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Asset log-prices

Let pt be the price of an asset at (discrete) time index t.
The fundamental model is based on modeling the log-prices
yt , log pt as a random walk:

yt = µ+ yt−1 + εt
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Asset returns

Simple return (a.k.a. linear or net return) is

Rt ,
pt − pt−1

pt−1
=

pt
pt−1

− 1.

Log-return (a.k.a. continuously compounded return) is

rt , yt − yt−1 = log
pt
pt−1

= log (1 + Rt) .

Note rt = log (1 + Rt) ≈ Rt when Rt is small.
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S&P 500 index - log-returns
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Stylized facts of financial data

A set of properties, common across many instruments, markets, and
time periods, has been observed by independent studies and classified
as “stylized facts.”1

Lack of stationarity: past returns do not necessarily reflect future
performance (watch out fund’s brochures)
Absence of autocorrelations: autocorrelations of returns are often
insignificant (efficient market hypothesis)
Heavy tails: Gaussian distributions generally do not hold in financial
data (even after correcting for volatility clustering)
Gain/loss asymmetry: basically asymmetry of the pdf
Aggregational Gaussianity: for lower frequencies, the distribution
tends to become more Gaussian.
Volatility clustering: high-volatility evens tend to cluster in time

1R. Cont, “Empirical properties of assets returns: Stylised facts and statistical issues”,
Quantitative Finance, vol. 1, pp. 223–236, 2001.
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Autocorrelation

ACF of S&P 500 log-returns:
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Non-Gaussianity and asymmetry

Histograms of S&P 500 log-returns:

Histogram of daily log−returns
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Volatility clustering

S&P 500 log-returns:

Jan 04

2007

Jan 02

2008

Jan 02

2009

Jan 04

2010

Jan 03

2011

Jan 03

2012

Jan 02

2013

Jan 02

2014

Jan 02

2015

Jan 04

2016

Jan 03

2017

−
0
.1

0
−

0
.0

5
0
.0

0
0
.0

5
0
.1

0

SP500 index

lo
g
−

re
tu

rn

D. Palomar Time Series Modeling 10 / 86



Volatility clustering removed

Standardized S&P 500 log-returns:
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General structure of a model

Denote log-return of N assets as rt ∈ RN .
Denote Ft−1 as the previous historical data.
Financial modeling aims at modeling rt conditional on Ft−1.

Conditional on Ft−1, we can decompose rt ∈ RN as follows:

rt = µt + wt

where
µt is the conditional mean

µt = E[rt |Ft−1]

wt is a white noise with zero mean and conditional covariance

Σt = E[(rt − µt)(rt − µt)
T |Ft−1].
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i.i.d. model

It assumes rt follows an i.i.d. distribution.
That is, both the conditional mean and conditional covariance are
constant

µt = µ,

Σt = Σw .

Very simple model, however, it is one of the most fundamental
assumptions for many important works, e.g., the Nobel prize-winning
Markowitz portfolio theory2.

2H. Markowitz, “Portfolio selection”, J. Financ., vol. 7, no. 1, pp. 77–91, 1952.
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Factor model

The factor model is
rt = α + Bft + wt ,

where
α denotes a constant vector
ft ∈ RK with K � N is a vector of a few factors that are responsible
for most of the randomness in the market,
B ∈ RN×K denotes how the low dimensional factors affect the higher
dimensional market;
wt is a white noise residual vector that has only a marginal effect.

The factors can be explicit or implicit.
Widely used by practitioners (they buy factors at a high premium).
Connections with Principal Component Analysis (PCA)3.

3I. Jolliffe, Principal Component Analysis. Springer-Verlag, 2002.
D. Palomar Time Series Modeling 15 / 86



i.i.d. vs factor models

Factor models are special cases of the i.i.d. model with the variation
being decomposed into two parts: low dimensional factors and
marginal noise.

The explicit factor model
explains the log-returns with a smaller number of fundamental or
macroeconomic variables,
however, in general there is no systematic method to choose the right
factors.

The hidden factor model
explores the structure of the covariance matrix,
is a more systematical approach and thus it may provide a better
explanatory power,
however, does not have explicit econometric interpretations.
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Time series decomposition
Time series data can exhibit a variety of patterns, and it is often
helpful to split a time series into several components, each
representing an underlying pattern category.4

Additive decomposition:

yt = St + Tt + Rt

where yt is the data, St is the seasonal component, Tt is the
trend-cycle component, and Rt is the remainder (noisy) component.
Multiplicative decomposition:

yt = St × Tt × Rt .

