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Returns

Let us denote the log-returns of N assets at time t with the vector
rt ∈ RN .
The time index t can denote any arbitrary period such as days, weeks,
months, 5-min intervals, etc.
Ft−1 denotes the previous historical data.
Financial modeling aims at modeling rt conditional on Ft−1.
rt is a multivariate stochastic process with conditional mean and
covariance matrix denoted as1

µt , E [rt | Ft−1]

Σt , Cov [rt | Ft−1] = E
[
(rt − µt)(rt − µt)

T | Ft−1

]
.

1Y. Feng and D. P. Palomar, A Signal Processing Perspective on Financial
Engineering. Foundations and Trends R© in Signal Processing, Now Publishers Inc., 2016.
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I.I.D. Model

For simplicity we will assume that rt follows an i.i.d. distribution
(which is not very inacurate in general).
That is, both the conditional mean and conditional covariance are
constant

µt = µ,

Σt = Σ.

Very simple model, however, it is one of the most fundamental
assumptions for many important works, e.g., the Nobel prize-winning
Markowitz portfolio theory2.

2H. Markowitz, “Portfolio selection”, J. Financ., vol. 7, no. 1, pp. 77–91, 1952.
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Sample Estimators

Consider the i.i.d. model:

rt = µ + wt ,

where µ ∈ RN is the mean and wt ∈ RN is an i.i.d. process with zero
mean and constant covariance matrix Σ.
The sample estimators (i.e., sample mean and sample covariance
matrix) based on T observations are

µ̂ =
1
T

T∑
t=1

rt

Σ̂ =
1

T − 1

T∑
t=1

(rt − µ̂)(rt − µ̂)T .

Note that the factor 1/ (T − 1) is used instead of 1/T to get an
unbiased estimator (asymptotically for T →∞ they coincide).
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So What is the Problem?

The sample estimates are only good for large T .
The sample mean is particularly a very inefficient estimator, with very
noisy estimates.3

In practice, T is not large enough due to either:
unavailability of data
lack of stationarity of data which precludes the use of too much of it

As a consequence, the sample estimates are really bad due to
estimatior errors and a portfolio design (e.g., Markowitz
mean-variance) based on those estimates can be fatal.
Indeed, this is why Markowitz portfolio and similar are rarely used by
practitioners.
One solution is to merge those estimates with whatever prior
information we may have on µ and Σ.

3A. Meucci, Risk and Asset Allocation. Springer, 2005.
D. Palomar Shrinkage and Black-Litterman 7 / 57



Factor Models

Factor models can be seen as a way to include some prior information
either based on explicit factors or some low-rank structural constraints
on the covariance matrix.
Recall that factor models assumes the following structure for the
returns:

rt = α + Bft + wt ,

where
α denotes a constant vector
ft ∈ RK with K � N is a vector of a few factors that are responsible
for most of the randomness in the market,
B ∈ RN×K denotes how the low dimensional factors affect the higher
dimensional market;
wt is a white noise residual vector that has only a marginal effect.

The factors can be explicit or implicit.
Widely used by practitioners (they buy factors at a high premium).
Observe that the covariance matrix will be of the form of a low-rank
matrix plus some residual diagonal matrix: Σ = BBT + Ψ.

D. Palomar Shrinkage and Black-Litterman 8 / 57



Outline

1 The Need for Prior Information

2 Shrinkage
Shrinkage for µ
Shrinkage for Σ
Random Matrix Theory (RMT)

3 Black-Litterman Model



Small Sample Regime
In the large sample regime, i.e., when the number of observations T is
large, then the estimators of µ and Σ are already good enough.
However, in the small sample regime, i.e., when the number of
observations T is small (compared to the dimension of the
observations N), then the estimators become noisy and unreliable.
The error of an estimator can be separated into two terms: the bias
and the variance of the estimator.
In the small sample regime, the main source of error comes from the
variance of the estimator (intuitively, because the estimator is based
on a small number of random samples, it is also too random).4

It is well-known in the estimation literature that lower estimation
errors can be achieved by allowing some bias in exchange of a smaller
variance.
This can be implemented by shrinking the estimator to some known
target values.

4A. Meucci, Risk and Asset Allocation. Springer, 2005.
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Shrinkage
Let θ denote the parameter to be estimated (in our case, either the
mean vector or covariance matrix) and θ̂ some estimation (e.g., the
sample mean or the sample covariance matrix).5

A shrinkage estimator is typically defined as

θ̂sh = (1− ρ) θ̂ + ρθtarget

where θtarget is a known target, which amounts to some prior
information, and ρ is the shrinkage trade-off parameter.
There are two main problems here:

choosing the target θtarget: this is problem dependent and may come
from side information or some discretionary views on the market
choosing the shrinkage factor ρ: even though it looks like a simple
problem, tons of ink have been devoted to it

Note that the above shrinkage model is actually a linear model and
more sophisticated nonlinear models can be considered at the expense
of mathematical complication and/or computational increase.

