND OUTLIERS

Prof. Daniel P. Palomar

The Hong Kong University of Science and Technology (HKUST)

MAFS6010R - Portfolio Optimization with R MSc in Financial Mathematics Fall 2019-20, HKUST, Hong Kong

- MOTIVATION
- 2 Robust Covariance Matrix Estimators
 - Robust M-estimator
 - Tyler's M-estimator for Elliptical Distributions
 - Unsolved Problems
- 3 Robust Mean-Covariance Estimators
 - Introduction
 - Joint Mean-Covariance Estimation for Elliptical Distributions
- SMALL SAMPLE REGIME
 - Shrinkage Robust Estimator with Known Mean
 - Shrinkage Robust Estimator with Unknown Mean

- MOTIVATION
- 2 Robust Covariance Matrix Estimators
 - Robust M-estimator
 - Tyler's M-estimator for Elliptical Distributions
 - Unsolved Problems
- ROBUST MEAN-COVARIANCE ESTIMATORS
 - Introduction
 - Joint Mean-Covariance Estimation for Elliptical Distributions
- 4 SMALL SAMPLE REGIME
 - Shrinkage Robust Estimator with Known Mean
 - Shrinkage Robust Estimator with Unknown Mean

Basic Problem

- Task: estimate mean and covariance matrix from data $\{x_i\}$.
- Difficulties: outlier corrupted observation (heavy-tailed underlying distribution).

Sample Average

A straight-forward solution

$$\mu = \mathrm{E}(\mathbf{x}) \quad \mathsf{R} = \mathrm{E}(\mathbf{x} - \mu) (\mathbf{x} - \mu)^T$$

$$\downarrow \qquad \qquad \downarrow$$

$$\hat{\mu} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i \quad \hat{\mathsf{R}} = \frac{1}{N} \sum_{i=1}^{N} (\mathbf{x}_i - \hat{\mu}) (\mathbf{x}_i - \hat{\mu})^T.$$

Works well for i.i.d. Gaussian distributed data.

Influence of Outliers

- What if the data is corrupted?
- A real-life example: Kalman filter lost track of the spacecraft during an Apollo mission because of outlier observation (caused by system noise).

Example 1: Symmetrically Distributed Outliers

$$\mathbf{x} \sim \mathsf{HeavyTail}\left(\mathbf{1}, \mathbf{R}\right)$$

$$\mathbf{R} = \left[\begin{array}{cc} 1 & 0.5 \\ 0.5 & 1 \end{array} \right]$$

Influence of Outliers

• What if the data is corrupted?

Example 2: Asymmetrically Distributed Outliers

$$\mathsf{x} \sim 0.9 \mathcal{N}\left(\mathsf{1},\mathsf{R}
ight) + 0.1 \mathcal{N}\left(\pmb{\mu},\mathsf{R}
ight)$$

$$\mu = \begin{bmatrix} 5 \\ -5 \end{bmatrix}$$
 $R = \begin{bmatrix} 1 & 0.5 \\ 0.5 & 1 \end{bmatrix}$

But Is Financial Data Really Heavy-Tailed?

• Histograms of S&P 500 log-returns:

Heavy-tailness

• QQ plots of S&P 500 log-returns:

Heavy-tailness vs frequency

• Kurtosis of S&P 500 log-returns vs frequency:

- MOTIVATION
- 2 Robust Covariance Matrix Estimators
 - Robust M-estimator
 - Tyler's M-estimator for Elliptical Distributions
 - Unsolved Problems
- 3 Robust Mean-Covariance Estimators
 - Introduction
 - Joint Mean-Covariance Estimation for Elliptical Distributions
- 4 SMALL SAMPLE REGIME
 - Shrinkage Robust Estimator with Known Mean
 - Shrinkage Robust Estimator with Unknown Mean

- MOTIVATION
- 2 Robust Covariance Matrix Estimators
 - Robust M-estimator
 - Tyler's M-estimator for Elliptical Distributions
 - Unsolved Problems
- 3 Robust Mean-Covariance Estimators
 - Introduction
 - Joint Mean-Covariance Estimation for Elliptical Distributions
- 4 SMALL SAMPLE REGIME
 - Shrinkage Robust Estimator with Known Mean
 - Shrinkage Robust Estimator with Unknown Mean

Warm-up

Recall the Gaussian distribution

$$f(\mathbf{x}) = C \det(\mathbf{\Sigma})^{-\frac{1}{2}} \exp\left(-\frac{1}{2}\mathbf{x}^T\mathbf{\Sigma}^{-1}\mathbf{x}\right).$$

Negative log-likelihood function

$$L(\mathbf{\Sigma}) = \frac{N}{2} \log \det(\mathbf{\Sigma}) + \frac{1}{2} \sum_{i=1}^{N} \mathbf{x}^{T} \mathbf{\Sigma}^{-1} \mathbf{x}.$$

Sample covariance matrix

$$\hat{\mathbf{\Sigma}} = \frac{1}{N} \sum_{i=1}^{N} \mathbf{x}_i \mathbf{x}_i^T.$$

M-estimator (1960's)

• Minimizer of loss function [Mar-Mar-Yoh'06]:

$$L(\mathbf{\Sigma}) = \frac{N}{2} \log \det (\mathbf{\Sigma}) + \sum_{i=1}^{N} \rho \left(\mathbf{x}_{i}^{T} \mathbf{\Sigma}^{-1} \mathbf{x}_{i} \right).$$

• Solution to fixed-point equation:

$$\mathbf{\Sigma} = \frac{1}{N} \sum_{i=1}^{N} w \left(\mathbf{x}_{i}^{T} \mathbf{\Sigma}^{-1} \mathbf{x}_{i} \right) \mathbf{x}_{i} \mathbf{x}_{i}^{T}.$$

ullet If ho is differentiable

$$w = \frac{\rho'}{2}$$
.

- MOTIVATION
- 2 Robust Covariance Matrix Estimators
 - Robust M-estimator
 - Tyler's M-estimator for Elliptical Distributions
 - Unsolved Problems
- 3 Robust Mean-Covariance Estimators
 - Introduction
 - Joint Mean-Covariance Estimation for Elliptical Distributions
- 4 Small Sample Regime
 - Shrinkage Robust Estimator with Known Mean
 - Shrinkage Robust Estimator with Unknown Mean

Sample Covariance Matrix

SCM can be viewed as:

$$\hat{\mathbf{\Sigma}} = \sum_{i=1}^{N} w_i \mathbf{x}_i \mathbf{x}_i^T$$

with $w_i = \frac{1}{N}, \ \forall i$.