Multiplicative decompositions are common with economic time series.
An alternative to using a multiplicative decomposition is to first use a
log transformation and then use an additive decomposition:

log yt = log St + logTt + logRt .
4R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice.

OTexts, 2014.
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Time series decomposition: Example

Time series (grey) with trend-cycle component (red):5

5Credit: Hyndman and Athanasopoulos at https://otexts.com/fpp3
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Time series decomposition: Example
Time series decomposition into trend-cycle component, seasonal
component, and residual component:6

6Credit: Hyndman and Athanasopoulos at https://otexts.com/fpp3
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Moving average (MA) smoothing

One classical way to obtain the trend-cycle component of a time series
is with the moving average.
A moving average of order m is

ŷt =
1
m

m∑
i=1

yt−i .

We can also use a centered moving average for smoothing (not
forecasting purposes):

ŷt =
1
m

k∑
i=−k

yt−i

where m = 2k + 1.
It is also called rolling means since it is computing the mean on a
rolling-window basis.
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Classical decomposition

The classical decomposition method for yt = St + Tt + Rt originated
in the 1920s.7

It is a relatively simple procedure, and forms the starting point for
most other methods of time series decomposition.
Steps:

1 Compute the trend-cycle component T̂t using an MA.
2 Detrend series: yt − T̂t

3 To estimate the seasonal component Ŝt for each season, simply average
the detrended time series for that season; for example, with monthly
data, the seasonal component for March is the average of all the
detrended March values.

4 Compute the remainder as R̂t = yt − T̂t − Ŝt .

While classical decomposition is still widely used, it is not
recommended, as there are now several much better methods.

7R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice.
OTexts, 2014.
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Exponential smoothing

Exponential smoothing was proposed in the late 1950s, and has
motivated some of the most successful forecasting methods.8

Forecasts produced using exponential smoothing methods are
weighted averages of past observations, with the weights decaying
exponentially as the observations get older.
The simplest of the exponentially smoothing methods is naturally
called simple exponential smoothing:

ŷt = αyt−1 + (1− α)ŷt−1

with 0 ≤ α ≤ 1.
Recall the expression for the MA:

ŷt =
1
m

m∑
i=1

yt−i .

8R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice.
OTexts, 2014.
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Exponential smoothing: Component form

The simple exponential smoothing

ŷt+1 = αyt + (1− α)ŷt

can be rewritten in a different form called component form.
Component form of the simple exponential smoothing:

Forecast equation ŷt+1 = `t

Smoothing equation `t = αyt + (1− α)`t−1

where `t is the level (or smoothed value) of the series at time t.

D. Palomar Time Series Modeling 25 / 86



Holt’s linear trend method

Holt extended in 1957 the simple exponential to allow a trend (slope
of the level):

Forecast equation ŷt+1 = `t + bt

Level equation `t = αyt + (1− α) (`t−1 + bt−1)

Trend equation bt = β (`t − `t−1) + (1− β) bt−1

where `t is the level (or smoothed value) and bt denotes the trend
(slope) of the series at time t.
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Holt-Winters’ method with seasonality

Holt and Winters extended Holt’s method to capture seasonability in
1960:

Forecast equation ŷt+1 = `t + bt + st+1−m

Level equation `t = α (yt − st−m) + (1− α) (`t−1 + bt−1)

Trend equation bt = β (`t − `t−1) + (1− β) bt−1

Seasonal equation st = γ (yt − `t−1 − bt−1) + (1− γ) st−m

where m denotes the period of the seasonality (so for monthly data
m = 12, i.e., one year).
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Taxonomy of exponential smoothing methods

More generally, while the level equation is always there, one can
choose whether to have trend and seasonal terms and also one can
choose whether they are additive or multiplicative.
This can be expressed compactly with three letters (E,T,S) defining
the error, trend, and seasonality type (to choose from None, Additive,
and Multiplicative):

ETS(A,N,N) corresponds to the simple exponential smoothing;
ETS(A,A,N) corresponds to Holt’s method;
ETS(A,A,A) corresponds to Holt-Winters’ method.

In R, the package forecast allows to compute all these variations
conveniently.
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ARIMA models to capture time-correlation
ARIMA models provide another approach to time series modeling and
forecasting.
While exponential smoothing models are based on a description of the
trend and seasonality in the data, ARIMA models aim to describe the
autocorrelations in the data.
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VAR(1) model

Recall that we model the log-returns rt = ∆yt = yt − yt−1, where yt
denotes the log-prices.
The VAR (Vector Auto-Regressive) model or order 1 is

rt = φ0 + Φ1rt−1 + wt ,

where
the vector φ0 ∈ RN and the matrix Φ1 ∈ RN×N are parameters,
wt is a white noise series with zero mean and constant covariance
matrix Σw .