5Y. Feng and D. P. Palomar, A Signal Processing Perspective on Financial
Engineering. Foundations and Trends R© in Signal Processing, Now Publishers Inc., 2016.
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Shrinkage Factor

The choice of the shrinkage factor ρ is critical for the success of the
shrinkage estimator.
Of course the target is also important, but ironically even when the
target is something totally uninformative, the results can still be
surprisingly good.
There are two main philophies for the choice of ρ:

Cross-validation: this is a practical approach widely used in machine
learning to choose many of the parameters that usually have to be
tuned. The idea is simple: 1) compute the estimate θ̂ from the training
data, 2) try different values of ρ and assess its performance using
another set of data called cross-validation data to choose the best
value, and 3) use the best ρ in yet a different set of new data called
test data for the actual final performance.
Random Matrix Theory (RMT): this is based on a heavy dose of
mathematics going back to Wigner in 1955 who introduced the topic
to model the nuclei of heavy atoms. This approach allows for a clean
computation of ρ which is valid under a number of assumptions and in
the limit of large T and N.
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Shrinkage for the Mean
Consider the sample mean estimator:

µ̂ =
1
T

T∑
t=1

rt

It is well-known from the central limit theorem that

µ̂ ∼ N
(
µ,

1
T
Σ

)
and the MSE is

E
[
‖µ̂− µ‖2

]
=

1
T
Tr (Σ)

The sample mean estimator is the least square solution as well as the
maximum likelihood estimator under a Gaussian distribution.
However, it was a shock when Stein proved in 19566 that in terms of
MSE this approach is suboptimal.

6C. Stein, “Inadmissibility of the usual estimator for the mean of a multivariate
normal distribution”, Proceedings of the Third Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, no. 399, pp. 197–206, 1956.
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James-Stein Estimator
Stein developed the estimator in 19567 and was later improved by
James and Stein in 19618.
It can be shown that the James-Stein estimator dominates the least
squares estimator, i.e., that it has a lower mean square error (at the
expense of some bias).
The James-Stein estimator is a member of a class of Bayesian
estimators that dominate the maximum likelihood estimator.
The James-Stein estimator is

µ̂JS = (1− ρ) µ̂ + ρt

where t is the shrinkage target and 0 ≤ ρ ≤ 1 is the amount of
shrinkage.

7C. Stein, “Inadmissibility of the usual estimator for the mean of a multivariate
normal distribution”, Proceedings of the Third Berkeley Symposium on Mathematical
Statistics and Probability, vol. 1, no. 399, pp. 197–206, 1956.

8W. James and C. Stein, “Estimation with quadratic loss”, in Proceedings of the
Fourth Berkeley Symposium on Mathematical Statistics and Probability, vol. 1, 1961,
pp. 361–379.
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James-Stein Estimator

It can be shown9 that a choice of ρ so that
E
[∥∥µ̂JS − µ

∥∥2
]
≤ E

[
‖µ̂− µ‖2

]
is

ρ =
1
T

Nλ̄− 2λmax

‖µ̂− t‖2

where λ̄ = 1
NTr(Σ) and λmax are the average and maximum values,

respectively, of the eigenvalues of Σ.
Observe that ρ vanishes as T increases and the shrinkage estimator
gets closer to the sample mean.
Choices for the target include:

any arbitrary choice: for example t = 0 or t = 0.1× 1
grand mean: t = 1T µ̂

N × 1
volatility-weighted grand mean: t = 1T Σ̂−1µ̂

1T Σ̂−11
× 1

9A. Meucci, Risk and Asset Allocation. Springer, 2005.
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Example of James-Stein Estimator

Comparison of t = 0.2× 1, the grand mean, and the volatility grand
mean:10
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10Y. Feng and D. P. Palomar, A Signal Processing Perspective on Financial
Engineering. Foundations and Trends R© in Signal Processing, Now Publishers Inc., 2016.
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Shrinkage for the Covariance Matrix

We will now assume that the mean is known and the goal is to
estimate the covariance matrix or scatter matrix.
The shrinkage estimator has the form

Σ̂sh = (1− ρ) Σ̂ + ρT

where Σ̂ is the sample covariance matrix, T is the shrinkage target,
and 0 ≤ ρ ≤ 1 is the amount of shrinkage.
As usual with shrinkage, we need to determine both the target and ρ.
Choices for the target include:

any arbitrary choice: for example, the identity matrix T = I
scaled identity: T = 1

NTr(Σ̂)× I
diagonal with variances: T = Diag(Σ̂)

To determine ρ one can use an empirical approach like cross-validation
or a more mathematical-based approach like RMT.