• MLE of a Gaussian distribution with loss function

$$\frac{N}{2}\log\det\left(\mathbf{\Sigma}\right) + \frac{1}{2}\sum_{i=1}^{N}\mathbf{x}_{i}^{T}\mathbf{\Sigma}^{-1}\mathbf{x}_{i}.$$

• Why is SCM sensitive to outliers? ②

Sample Covariance Matrix

- Consider distance $d_i = \sqrt{\mathbf{x}_i^T \mathbf{\Sigma}^{-1} \mathbf{x}_i}.$
- $w_i = \frac{1}{N}$ normal samples and outliers contribute to $\hat{\Sigma}$ equally.
- Quadratic loss.

- Given $f(x) \rightarrow \text{use MLE}$.
- $x_i \sim \text{elliptical}(0, \Sigma)$, what shall we do?
- Normalized sample $\mathbf{s}_i \triangleq \frac{\mathbf{x}_i}{\|\mathbf{x}_i\|_2}$

$$\frac{\operatorname{pdf}}{f(s)} = C \det(R)^{-\frac{1}{2}} \left(s^{T} R^{-1} s \right)^{-K/2}$$

Loss function

$$\frac{N}{2}\log\det(\mathbf{\Sigma}) + \frac{K}{2}\sum_{i=1}^{N}\log\underbrace{\left(\mathbf{s}_{i}^{T}\mathbf{\Sigma}^{-1}\mathbf{s}_{i}\right)}_{\mathbf{x}_{i}^{T}\mathbf{\Sigma}^{-1}\mathbf{x}_{i}}$$

ullet Tyler [Tyl'87] proposed covariance estimator $\hat{oldsymbol{\Sigma}}$ as solution to

$$\mathbf{\Sigma} = \sum_{i=1}^{N} w_i \mathbf{x}_i \mathbf{x}_i^{\mathsf{T}}, \quad w_i = \frac{K}{N\left(\mathbf{x}_i^{\mathsf{T}} \mathbf{\Sigma}^{-1} \mathbf{x}_i\right)}.$$

• Why is Tyler's estimator robust to outliers? ©

- Given $f(x) \rightarrow \text{use MLE}$.
- $x_i \sim \text{elliptical}(0, \Sigma)$, what shall we do?
- Normalized sample $\mathbf{s}_i \triangleq \frac{\mathbf{x}_i}{\|\mathbf{x}_i\|_2}$

$$\frac{\text{pdf}}{f(\mathbf{s}) = C \det(\mathbf{R})^{-\frac{1}{2}} \left(\mathbf{s}^T \mathbf{R}^{-1} \mathbf{s}\right)^{-K/2}} \qquad \frac{\text{Loss function}}{\frac{N}{2} \log \det(\mathbf{\Sigma}) + \frac{K}{2} \sum_{i=1}^{N} \log \left(\mathbf{s}_i^T \mathbf{\Sigma}^{-1} \mathbf{s}_i\right)}$$

ullet Tyler [Tyl'87] proposed covariance estimator $\hat{oldsymbol{\Sigma}}$ as solution to

$$\mathbf{\Sigma} = \sum_{i=1}^{N} w_i \mathbf{x}_i \mathbf{x}_i^T, \quad w_i = \frac{K}{N(\mathbf{x}_i^T \mathbf{\Sigma}^{-1} \mathbf{x}_i)}.$$

• Why is Tyler's estimator robust to outliers? ©

Consider distance

$$d_i = \sqrt{\mathbf{x}_i^T \mathbf{\Sigma}^{-1} \mathbf{x}_i}.$$

- $ullet w_i \propto 1/d_i^2$ Outliers are down-weighted.
- Logarithmic loss.

Tyler's M-estimator solves fixed-point equation

$$\mathbf{\Sigma} = \frac{K}{N} \sum_{i=1}^{N} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \mathbf{\Sigma}^{-1} \mathbf{x}_{i}}.$$

- Existence condition: N > K.
- No closed-form solution.
- Iterative algorithm

$$\begin{split} \tilde{\boldsymbol{\Sigma}}_{t+1} &= \frac{K}{N} \sum_{i=1}^{N} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \boldsymbol{\Sigma}_{t}^{-1} \mathbf{x}_{i}} \\ \boldsymbol{\Sigma}_{t+1} &= \tilde{\boldsymbol{\Sigma}}_{t+1} / \text{Tr} \left(\tilde{\boldsymbol{\Sigma}}_{t+1} \right). \end{split}$$

- MOTIVATION
- 2 Robust Covariance Matrix Estimators
 - Robust M-estimator
 - Tyler's M-estimator for Elliptical Distributions
 - Unsolved Problems
- 3 Robust Mean-Covariance Estimators
 - Introduction
 - Joint Mean-Covariance Estimation for Elliptical Distributions
- 4 SMALL SAMPLE REGIME
 - Shrinkage Robust Estimator with Known Mean
 - Shrinkage Robust Estimator with Unknown Mean

Unsolved Problems

PROBLEM 1

What if the mean value is unknown?

PROBLEM 2

How to deal with small sample scenario?

Problem 3

How to incorporate prior information?

Unsolved Problems

PROBLEM 1

What if the mean value is unknown?

PROBLEM 2

How to deal with small sample scenario?

Problem 3

How to incorporate prior information?

Unsolved Problems

PROBLEM 1

What if the mean value is unknown?

PROBLEM 2

How to deal with small sample scenario?

PROBLEM 3

How to incorporate prior information?