D. Palomar Shrinkage and Black-Litterman 19 / 57



Shrinkage Factor via RMT

RMT can be used to determine ρ in a theoretical way, which becomes
valid for large T and N.
The first step is to choose some criterion to minimize and then one
can try to use the RMT tools.
We will consider the following criteria (but the literature on other
criteria is very extensive):

MSE of covariance matrix
Quadratic loss of precision matrix
Sharpe ratio.

D. Palomar Shrinkage and Black-Litterman 20 / 57



MSE of Covariance Matrix
Ledoit and Wolf made popular in 200311 and 200412 the use of RMT
in financial econometrics.
They considered shrinkage of the sample covariance matrix Σ̂ towards
the identity matrix:

Σ̂sh = (1− ρ) Σ̂ + ρI

More precisely, they considered the following formulation:

minimize
ρ1,ρ2

E

[∥∥∥Σ̂sh −Σ
∥∥∥2

F

]
subject to Σ̂sh = ρ1I + ρ2Σ̂

whose objective is uncomputable since it requires knowledge of the
true Σ!

11O. Ledoit and M. Wolf, “Improved estimation of the covariance matrix of stock
returns with an application to portfolio selection”, Journal of Empirical Finance, vol. 10,
no. 5, pp. 603–621, 2003.

12O. Ledoit and M. Wolf, “A well-conditioned estimator for large-dimensional
covariance matrices”, Journal of multivariate analysis, vol. 88, no. 2, pp. 365–411, 2004.
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MSE of Covariance Matrix

If we ignore this little detail (lol), they obtained the optimal solution
(termed oracle estimator) as

Σ̂sh = (1− ρ) Σ̂ + ρT

with T = 1
NTr(Σ)× I and ρ =

E
[
‖Σ̂−Σ‖2

F

]
E
[
‖Σ̂−T‖2

F

] .
Obviously the previous solution is useless as it requires knowledge of
the true Σ.
One could be tempted to simply use the sample covariance matrix Σ̂
in lieu of Σ. However, that would be a big mistake since it would lead
to a non-consistent estimator (in fact, in this particular case it would
lead to ρ = 0!).
This is where the magic of RMT comes into play: it turns out that
asymptotically for large T and N, one can derive a consistent
estimator that does not require knowledge of Σ.

D. Palomar Shrinkage and Black-Litterman 22 / 57



Ledoit-Wolf Estimator

Ledoit and Wolf further derived the consistent estimator (termed LW
estimator):

Σ̂sh = (1− ρ) Σ̂ + ρT

with

T =
1
N
Tr(Σ̂)× I

ρ = min

(
1,

1
T 2

∑T
t=1 ||Σ̂− rtrTt ||2F
||Σ̂−T||2F

)
.

D. Palomar Shrinkage and Black-Litterman 23 / 57



Example of Ledoit-Wolf Estimator

Comparison of sample covariance matrix, oracle estimator, and LW
estimator:13
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13Y. Feng and D. P. Palomar, A Signal Processing Perspective on Financial
Engineering. Foundations and Trends R© in Signal Processing, Now Publishers Inc., 2016.
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Quadratic Loss of Precision Matrix

In many cases, it is the precision matrix (i.e., the inverse of the
covariance matrix) that we really care about. For example, if our goal
is to design a portfolio like the minimum variance portfolio:

wMV =
Σ̂−11

1T Σ̂−11
.

Aiming at minimizing the MSE in the estimation of Σ,

E

[∥∥∥Σ̂sh −Σ
∥∥∥2

F

]
, may not be the best strategy if one really cares

about its inverse since the inversion operation can dramatically amplify
the estimation error.
It is more sensible to minimize the estimation error in the precision

matrix directly
∥∥∥(Σ̂sh)−1 −Σ−1

∥∥∥2

F
as formulated by Zhang et al.14

14M. Zhang, F. Rubio, and D. P. Palomar, “Improved calibration of high-dimensional
precision matrices”, IEEE Transactions on Signal Processing, vol. 61, no. 6,
pp. 1509–1519, 2013.
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Quadratic Loss of Precision Matrix

Consider then the following formulation:15

minimize
ρ≥0,W�0

1
N

∥∥∥(Σ̂sh)−1 −Σ−1
∥∥∥2

F

subject to Σ̂sh = ρI + 1
T RWRT

W diagonal

where R =
[

r1 · · · rT
]
is the N × T data matrix and W is a

T × T diagonal matrix that allows for a weighting of the different
samples.
Note that here the target matrix is T = 1

T RWRT , i.e., a weighted
sample covariance matrix.
This formulation is much harder because, even if Σ was known, there
is no closed-form solution as before. We will use the magic of RMT...