- MOTIVATION
- 2 Robust Covariance Matrix Estimators
 - Robust M-estimator
 - Tyler's M-estimator for Elliptical Distributions
 - Unsolved Problems
- 3 Robust Mean-Covariance Estimators
 - Introduction
 - Joint Mean-Covariance Estimation for Elliptical Distributions
- SMALL SAMPLE REGIME
 - Shrinkage Robust Estimator with Known Mean
 - Shrinkage Robust Estimator with Unknown Mean

- MOTIVATION
- 2 Robust Covariance Matrix Estimators
 - Robust M-estimator
 - Tyler's M-estimator for Elliptical Distributions
 - Unsolved Problems
- 3 Robust Mean-Covariance Estimators
 - Introduction
 - Joint Mean-Covariance Estimation for Elliptical Distributions
- 4 Small Sample Regime
 - Shrinkage Robust Estimator with Known Mean
 - Shrinkage Robust Estimator with Unknown Mean

Robust M-estimators for Location and Scatter

• Maronna's M-estimators [Mar'76]:

$$\begin{split} &\frac{1}{N} \sum_{i=1}^{N} u_1 \left(\left(\mathsf{x}_i - \boldsymbol{\mu} \right)^T \mathsf{R}^{-1} \left(\mathsf{x}_i - \boldsymbol{\mu} \right) \right) \left(\mathsf{x}_i - \boldsymbol{\mu} \right) = \mathbf{0} \\ &\frac{1}{N} \sum_{i=1}^{N} u_2 \left(\left(\mathsf{x}_i - \boldsymbol{\mu} \right)^T \mathsf{R}^{-1} \left(\mathsf{x}_i - \boldsymbol{\mu} \right) \right) \left(\mathsf{x}_i - \boldsymbol{\mu} \right) \left(\mathsf{x}_i - \boldsymbol{\mu} \right)^T = \mathsf{R}. \end{split}$$

- Special examples:
 - Huber's loss function.
 - MLE for Student's *t*-distribution.

MLE of the Student's *t*-distribution

• Student's *t*-distribution with degree of freedom ν :

$$f\left(\mathbf{x}\right) = C \det\left(\mathbf{R}\right)^{-\frac{1}{2}} \left(1 + \frac{1}{\nu} \left(\mathbf{x} - \boldsymbol{\mu}\right)^T \mathbf{R}^{-1} \left(\mathbf{x} - \boldsymbol{\mu}\right)\right)^{-\frac{K + \nu}{2}}.$$

Negative log-likelihood

$$L^{\nu}(\mu, \mathsf{R}) = \frac{N}{2} \log \det(\mathsf{R}) + \frac{K + \nu}{2} \sum_{i=1}^{N} \log \left(\nu + (\mathsf{x}_{i} - \mu)^{\mathsf{T}} \mathsf{R}^{-1} (\mathsf{x}_{i} - \mu) \right).$$

MLE of the Student's *t*-distribution

Estimating equations

$$\frac{K+\nu}{N} \sum_{i=1}^{N} \frac{\mathbf{x}_{i} - \boldsymbol{\mu}}{\nu + (\mathbf{x}_{i} - \boldsymbol{\mu})^{T} \mathbf{R}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu})} = \mathbf{0}$$

$$\frac{K+\nu}{N} \sum_{i=1}^{N} \frac{(\mathbf{x}_{i} - \boldsymbol{\mu}) (\mathbf{x}_{i} - \boldsymbol{\mu})^{T}}{\nu + (\mathbf{x}_{i} - \boldsymbol{\mu})^{T} \mathbf{R}^{-1} (\mathbf{x}_{i} - \boldsymbol{\mu})} = \mathbf{R}.$$

- Weight $w_i(\nu) = \frac{K+\nu}{N} \cdot \frac{1}{\nu + (\mathbf{x}_i \boldsymbol{\mu})^T \mathbf{R}^{-1}(\mathbf{x}_i \boldsymbol{\mu})}$ decreases in ν .
- Unique solution for $\nu \geq 1$.

Outline

- MOTIVATION
- 2 Robust Covariance Matrix Estimators
 - Robust M-estimator
 - Tyler's M-estimator for Elliptical Distributions
 - Unsolved Problems
- ROBUST MEAN-COVARIANCE ESTIMATORS
 - Introduction
 - Joint Mean-Covariance Estimation for Elliptical Distributions
- 4 Small Sample Regime
 - Shrinkage Robust Estimator with Known Mean
 - Shrinkage Robust Estimator with Unknown Mean

Joint Mean-Covariance Estimation

- Assumption: $x_i \sim \text{elliptical}(\mu_0, R_0)$.
- Goal: jointly estimate mean and covariance
 - Robust to outliers.
 - Easy to implement.
 - Provable convergence.
- A natural idea:

MLE of heavy-tailed distributions.

Joint Mean-Covariance Estimation

- Method: fitting $\{x_i\}$ to Cauchy (Student's *t*-distribution with $\nu = 1$) likelihood function.
 - Conservative fitting.
 - Trade-off: robustness \Leftrightarrow efficiency.
 - Tractability.
- $\hat{R} \rightarrow cR_0$ c depends on the unknown shape of the underlying distribution \Longrightarrow estimate R/Tr(R) instead.
- Existence condition N > K + 1 [Ken-Tyl'91].

Algorithm

- No closed-form solution.
- Numerical algorithm [Ken-Tyl-Var'94]:

$$\begin{split} \mu_{t+1} &= \frac{\sum_{i=1}^{N} w_{i} \left(\mu_{t}, \mathsf{R}_{t}\right) \mathsf{x}_{i}}{\sum_{i=1}^{N} w_{i} \left(\mu_{t}, \mathsf{R}_{t}\right)} \\ \mathsf{R}_{t+1} &= \frac{K+1}{N} \sum_{i=1}^{N} w_{i} \left(\mu_{t}, \mathsf{R}_{t}\right) \left(\mathsf{x}_{i} - \mu_{t+1}\right) \left(\mathsf{x}_{i} - \mu_{t+1}\right)^{T} \end{split}$$

with

$$w_i\left(\mu,\mathsf{R}\right) = rac{1}{1+\left(\mathsf{x}_i-\mu
ight)^T\mathsf{R}^{-1}\left(\mathsf{x}_i-\mu
ight)}.$$

Outline

- MOTIVATION
- 2 Robust Covariance Matrix Estimators
 - Robust M-estimator
 - Tyler's M-estimator for Elliptical Distributions
 - Unsolved Problems
- 3 Robust Mean-Covariance Estimators
 - Introduction
 - Joint Mean-Covariance Estimation for Elliptical Distributions
- 4 SMALL SAMPLE REGIME
 - Shrinkage Robust Estimator with Known Mean
 - Shrinkage Robust Estimator with Unknown Mean

Outline

- MOTIVATION
- 2 Robust Covariance Matrix Estimators
 - Robust M-estimator
 - Tyler's M-estimator for Elliptical Distributions
 - Unsolved Problems
- 3 Robust Mean-Covariance Estimators
 - Introduction
 - Joint Mean-Covariance Estimation for Elliptical Distributions
- 4 SMALL SAMPLE REGIME
 - Shrinkage Robust Estimator with Known Mean
 - Shrinkage Robust Estimator with Unknown Mean

• Problem:

- Methods:
 - Diagonal loading.
 - Penalized or regularized loss function.

Diagonal Loading

Modified Tyler's iteration [Abr-Spe'07]

$$\begin{split} \tilde{\boldsymbol{\Sigma}}_{t+1} &= \frac{K}{N} \sum_{i=1}^{N} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \boldsymbol{\Sigma}_{t}^{-1} \mathbf{x}_{i}} + \rho \mathbf{I} \\ \boldsymbol{\Sigma}_{t+1} &= \tilde{\boldsymbol{\Sigma}}_{t+1} / \text{Tr} \left(\tilde{\boldsymbol{\Sigma}}_{t+1} \right). \end{split}$$

- Provable convergence [Che-Wie-Her'11].
- ullet Systematic way of choosing parameter ho [Che-Wie-Her'11].
- But without a clear motivation.

Penalized Loss Function I

Wiesel's penalty [Wie'12]

$$h(\mathbf{\Sigma}) = \log \det (\mathbf{\Sigma}) + K \log \operatorname{Tr} (\mathbf{\Sigma}^{-1} \mathbf{T}),$$

 $\Sigma \propto T$ minimizes $h(\Sigma)$.

Penalized loss function

$$L^{\text{Wiesel}}(\mathbf{\Sigma}) = \frac{N}{2} \log \det(\mathbf{\Sigma}) + \frac{K}{2} \sum_{i=1}^{N} \log \left(\mathbf{x}_{i}^{T} \mathbf{\Sigma}^{-1} \mathbf{x}_{i} \right) + \alpha \left(\log \det(\mathbf{\Sigma}) + K \log \operatorname{Tr}(\mathbf{\Sigma}^{-1} \mathbf{T}) \right).$$

Algorithm

$$\mathbf{\Sigma}_{t+1} = \frac{N}{N+2\alpha} \frac{K}{N} \sum_{i=1}^{N} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \mathbf{\Sigma}_{t}^{-1} \mathbf{x}_{i}} + \frac{2\alpha}{N+2\alpha} \frac{KT}{\mathsf{Tr}\left(\mathbf{\Sigma}_{t}^{-1}T\right)} .$$

Penalized Loss Function II

• Alternative penalty: KL-divergence

$$h\left(\mathbf{\Sigma}\right) = \log \det \left(\mathbf{\Sigma}\right) + \operatorname{Tr}\left(\mathbf{\Sigma}^{-1}\mathbf{T}\right),$$

 $\Sigma = T$ minimizes $h(\Sigma)$.

Penalized loss function

$$L^{\mathsf{KL}}(\mathbf{\Sigma}) = \frac{N}{2} \log \det(\mathbf{\Sigma}) + \frac{K}{2} \sum_{i=1}^{N} \log \left(\mathbf{x}_{i}^{T} \mathbf{\Sigma}^{-1} \mathbf{x}_{i} \right) + \alpha \left(\log \det(\mathbf{\Sigma}) + \mathsf{Tr}\left(\mathbf{\Sigma}^{-1} \mathbf{T} \right) \right).$$

• Algorithm?

Questions

Existence & Uniqueness?

Which one is better?

Algorithm convergence?

Questions

Existence & Uniqueness?

Which one is better?

Algorithm convergence?

Questions

Existence & Uniqueness?

Which one is better?

Algorithm convergence?

Existence and Uniqueness for Wiesel's Shrinkage Estimator

THEOREM [SUN-BAB-PAL'14]

Wiesel's shrinkage estimator exists a.s., and is also unique up to a positive scale factor, if and only if the underlying distribution is continuous and $N > K - 2\alpha$.

- Existence condition for Tyler's estimator: N > K
 - Regularization relaxes the requirement on the number of samples.
 - Setting $\alpha = 0$ (no regularization) reduces to Tyler's condition.
 - \bullet Stronger confidence on the prior information \Rightarrow less number of samples required.

Existence and Uniqueness for Wiesel's Shrinkage Estimator

THEOREM [SUN-BAB-PAL'14]

Wiesel's shrinkage estimator exists a.s., and is also unique up to a positive scale factor, if and only if the underlying distribution is continuous and $N > K - 2\alpha$.

- Existence condition for Tyler's estimator: N > K
 - Regularization relaxes the requirement on the number of samples.
 - Setting $\alpha = 0$ (no regularization) reduces to Tyler's condition.
 - \bullet Stronger confidence on the prior information \Rightarrow less number of samples required.

Existence and Uniqueness for KL-Shrinkage Estimator

THEOREM [SUN-BAB-PAL'14]

KL-shrinkage estimator exists a.s., and is also unique, if and only if the underlying distribution is continuous and $N > K - 2\alpha$

Compared with Wiesel's shrinkage estimator:

- Share the same existence condition.
- Without scaling ambiguity.

Any connection? Which one is better?

Existence and Uniqueness for KL-Shrinkage Estimator

THEOREM [SUN-BAB-PAL'14]

KL-shrinkage estimator exists a.s., and is also unique, if and only if the underlying distribution is continuous and $N > K - 2\alpha$

Compared with Wiesel's shrinkage estimator:

- Share the same existence condition.
- Without scaling ambiguity.

Any connection? Which one is better?

Existence and Uniqueness for KL-Shrinkage Estimator

THEOREM [SUN-BAB-PAL'14]

KL-shrinkage estimator exists a.s., and is also unique, if and only if the underlying distribution is continuous and $N > K - 2\alpha$

Compared with Wiesel's shrinkage estimator:

- Share the same existence condition.
- Without scaling ambiguity.

Any connection? Which one is better?