15M. Zhang, F. Rubio, and D. P. Palomar, “Improved calibration of high-dimensional
precision matrices”, IEEE Transactions on Signal Processing, vol. 61, no. 6,
pp. 1509–1519, 2013.
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Quadratic Loss of Precision Matrix
It was proved16 that the optimal weights are W = αI, so no need for
different weights, and the following is an asymptotic consistent
formulation (without Σ):
minimize
ρ,α≥0,δ

1
N

∥∥∥(Σ̂sh)−1 − Σ̂−1
∥∥∥2

F

+ 2
NTr

(
ρ−1

(
δ(Σ̂sh)−1 − (1− cN) Σ̂−1

)
+ Σ̂−1(Σ̂sh)−1

)
−
(
2cN − c2

N

) 1
NTr(Σ̂−2)

−
(
cN − c2

N

) ( 1
NTr(Σ̂−1)

)2

subject to Σ̂sh = ρI + αΣ̂

δ = α
(
1− 1

T Tr(αΣ̂(Σ̂sh)−1)
)

where cN = N/T .
The problem is highly nonconvex but it can be easily solved in practice
via exhaustive search over ρ and α.

16M. Zhang, F. Rubio, and D. P. Palomar, “Improved calibration of high-dimensional
precision matrices”, IEEE Transactions on Signal Processing, vol. 61, no. 6,
pp. 1509–1519, 2013.
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Example of Precision Matrix Estimator

Comparison of sample covariance matrix, LW estimator, the previous
estimator (ZRP), and the oracle:17
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17Y. Feng and D. P. Palomar, A Signal Processing Perspective on Financial
Engineering. Foundations and Trends R© in Signal Processing, Now Publishers Inc., 2016.
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Maximizing the Sharpe Ratio

The previous formulations were based on selecting the shrinkage
trade-off parameter ρ to improve the covariance or precision estimation
accuraty based on some measure of error (e.g., the Frobenius norm).
However, the ultimate goal of estimating the covariance matrix is to
employ it for some portfolio design that is supposed to have a good
out-of-sample performance.
Since the most common way to measure the performance of a
portfolio is the Sharpe ratio, we can precisely use it as our criterion of
interest to choose ρ:

SR =
wTµ√
wTΣw

.

The portfolio that maximizes the Sharpe ratio is

wSR ∝ Σ−1µ.

In practice, of course µ and Σ are unknown and one must use some
estimates, for example, the sample mean µ̂ and a shrinkage estimator
for the covariance matrix Σ̂sh = ρ1I + ρ2Σ̂.
D. Palomar Shrinkage and Black-Litterman 29 / 57



Maximizing the Sharpe Ratio

Since the Sharpe ratio is invariant in w, we can arbitrarily set ρ2 = 1
to eliminate one parameter to be chosen:

Σ̂sh = ρ1I + Σ̂

The optimal portfolio becomes then

wSR ∝ (Σ̂sh)−1µ̂.

And the realized out-of-sample Sharpe ratio is

SR =
µ̂T (Σ̂sh)−1µ√

µ̂T (Σ̂sh)−1Σ(Σ̂sh)−1µ̂
.

D. Palomar Shrinkage and Black-Litterman 30 / 57



Maximizing the Sharpe Ratio

We can finally formulate the problem as18

maximize
ρ1≥0

µ̂T (Σ̂sh)−1µ√
µ̂T (Σ̂sh)−1Σ(Σ̂sh)−1µ̂

subject to Σ̂sh = ρ1I + Σ̂

Again, this problem formulation is useless in practice because it
requires knowledge of the true µ and Σ.
But again this is where the magic of RMT comes into play...

18M. Zhang, F. Rubio, D. P. Palomar, and X. Mestre, “Finite-sample linear filter
optimization in wireless communications and financial systems”, IEEE Transactions on
Signal Processing, vol. 61, no. 20, pp. 5014–5025, 2013.
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Maximizing the Sharpe Ratio
The following formulation is computable and leads to a consistent
estimator19

maximize
ρ1≥0

µ̂T (Σ̂sh)−1µ̂−δ√
bµ̂T (Σ̂sh)−1Σ̂(Σ̂sh)−1µ̂

subject to Σ̂sh = ρ1I + Σ̂
δ = D/(1− D)

D = 1
T Tr(Σ̂(Σ̂sh)−1)

b = T
Tr(W(I+δW)−2)

where W = I− 1
T 11T .

The interpretation is that one uses the estimations µ̂ and Σ̂ in lieu of
the true unknown quantities µ and Σ, but then some corrections
terms are needed, i.e., δ in the numerator and b in the denominator.
This problem is now computable but it is nonconvex. However, it is
easy to solve it via an exhaustive search over the scalar ρ1.