Equivalence

THEOREM [SUN-BAB-PAL'14]

Wiesel's shrinkage estimator and KL-shrinkage estimator are equivalent.

Fixed-point equation for KL-shrinkage estimator

$$\mathbf{\Sigma} = \frac{N}{N + 2\alpha} \frac{K}{N} \sum_{i=1}^{N} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \mathbf{\Sigma}^{-1} \mathbf{x}_{i}} + \frac{2\alpha}{N + 2\alpha} \mathbf{T}.$$

• The solution satisfies equality

$$\operatorname{Tr}\left(\mathbf{\Sigma}^{-1}\mathbf{T}\right) = K.$$

• Fixed-point equation for Wiesel's shrinkage estimator

$$\boldsymbol{\Sigma} = \frac{N}{N+2\alpha} \frac{K}{N} \sum_{i=1}^{N} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \boldsymbol{\Sigma}^{-1} \mathbf{x}_{i}} + \frac{2\alpha}{N+2\alpha} \frac{K \mathbf{T}}{\mathsf{Tr} \left(\boldsymbol{\Sigma}^{-1} \mathbf{T}\right)}.$$

Equivalence

THEOREM [SUN-BAB-PAL'14]

Wiesel's shrinkage estimator and KL-shrinkage estimator are equivalent.

• Fixed-point equation for KL-shrinkage estimator

$$\mathbf{\Sigma} = \frac{N}{N + 2\alpha} \frac{K}{N} \sum_{i=1}^{N} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \mathbf{\Sigma}^{-1} \mathbf{x}_{i}} + \frac{2\alpha}{N + 2\alpha} \mathbf{T}.$$

• The solution satisfies equality

$$\mathsf{Tr}\left(\mathbf{\Sigma}^{-1}\mathbf{T}\right) = K.$$

• Fixed-point equation for Wiesel's shrinkage estimator

$$\mathbf{\Sigma} = \frac{N}{N+2\alpha} \frac{K}{N} \sum_{i=1}^{N} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \mathbf{\Sigma}^{-1} \mathbf{x}_{i}} + \frac{2\alpha}{N+2\alpha} \frac{K \mathbf{T}}{\mathsf{Tr} \left(\mathbf{\Sigma}^{-1} \mathbf{T}\right)}.$$

Majorization-Minimization (MM)

Problem:

$$\begin{array}{ll}
\text{minimize} & f(\mathbf{x}) \\
\text{subject to} & \mathbf{x} \in \mathcal{X}
\end{array}$$

Majorization-minimization:

$$\mathbf{x}_{t+1} = \arg\min_{\mathbf{x} \in \mathcal{X}} g\left(\mathbf{x} | \mathbf{x}_{t}\right)$$

with

$$f(\mathbf{x}_t) = g(\mathbf{x}_t | \mathbf{x}_t)$$

$$f(\mathbf{x}) \le g(\mathbf{x} | \mathbf{x}_t) \ \forall \mathbf{x} \in \mathcal{X}$$

$$f'(\mathbf{x}_t; \mathbf{d}) = g'(\mathbf{x}_t; \mathbf{d} | \mathbf{x}_t) \ \forall \mathbf{x}_t + \mathbf{d} \in \mathcal{X}$$

Modified Algorithm for Wiesel's Shrinkage Estimator

Surrogate function

$$g\left(\mathbf{\Sigma}|\mathbf{\Sigma}_{t}\right) = \frac{N}{2}\log\det\left(\mathbf{\Sigma}\right) + \frac{K}{2}\sum_{i=1}^{N}\frac{\mathbf{x}_{i}^{T}\mathbf{\Sigma}^{-1}\mathbf{x}_{i}}{\mathbf{x}_{i}^{T}\mathbf{\Sigma}_{t}^{-1}\mathbf{x}_{i}} + \alpha\left(\log\det\left(\mathbf{\Sigma}\right) + K\frac{\mathsf{Tr}\left(\mathbf{\Sigma}^{-1}\mathbf{T}\right)}{\mathsf{Tr}\left(\mathbf{\Sigma}_{t}^{-1}\mathbf{T}\right)}\right)$$

Update

$$\tilde{\mathbf{\Sigma}}_{t+1} = \frac{N}{N+2\alpha} \frac{K}{N} \sum_{i=1}^{N} \frac{\mathbf{x}_{i} \mathbf{x}_{i}^{T}}{\mathbf{x}_{i}^{T} \mathbf{\Sigma}_{t}^{-1} \mathbf{x}_{i}} + \frac{2\alpha}{N+2\alpha} \frac{K\mathbf{T}}{\mathsf{Tr}\left(\mathbf{\Sigma}_{t}^{-1}\mathbf{T}\right)}$$

Normalization

$$oldsymbol{\Sigma}_{t+1} = oldsymbol{ ilde{\Sigma}}_{t+1}/\mathsf{Tr}\left(oldsymbol{ ilde{\Sigma}}_{t+1}
ight)$$

THEOREM [SUN-BAB-PAL'14]

Under the existence conditions, the modified algorithm for Wiesel's shrinkage estimator converges to the unique solution.

Algorithm for KL-Shrinkage Estimator

Surrogate function

$$g\left(\mathbf{\Sigma}|\mathbf{\Sigma}_{t}\right) = \frac{N}{2}\log\det\left(\mathbf{\Sigma}\right) + \frac{K}{2}\sum_{i=1}^{N}\frac{\mathbf{x}_{i}^{T}\mathbf{\Sigma}^{-1}\mathbf{x}_{i}}{\mathbf{x}_{i}^{T}\mathbf{\Sigma}_{t}^{-1}\mathbf{x}_{i}} + \alpha\left(\log\det\left(\mathbf{\Sigma}\right) + \operatorname{Tr}\left(\mathbf{\Sigma}^{-1}\mathbf{T}\right)\right)$$

Update

$$\mathbf{\Sigma}_{t+1} = \frac{N}{N+2\alpha} \frac{K}{N} \sum_{i=1}^{N} \frac{\mathbf{x}_i \mathbf{x}_i^T}{\mathbf{x}_i^T \mathbf{\Sigma}_t^{-1} \mathbf{x}_i} + \frac{2\alpha}{N+2\alpha} \mathbf{T}$$

THEOREM [SUN-BAB-PAL'14]

Under the existence conditions, the algorithm for KL-shrinkage estimator converges to the unique solution.