19M. Zhang, F. Rubio, D. P. Palomar, and X. Mestre, “Finite-sample linear filter
optimization in wireless communications and financial systems”, IEEE Transactions on
Signal Processing, vol. 61, no. 20, pp. 5014–5025, 2013.
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Example of Sharpe Ratio based Estimator

Consider the daily returns of 45 stocks under the Hang Seng Index
from 03-Jun-2009 to 31-Jul-2011.
The portfolio is updated on a rolling window basis every 10 days and
the past T = 75, 76, . . . , 95 days are used to design the portfolios at
each update period.
We compare the following portfolios:20

based on the proposed method (RMT)
based on LW estimator
based on the sample covariance matrix
uniform portfolio.

20Y. Feng and D. P. Palomar, A Signal Processing Perspective on Financial
Engineering. Foundations and Trends R© in Signal Processing, Now Publishers Inc., 2016.

D. Palomar Shrinkage and Black-Litterman 33 / 57



Example of Sharpe Ratio based Estimator

The proposed method is the best, but note that, for T > 81, the
performance starts to degrade. This is probably because the lack of
stationarity.
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Example of Sharpe Ratio based Estimator

A sparse portfolio was considered (forcing to zero all the portfolio
weights that had an absolute value less than 5% of the summed
absolute values):
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Beyond Linear Shrinkage

Recall the the shrinkage covariance matrix estimation

Σ̂sh = (1− ρ) Σ̂ + ρI

It can be interpreded as a linear shrinkage of the eigenvalues (while
keeping the same eigenvectors) towards one:

λi (Σ̂
sh) = (1− ρ)λi (Σ̂) + ρ1

One can wonder whether a more general shrinkage of the eigenvalues
is possible.
Precisely, recent promising results have been in the direction of
nonlinear shrinkage of eigenvalues based on very sophisticated RMT:

J. Bun, J.-P. Bouchaud, and M. Potters, “Cleaning correlation matrices”,
Risk Management, 2006
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What is RMT Anyway?

Linear shrinkage of the covariance matrix Σ̂sh = (1− ρ) Σ̂ + ρI can be
seen in terms of eigenvalues:

λi (Σ̂
sh) = (1− ρ)λi (Σ̂) + ρ

And it is precisely about distribution of eigenvalues that RMT has a
lot to say.
The topic is too mathematically involved to survey here, but it is
interesting to see the starting point of the whole theory.
A good reference of RMT applied to the cleaning of covariance and
correlation matries with the financial application in mind is:

J. Bun, J.-P. Bouchaud, and M. Potters, Cleaning Large Correlation
Matrices: Tools from Random Matrix Theory. Oxford Univ. Press, 2016
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Wishart Matrix

A Wishart matrix is a random symmetric matrix M of the form (i.e., a
sample covariance matrix):

M =
1
T

XTX

where X is an T × N random matrix of i.i.d. Gaussian elements
Xij ∼ N (0, 1).
The population matrix of the data is Σ , E [M] = I, i.e., it has all
eigenvalues identical to 1.
Matrix M is clearly random so, in principle, there is not much we can
say about it.
However, for a fixed dimension N and in the limit of large T (i.e.,
T � N), we can say that M→ Σ = I
But when N is not small compared to T , then this convergence result
does not hold anymore. In fact, for T ,N →∞ the matrix M is still
random and does not converge to anything.
D. Palomar Shrinkage and Black-Litterman 39 / 57



Wishart Matrix
RMT precisely considers the case when T ,N →∞ but their ratio
q = N/T is not vanishingly small. This is often called the large
dimension limit.
In the case q = 0, such as the case of fixed N, we have already seen
that the sample eigenvalues converge to the population eigenvalues.
But what happens when q > 0?
The first result is due to the seminal work of Marcenko and Pastur in
1967.21

It turns out that the sample eigenvalues become noisy estimators of
the “true” (population) eigenvalues no matter how large T is!
Note that one specific element of the covariance matrix can be
estimated with vanishing error for large T , but because we have more
and more entries as N also grows, the eigenvalues always have some
nonvanishing error.
This is also called “the curse of dimensionality”.