Algorithm Convergence

• Parameters: K = 10, N = 8.

FIGURE: (a) when the existence conditions are not satisfied with $\alpha_0 = 0.96$, and (b) when the existence conditions are satisfied with $\alpha_0 = 1.04$.

Outline

- MOTIVATION
- 2 Robust Covariance Matrix Estimators
 - Robust M-estimator
 - Tyler's M-estimator for Elliptical Distributions
 - Unsolved Problems
- 3 Robust Mean-Covariance Estimators
 - Introduction
 - Joint Mean-Covariance Estimation for Elliptical Distributions
- 4 SMALL SAMPLE REGIME
 - Shrinkage Robust Estimator with Known Mean
 - Shrinkage Robust Estimator with Unknown Mean

- Problem: μ_0 is unknown!
- ullet A simple solution: plug-in $\hat{oldsymbol{\mu}}$
 - Sample mean
 - Sample median
- But...
 - Two-step estimation, not jointly optimal.
 - ullet Estimation error of $\hat{\mu}$ propagates.
- To be done: shrinkage estimator for joint mean-covariance estimation with target (t, T).

- Method: adding shrinkage penalty $h(\mu, R)$ to loss function (negative log-likelihood of Cauchy distribution).
- Design criteria:
 - $h(\mu, \mathbf{R})$ attains minimum at prior (\mathbf{t}, \mathbf{T}) .
 - $h(\mathbf{t}, \mathbf{T}) = h(\mathbf{t}, r\mathbf{T}), \forall r > 0.$
- Reason:
 - R can be estimated up to an unknown scale factor.
 - **T** is a prior for the parameter R/Tr(R).

PROPOSED PENALTY FUNCTION

$$\begin{split} h\left(\boldsymbol{\mu}, \mathsf{R}\right) &= \alpha \left(\mathcal{K} \log \left(\operatorname{Tr} \left(\mathsf{R}^{-1} \mathsf{T} \right) \right) + \log \det \left(\mathsf{R} \right) \right) \\ &+ \gamma \log \left(1 + \left(\boldsymbol{\mu} - \mathsf{t} \right)^{\mathsf{T}} \mathsf{R}^{-1} \left(\boldsymbol{\mu} - \mathsf{t} \right) \right) \end{split}$$

Proposition [Sun-Bab-Pal'15]

(t, rT), $\forall r > 0$ are the minimizers of $h(\mu, R)$.

PROPOSED PENALTY FUNCTION

$$h(\mu, \mathsf{R}) = \alpha \left(K \log \left(\operatorname{Tr} \left(\mathsf{R}^{-1} \mathsf{T} \right) \right) + \log \det \left(\mathsf{R} \right) \right)$$
$$+ \gamma \log \left(1 + (\mu - \mathsf{t})^{\mathsf{T}} \mathsf{R}^{-1} \left(\mu - \mathsf{t} \right) \right)$$

PROPOSITION [SUN-BAB-PAL'15]

(t, rT), $\forall r > 0$ are the minimizers of $h(\mu, R)$.

Resulting optimization problem:

$$\begin{aligned} & \underset{\boldsymbol{\mu}, \mathbf{R} \succ \mathbf{0}}{\text{minimize}} & & \frac{\left(K+1\right)}{2} \sum_{i=1}^{N} \log \left(1+\left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)^{T} \mathbf{R}^{-1} \left(\mathbf{x}_{i}-\boldsymbol{\mu}\right)\right) \\ & & +\alpha \left(K \log \left(\operatorname{Tr} \left(\mathbf{R}^{-1} \mathbf{T}\right)\right) + \log \det \left(\mathbf{R}\right)\right) \\ & & +\gamma \log \left(1+\left(\boldsymbol{\mu}-\mathbf{t}\right)^{T} \mathbf{R}^{-1} \left(\boldsymbol{\mu}-\mathbf{t}\right)\right) + \frac{N}{2} \log \det \left(\mathbf{R}\right). \end{aligned}$$

• A minimum satisfies the stationary condition $\frac{\partial L^{\rm shrink}(\mu,\mathbf{R})}{\partial \mu}=\mathbf{0}$ and $\frac{\partial L^{\rm shrink}(\mu,\mathbf{R})}{\partial \mathbf{P}}=\mathbf{0}$.

$$\bullet \ d_i\left(\mu,\mathsf{R}\right) = \sqrt{\left(\mathsf{x}_i - \mu\right)^T \mathsf{R}^{-1} \left(\mathsf{x}_i - \mu\right)}, \ d_{\mathsf{t}}\left(\mu,\mathsf{R}\right) = \sqrt{\left(\mathsf{t} - \mu\right)^T \mathsf{R}^{-1} \left(\mathsf{t} - \mu\right)}.$$

$$\bullet \ \ \textit{w}_{\textit{i}}\left(\mu,\mathsf{R}\right) = \frac{1}{1 + d_{\textit{i}}^{2}(\mu,\mathsf{R})}, \ \ \textit{w}_{\mathsf{t}}\left(\mu,\mathsf{R}\right) = \frac{1}{1 + d_{\mathsf{t}}^{2}(\mu,\mathsf{R})}.$$

Stationary condition:

$$R = \frac{K+1}{N+2\alpha} \sum_{i=1}^{N} w_i (\mu, R) (\mathbf{x}_i - \mu) (\mathbf{x}_i - \mu)^T$$

$$+ \frac{2\gamma}{N+2\alpha} w_t (\mu, R) (\mu - \mathbf{t}) (\mu - \mathbf{t})^T + \frac{2\alpha K}{N+2\alpha} \frac{\mathbf{T}}{\operatorname{Tr} (\mathbf{R}^{-1} \mathbf{T})}$$

$$\mu = \frac{(K+1) \sum_{i=1}^{N} w_i (\mu, R) \mathbf{x}_i + 2\gamma w_t (\mu, R) \mathbf{t}}{(K+1) \sum_{i=1}^{N} w_i (\mu, R) + 2\gamma w_t (\mu, R)}$$

Existence and Uniqueness

THEOREM [SUN-BAB-PAL'15]

Assuming continuous underlying distribution, the estimator exists under either of the following conditions:

- (i) if $\gamma > \gamma_1$, then $\alpha > \alpha_1$,
- (ii) if $\gamma_2 < \gamma \le \gamma_1$, then $\alpha > \alpha_2(\gamma)$,

where

$$\alpha_1 = \frac{1}{2} (K - N),$$

$$\alpha_2 (\gamma) = \frac{1}{2} \left(K + 1 - N - \frac{2\gamma + N - K - 1}{N - 1} \right),$$

and
$$\gamma_1 = \frac{1}{2} (K + 1)$$
, $\gamma_2 = \frac{1}{2} (K + 1 - N)$.