21V. A. Marcenko and L. A. Pastur, “Distribution of eigenvalues for some sets of
random matrices”, Mat. Sb, vol. 72, no. 4, pp. 507–536, 1967.
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Marcenko-Pastur Law for Wishart Matrices

In fact, the distortion becomes more and more substantial as q
becomes large. See the limiting eigenvalue distribution:
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Figure 1.1. Plot of the sample eigenvalues and the corresponding sample eigenvalues density under the
null hypothesis with N = 500. The blue line (q = 0) corresponds to a perfect estimation of the population
eigenvalues. The larger is the observation ratio q, the wider is the sample density. We see that even for
T = 4N , the deviation from the population eigenvalues is significant.

the edge of the bulk of eigenvalues is very rigid in the sense that the position of the edge has very
small fluctuations of order T�2/3. This provides a very simple recipe to distinguish meaningful
eigenvalues (beyond the edge) from noisy ones (inside the bulk) [27, 23]. This method is known
as “eigenvalue clipping”: all eigenvalues in the bulk of the Marčenko-Pastur spectrum are deemed
as noise and thus replaced by a constant value whereas the principal components outside of the
bulk (the spikes) are left unaltered. This very simple method provides robust out-of-sample per-
formance [28] and emphasizes that the notion of regularization – or cleaning – is very important in
high-dimension.

Even if the spiked covariance matrix model provides quite satisfactory results in many di↵erent
contexts [28], one may want to work without such an assumption on the structure of C using the
Marčenko-Pastur equation to reconstruct numerically the spectrum of C [29]. However, this is
particularly di�cult in practice since the Marčenko-Pastur equation is easy to solve in the other
direction, i.e. knowing the spectrum of C, we easily get the spectrum of E. In that respect, many
studies attempting to “invert” the Marčenko-Pastur equation appeared since 2008 [28, 30, 31, 32].
The first one consists in finding a parametric “true” spectral density that fits the data [28]. The
method of [30], further improved in [31], is completely di↵erent. Under the assumption that the
spectrum of C consists of a finite number of eigenvalues, an exact analytical estimator of each
population eigenvalue is provided. However, this method requires some very strong assumptions on
the structure of the spectrum of C. The last approach can be considered as a nonparametric method
and seems to be very appealing. Indeed, El Karoui proposed a “consistent” numerical scheme to
invert the Marčenko-Pastur equation using the observed sample eigenvalues [32]. Nevertheless,
while the method is very informative, it turns out that the algorithm also needs prior knowledge
on the location of the true eigenvalues which makes the implementation di�cult in practice.

9
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Marcenko-Pastur Law for Wishart Matrices

To be more precise, Marcenko and Pastur showed in 196722 that in
the limit when T ,N →∞ while N/T converges to a fixed value
q ∈ (0, 1), the empirical distribution of eigenvalues of M = 1

T XTX
converges almost surely to

ρMP (ν) =
1
2π

√
(ν+ − ν) (ν − ν−)

qν
, ν ∈ [ν−, ν+]

where ν± =
(
1±√q

)2.
Whereas for q ≥ 1, it is clear that M is a singular matrix with N − T
zero eigenvalues, which contribute

(
1− q−1) δ (ν) to the density

above:

ρMP (ν) = max
(
1− q−1, 0

)
δ (ν)+

1
2π

√
(ν+ − ν) (ν − ν−)

qν
1 [ν−, ν+] .

22V. A. Marcenko and L. A. Pastur, “Distribution of eigenvalues for some sets of
random matrices”, Mat. Sb, vol. 72, no. 4, pp. 507–536, 1967.
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Wigner’s Semicircle Law for Gaussian Matrices

Wigner’s semi-circle law from 1951 states that the empirical
distribution of the eigenvalues of X converges almost surely to

ρW (ν) =
1
2π

√
4− ν2, |ν| < 2

-2 -1 0 1 2
λ

0

0.1

0.2

0.3

0.4

0.5

ρ(
λ)

Wigner

Figure 2.2. Wigner semi-circle density (2.36) compared with empirical results with N = 500 (histogram)
from one sample, illustrating the convergence of the ESD at finite N to the asymptotic LSD.

2.2.3. The Marčenko-Pastur law. As stated in the introduction, the study of random matrices
began with John Wishart [8]. More precisely, let us consider the N ⇥ T matrix Y consisting of T
independent realizations of random centered Gaussian vectors of size N and covariance C, then the
Wishart matrix is defined as the N ⇥ N matrix M as M ..= T�1YY⇤. In multivariate statistics,
this matrix M is better known as the sample covariance matrix (see Chapter 3). For any N and
T > N , Wishart derived the exact PDF of the entries M which reads:

Pw(M|C) =
1

2NT/2�N (T/2)

det(M)
T�N�1

2

det(C)T/2
e�

T
2 TrC�1M. (2.38)

As alluded in the introduction, we say that M (given C) follows a Wishart(N, T, C/T ) distribution.
In the “isotropic” case, i.e., when C = IN , we can deduce from (2.38)

Pw(M|IN ) / det(M)
T�N�1

2 e�
T
2 TrM := e�

T
2 TrM+ T�N�1

2 Tr log M, (2.39)

which clearly belongs to the class of Boltzmann ensembles (2.1). Throughout the following, we shall
denote by W the N ⇥N matrix whose distribution is given by (2.39). Ignoring sub-leading terms,
the corresponding potential function is given by:

V (z) =
1

2q
[z � (1� q) log z] , with q := N/T. (2.40)

23
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RMT in Finance

The Marcenko-Pastur law has clearly relevance in finance because a
key quantity in portfolio design is the covariance matrix of the
log-returns, which could be modeled as Gaussian.
In fact, even for non-Gaussian distributions with heavier tails like in
finance, the Marcenko-Pastur law still seems to hold if one uses robust
estimators of heavy tails.
However, from factor modeling, we know that returns have a strong
market component and perhaps other few factors plus the
idiosyncratic component:

the idiosyncratic component, called the “bulk”, has a distribution that
follows the Marcenko-Pastur law
the market (and other strong factors) are sometimes referred to as
outliers and are totally separated from the bulk.
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Black-Litterman Model
The Black-Litterman model23 allows to incorporate investor’s views
about the expected return µ.
Market Equilibrium: One source of information for µ is the market,
e.g., the sample estimate µ̂ = 1

T

∑T
t=1 rt . We can then explicitly write

the estimate π = µ̂ in terms of the actual µ and the estimation error:

π = µ + w, w ∼ N (0, τΣ)

where the error has been statistically modeled with a covariance
matrix equal to a scaled Σ (which is assumed known for simplicity).
Investor’s View: Suppose we have K views summarized from some
investors written in the following form:

v = Pµ + e, e ∼ N (0,Ω)

where P ∈ RK×N and v ∈ RK characterize the absolute or relative K
views and Ω ∈ RK×K measures the uncertainty in the views.

23F. Black and R. Litterman, “Asset allocation: Combining investor views with market
equilibrium”, The Journal of Fixed Income, vol. 2, no. 1, pp. 7–18, 1991.
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Example of Investor’s Views

Suppose there are N = 5 stocks and two independent views on
them:24

Stock 1 will have a return of 1.5% with standard deviation of 1%
Stock 3 will outperform Stock 2 by 4% with a standard deviation of 1%

Mathematically, we can express these two views as[
1.5%
4%

]
=

[
1 0 0 0 0
0 −1 1 0 0

]
µ + e

where e ∼ N (0,Ω) and Ω =

[
1%2 0
0 1%2

]
.

The parameter τ also has to be specified: some researchers set
τ ∈ [0.01, 0.05], others τ = 1, while some suggest τ = 1/T (i.e., the
more observations the less uncertainty on the market equilibrium).25

24F. J. Fabozzi, S. M. Focardi, and P. N. Kolm, Quantitative Equity Investing:
Techniques and Strategies. Wiley, 2010.

25T. M. Idzorek, “A step-by-step guide to the Black-Litterman model”, Forecasting
Expected Returns in the Financial Markets, p. 17, 2002.
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Example of Investor’s Views

In some occasions, the investor may only have qualitative views (as
opposed to quantitative ones), i.e., only P is available.
Then, one can choose:26

vi = (Pπ)i + ηi

√
(PΣPT )ii , i = 1, . . . ,N

where ηi ∈ {−β,−α,+α,+β} defines “very bearish”, “bearish”,
“bullish”, and “very bullish” views, respectively. Typical choices are
α = 1 and β = 2.
As for the uncertainty:

Ω =
1
c
PΣPT

where the scatter structure of uncertainty is inherited from the market
volatilities and correlations and c ∈ (0,∞) represents the overall level
of confidence in the views.

26A. Meucci, Risk and Asset Allocation. Springer, 2005.
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Alternative to Marquet Equilibrium: CAPM

An alternative market equilibrium can be obtained from CAPM.
Recall CAPM:

E [ri ,t ]− rf = βi (E [rM,t ]− rf )

where rf is the return of the risk-free asset and rM,t is the market
return which can be expressed as rM,t = wT

Mrt
Then

π = µ̂mkt − rf = β (E [rM,t ]− rf )

with
β = Cov (rt , rM,t) /Var (rM,t)

Thus
π = δCov (rt , rM,t) = δΣwM

with δ = (E [rM,t ]− rf ) /Var (rM,t).
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Black-Litterman Model - Weighted LS Approach
Let us combine the two equations

π = µ + w, w ∼ N (0, τΣ)

and v = Pµ + e, e ∼ N (0,Ω)

in a more compact form as

y = Xµ + ε, ε ∼ N (0,V)

with y =

[
π
v

]
, X =

[
I
P

]
, and V =

[
τΣ 0
0 Ω

]
.