Existence and Uniqueness

THEOREM [SUN-BAB-PAL'15]

The shrinkage estimator is unique if $\gamma \geq \alpha$.

Algorithm in μ and R

Surrogate function

$$\begin{split} L\left(\mu, \mathsf{R} | \mu_t, \mathsf{R}_t\right) &= \frac{\mathit{K} + 1}{2} \sum w_i \left(\mu_t, \mathsf{R}_t\right) \left(\mathsf{x}_i - \mu\right)^\mathsf{T} \mathsf{R}^{-1} \left(\mathsf{x}_i - \mu\right) \\ &+ \gamma w_t \left(\mu_t, \mathsf{R}_t\right) \left(\mathsf{t} - \mu\right)^\mathsf{T} \mathsf{R}^{-1} \left(\mathsf{t} - \mu\right) \\ &+ \left(\frac{\mathit{N}}{2} + \alpha\right) \log \det \left(\mathsf{R}\right) + \alpha \mathcal{K} \frac{\mathrm{Tr} \left(\mathsf{R}^{-1} \mathsf{T}\right)}{\mathrm{Tr} \left(\mathsf{R}_t^{-1} \mathsf{T}\right)} \end{split}$$

Update

$$\begin{split} \boldsymbol{\mu}_{t+1} &= \frac{(K+1)\sum_{i=1}^{N} w_{i}\left(\boldsymbol{\mu}_{t}, \mathbf{R}_{t}\right) \mathbf{x}_{i} + 2\gamma w_{t}\left(\boldsymbol{\mu}_{t}, \mathbf{R}_{t}\right) \mathbf{t}}{(K+1)\sum_{i=1}^{N} w_{i}\left(\boldsymbol{\mu}_{t}, \mathbf{R}_{t}\right) + 2\gamma w_{t}\left(\boldsymbol{\mu}_{t}, \mathbf{R}_{t}\right)} \\ \mathbf{R}_{t+1} &= \frac{K+1}{N+2\alpha}\sum_{i=1}^{N} w_{i}\left(\boldsymbol{\mu}_{t}, \mathbf{R}_{t}\right) \left(\mathbf{x}_{i} - \boldsymbol{\mu}_{t+1}\right) \left(\mathbf{x}_{i} - \boldsymbol{\mu}_{t+1}\right)^{T} \\ &+ \frac{2\gamma}{N+2\alpha} w_{t}\left(\boldsymbol{\mu}_{t}, \mathbf{R}_{t}\right) \left(\mathbf{t} - \boldsymbol{\mu}_{t+1}\right) \left(\mathbf{t} - \boldsymbol{\mu}_{t+1}\right)^{T} + \frac{2\alpha K}{N+2\alpha} \frac{\mathbf{T}}{\mathrm{Tr}\left(\mathbf{R}_{t}^{-1}\mathbf{T}\right)} \end{split}$$

Algorithm in μ and R

THEOREM [SUN-BAB-PAL'15]

Under the existence and uniqueness conditions, the algorithm in μ and R for the proposed shrinkage estimator converges to the unique solution.

Algorithm in Σ

• Consider case $\alpha = \gamma$, apply transform

$$\begin{split} \boldsymbol{\Sigma} &= \left[\begin{array}{cc} \boldsymbol{R} + \boldsymbol{\mu} \boldsymbol{\mu}^T & \boldsymbol{\mu} \\ \boldsymbol{\mu}^T & 1 \end{array} \right] \\ \boldsymbol{\bar{x}}_i &= \left[\boldsymbol{x}_i; 1 \right], \quad \boldsymbol{\bar{t}} = \left[\boldsymbol{t}; 1 \right] \end{split}$$

Equivalent loss function

$$L^{\text{shrink}}\left(\mathbf{\Sigma}\right) = \left(\frac{N}{2} + \alpha\right) \log \det\left(\mathbf{\Sigma}\right) + \frac{K+1}{2} \sum_{i=1}^{N} \log\left(\bar{\mathbf{x}}_{i}^{T} \mathbf{\Sigma}^{-1} \bar{\mathbf{x}}_{i}\right) + \alpha K \log\left(\operatorname{Tr}\left(\mathbf{S}^{T} \mathbf{\Sigma}^{-1} \mathbf{S} \mathbf{T}\right)\right) + \alpha \log\left(\bar{\mathbf{t}}^{T} \mathbf{\Sigma}^{-1} \bar{\mathbf{t}}\right)$$

with
$$\mathbf{S} = \begin{bmatrix} \mathbf{I}_{\mathcal{K}} \\ \mathbf{0}_{1 \times \mathcal{K}} \end{bmatrix}$$
.

• $L^{\text{shrink}}(\Sigma)$ is scale-invariant.

Algorithm in Σ

Surrogate function

$$\begin{split} L\left(\mathbf{\Sigma}|\mathbf{\Sigma}_{t}\right) &= \left(\frac{N}{2} + \alpha\right) \log \det \left(\mathbf{\Sigma}\right) + \frac{K+1}{2} \sum_{i=1}^{N} \frac{\bar{\mathbf{x}}_{i}^{T} \mathbf{\Sigma}^{-1} \bar{\mathbf{x}}_{i}}{\bar{\mathbf{x}}_{i}^{T} \mathbf{\Sigma}_{t}^{-1} \bar{\mathbf{x}}_{i}} \\ &+ \alpha \left(K \frac{\operatorname{Tr} \left(\mathbf{S}^{T} \mathbf{\Sigma}^{-1} \mathbf{S} \mathbf{T}\right)}{\operatorname{Tr} \left(\mathbf{S}^{T} \mathbf{\Sigma}_{t}^{-1} \mathbf{S} \mathbf{T}\right)} + \frac{\bar{\mathbf{t}}^{T} \mathbf{\Sigma}^{-1} \bar{\mathbf{t}}}{\bar{\mathbf{t}}^{T} \mathbf{\Sigma}_{t}^{-1} \bar{\mathbf{t}}}\right) \end{split}$$