We can now estimate µ from the observations y = Xµ + ε (a
Bayesian interpretation is also possible).
This is just a weighted least squares (LS) problem:27

minimize
µ

(y − Xµ)T V−1 (y − Xµ)

27Y. Feng and D. P. Palomar, A Signal Processing Perspective on Financial
Engineering. Foundations and Trends R© in Signal Processing, Now Publishers Inc., 2016.
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Black-Litterman Model - Weighted LS Approach

The solution is simply

µ̂BL =
(
XTV−1X

)−1
XTV−1y

We can substitute the expressions for y, X, and V, leading to

µ̂BL =
(

(τΣ)−1 + PTΩ−1P
)−1 (

(τΣ)−1 π + PTΩ−1v
)

Consider two extremes:
τ = 0: we give total accuracy to the market equilibrium view and
indeed

µ̂BL = π , µ̂mkt

τ →∞: we give no accuracy at all to the market equilibrium view and
therefore the investor’s views dominate

µ̂BL =
(
PTΩ−1P

)−1
PTΩ−1v , µ̂views
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Black-Litterman Model - Weighted LS Approach

We can now rewrite the solution as

µ̂BL =
(

(τΣ)−1 + PTΩ−1P
)−1 (

(τΣ)−1 π + PTΩ−1v
)

=
(

(τΣ)−1 + PTΩ−1P
)−1 (

(τΣ)−1 π + PTΩ−1Pµ̂views

)
= Wmktµ̂mkt + Wviewsµ̂views

where Wmkt =
(

(τΣ)−1 + PTΩ−1P
)−1

(τΣ)−1 and

Wviews =
(

(τΣ)−1 + PTΩ−1P
)−1

PTΩ−1P.

Note that Wmkt + Wviews = I, so the Black-Litterman solution µ̂BL is
a combination of the two extreme solutions µ̂mkt and µ̂views.
The Black-Litterman model is similar to the previous James-Stein
shrinkage estimator where the target comes now from the investor’s
views µ̂views and the shrinkage scalar parameter is now a matrix.
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Black-Litterman Model - Bayesian Approach 1

This is actually the original formulation by Black and Litterman28.
We model the returns as

r ∼ N (µ,Σ)

where the covariance Σ can be estimated from past returns but µ
cannot be known with certainty.
BL then models µ as a random variable normally distributed

µ ∼ N (π, τΣ)

where π represents the best guess for µ and τΣ the uncertainty on
this guess. Note that then r ∼ N (π, (1 + τ)Σ).
The views are modeled as

Pµ ∼ N (v,Ω)

28F. Black and R. Litterman, “Asset allocation: Combining investor views with market
equilibrium”, The Journal of Fixed Income, vol. 2, no. 1, pp. 7–18, 1991.
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Black-Litterman Model - Bayesian Approach 1

Then the posterior distribution for µ is obtained from Bayes formula:

µ | v,Ω ∼ N
(
µBL,Σ

µ
BL

)
where

µBL =
(

(τΣ)−1 + PTΩ−1P
)−1 (

(τΣ)−1 π + PTΩ−1v
)

and
Σµ

BL =
(

(τΣ)−1 + PTΩ−1P
)−1

.

But we really want the posterior for the returns

r | v,Ω ∼ N (µBL,ΣBL)

where ΣBL = Σµ
BL + Σ.

Using the matrix inversion lemma, we can further rewrite

µBL = π + τΣPT (τPΣPT + Ω)−1 (v − Pπ)

ΣBL = (1 + τ)Σ− τ2ΣPT (τPΣPT + Ω)−1PΣ.
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Black-Litterman Model - Bayesian Approach 2

In this case, µ is not modeled as a random variable but simply as
µ = π.29

The views are modeled on the random returns rather than on µ:
v = Pr + e.
The conditional distribution is modeled as

v | r ∼ N (Pr,Ω)

Applying Bayes we get

r | v,Ω ∼ N (µm
BL,Σ

m
BL)

where

µm
BL = π + ΣPT (PΣPT + Ω)−1 (v − Pπ)

Σm
BL = Σ−ΣPT (PΣPT + Ω)−1PΣ.

29A. Meucci, Risk and Asset Allocation. Springer, 2005.
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Beyond Black-Litterman

The following references by Meucci are recommended for more
sophisticated ways to incorporate views in the portfolio design:

Meucci, Attilio. Beyond Black-Litterman: Views on Non-Normal
Markets. November 2005, Available at SSRN:
http://ssrn.com/abstract=848407
Meucci, Attilio. Beyond Black-Litterman in Practice: A Five-Step
Recipe to Input Views on non-Normal Markets. May 2006, Available at
SSRN: http://papers.ssrn.com/sol3/papers.cfm?abstract id=872577
Meucci, Attilio. The Black-Litterman Approach: Original Model and
Extensions. April 2008, Available at SSRN:
http://ssrn.com/abstract=1117574
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Thanks

For more information visit:

https://www.danielppalomar.com
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