Update

$$\begin{split} \tilde{\mathbf{\Sigma}}_{t+1} &= \frac{K+1}{N+2\alpha} \sum_{i=1}^{N} \frac{\bar{\mathbf{x}}_{i} \bar{\mathbf{x}}_{i}^{T}}{\bar{\mathbf{x}}_{i}^{T} \mathbf{\Sigma}_{t}^{-1} \bar{\mathbf{x}}_{i}} \\ &+ \frac{2\alpha}{N+2\alpha} \left(\frac{K \mathbf{S} \mathbf{T} \mathbf{S}^{T}}{\operatorname{Tr} \left(\mathbf{S}^{T} \mathbf{\Sigma}_{t}^{-1} \mathbf{S} \mathbf{T} \right)} + \frac{\overline{\mathbf{t}} \overline{\mathbf{t}}^{T}}{\overline{\mathbf{t}}^{T} \mathbf{\Sigma}_{t}^{-1} \overline{\mathbf{t}}} \right) \\ \mathbf{\Sigma}_{t+1} &= \tilde{\mathbf{\Sigma}}_{t+1} / \left(\tilde{\mathbf{\Sigma}}_{t+1} \right)_{K+1,K+1} \end{split}$$

Algorithm in Σ

THEOREM [SUN-BAB-PAL'15]

Under the existence conditions, which simplifies to $N > K + 1 - 2\alpha$ for $\alpha = \gamma$, the algorithm in Σ for the proposed shrinkage estimator converges to the unique solution.

Simulations

• Parameters: K = 100

$$oldsymbol{\mu}_0 = \mathbf{1}_{K imes 1} \ \left(\mathsf{R}_0
ight)_{ij} = 0.8^{|i-j|}$$

Error measurement: KL-distance

$$\begin{split} \operatorname{err}\left(\hat{\boldsymbol{\mu}},\hat{\boldsymbol{R}}\right) &= E\left\{D_{KL}\left(\mathcal{N}\left(\hat{\boldsymbol{\mu}},\hat{\boldsymbol{R}}\right)\|\mathcal{N}\left(\boldsymbol{\mu}_{0},\boldsymbol{R}_{0}\right)\right)\right. \\ &\left. + D_{KL}\left(\mathcal{N}\left(\boldsymbol{\mu}_{0},\boldsymbol{R}_{0}\right)\left\|\mathcal{N}\left(\hat{\boldsymbol{\mu}},\hat{\boldsymbol{R}}\right)\right.\right)\right\} \end{split}$$

Performance Comparison for Gaussian

Figure:
$$\mathbf{x}_{i} \sim \mathcal{N}\left(\boldsymbol{\mu}_{0}, \mathbf{R}_{0}\right)$$

Performance Comparison for *t*-distribution ($\nu = 3$)

FIGURE: $\mathbf{x}_i \sim t_3 (\mu_0, \mathbf{R}_0)$

Performance Comparison for Elliptical Distribution

FIGURE: $\mathbf{x}_i \sim \boldsymbol{\mu}_0 + \sqrt{\tau} \mathbf{u}, \ \tau \sim \chi^2, \ \mathbf{u} \sim \mathcal{N}\left(\mathbf{0}, \mathbf{R}_0\right)$

Real Data Simulation

- Minimum variance portfolio.
- Training : S&P 500 index components weekly log-returns, K = 40.
 - Estimate R
 - Construct portfolio weights w
- \bullet Parameter selection: choose α yields minimum variance on validation set.
- Collect half a year portfolio returns.

Summary

- In this lecture, we have discussed:
 - Robust mean-covariance estimation for heavy-tailed distributions via Tyler estimator
 - Shrinkage estimation in small sample scenario.
 - Robust mean-covariance estimation for heavy-tailed distributions via Cauchy's MLE estimator
 - Shrinkage estimation in small sample scenario.

References I

R. Maronna, D. Martin, and V. Yohai. Robust Statistics: Theory and Methods.

Wiley Series in Probability and Statistics. Wiley, 2006.

D. E. Tyler.

A distribution-free *M*-estimator of multivariate scatter. *Ann. Statist.*, volume 15, no. 1, pp. 234–251, 1987.

R. A. Maronna.

Robust M-estimators of multivariate location and scatter. *Ann. Statist.*, volume 4, no. 1, pp. 51–67, 1976.

J. T. Kent and D. E. Tyler.

Redescending M-estimates of multivariate location and scatter.

Ann. Statist., volume 19, no. 4, pp. 2102-2119, 1991.

J. T. Kent, D. E. Tyler, and Y. Vard.

A curious likelihood identity for the multivariate t-distribution.

Communications in Statistics - Simulation and Computation, volume 23, no. 2, pp. 441–453, 1994.

References II

Y. Abramovich and N. Spencer.

Diagonally loaded normalised sample matrix inversion (LNSMI) for outlier-resistant adaptive filtering.

In *Proc. IEEE Int Conf. Acoust., Speech, Signal Process. (ICCASP), 2007.*, volume 3, pp. III–1105–III–1108. Honolulu, HI, 2007.

Y. Chen, A. Wiesel, and A. O. Hero.

Robust shrinkage estimation of high-dimensional covariance matrices. *IEEE Trans. Signal Process.*, volume 59, no. 9, pp. 4097–4107, 2011.

A. Wiesel.

Unified framework to regularized covariance estimation in scaled Gaussian models. *IEEE Trans. on Signal Processing*, volume 60, no. 1, pp. 29–38, 2012.

Y. Sun, P. Babu, and D. P. Palomar.

Regularized Tyler's scatter estimator: Existence, uniqueness, and algorithms. *IEEE Trans. on Signal Processing*, volume 62, no. 19, pp. 5143–5156, 2014.

_

Regularized robust estimation of mean and covariance matrix under heavy-tailed distributions.

IEEE Trans. on Signal Processing, volume 63, no. 12, pp. 3096–3109, 2015.

Thanks

For more information visit:

https://www.danielppalomar.com