The conditional mean and covariance matrix are

µt = φ0 +Φ1rt−1,

Σt = Σw .
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AR(1) example

A univariate AR(1) path looks like
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VAR(p) model

The VAR (Vector Auto-Regressive) model of order p is

rt = φ0 +

p∑
i=1

Φi rt−i + wt ,

where p is a nonnegative integer and
the vector φ0 ∈ RN and the matrices Φi ∈ RN×N are parameters,
wt is a white noise series with zero mean and constant covariance
matrix Σw .

The conditional mean and covariance matrix are

µt = φ0 +

p∑
i=1

Φi rt−i ,

Σt = Σw .
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VARMA(p,q) model

The VARMA (Vector Auto-Regressive and Moving Average) model is

rt = φ0 +

p∑
i=1

Φi rt−i + wt −
q∑

j=1

Θjwt−j ,

where p and q are nonnegative integers and

the vector φ0 ∈ RN and the matrices Φi ,Θj ∈ RN×N are parameters,
wt is a white noise series with zero mean and constant covariance
matrix Σw .

The conditional mean and covariance matrix are

µt = φ0 +

p∑
i=1

Φi rt−i −
q∑

j=1

Θjwt−j ,

Σt = Σw .
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Order selection of models
All time series models have an order that is typically assumed to be
known and given, e.g., the orders p and q in a VARMA(p,q) model.
In practice, the order of a model is unknown and also has to be
determined from the observed data.
Observe that the higher the order, the more parameters the model has
to fit the data and, thus, the better the fit. So it seems the best
model will be the one with higher order.
However, this is completely wrong, because it will be doomed to
overfit the data: one thing is to fit better the training data, a very
different one is to fit better the future coming data.
In practice, there are two common approaches:

cross-validation: splitting the data into a training part and a
cross-validation part, the latter being used to test the model trained
with the training data for different combinations of orders.
penalized estimation methods: penalizing the number of parameters of
the model with a penalty term like: AIC, BIC, SIC, HQIC, etc.9

9H. Lütkepohl, New Introduction to Multiple Time Series Analysis. Springer Science
& Business Media, 2007.
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ARIMA vs ETS

It is a commonly held myth that ARIMA models are more general than
exponential smoothing.10

While linear exponential smoothing models are all special cases of
ARIMA models, the non-linear exponential smoothing models have no
equivalent ARIMA counterparts.
On the other hand, there are also many ARIMA models that have no
exponential smoothing counterparts. In particular, all ETS models are
non-stationary, while some ARIMA models are stationary.

10R. J. Hyndman and G. Athanasopoulos, Forecasting: Principles and Practice.
OTexts, 2014.
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VARIMA(p,d ,q) model

A multivariate time series yt is said to be a VARIMA(p,1,q) process if
it is nonstationary but after differencing the series times
xt = yt − yt−1 then xt follows a stationary VARMA(p,q) model.
More generally, a VARIMA(p,d ,q) process has to be differenced d
times to obtain a stationary VARMA(p,q) process.
In finance, price series pt (or log-prices yt = log (pt)) are believed to
be nonstationary, but the log-return series
rt = yt − yt−1 = log (pt)− log (pt−1) is stationary.
Thus, it is the same to talk about a VARIMA(p,1,q) log-price series
and about a VARMA(p,q) log-return series.
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Vector Error Correction Model (VECM)

Until now we have focused on modeling directly the log-returns
rt = ∆yt = yt − yt−1, where yt denotes the log-prices.
The reason is that in general the log-price time series yt is not weakly
stationary (first and second-order moments are not constant).
Example: think of Apple stock whose log-prices keep increasing.
On the other hand, the log-return time series rt is weakly stationary
(at least over some time horizon), which is good.
However, it turns out that differencing may destroy part of the
structure in the relationship among the log-prices of the stocks which
may be invaluable for forecasting.
So it makes sense to analyze the original (probably non-stationary, be
careful!) time series in yt directly:

yt = φ0 +

p∑
i=1

Φiyt−i + wt .
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VECM

The VECM11 is better written as

rt = φ0 + Πyt−1 +

p−1∑
i=1

Φ̃i rt−i + wt ,

where the term Πyt−1 is called error correction term and

Φ̃j = −
p∑

i=j+1

Φi

Π = − (I−Φ1 − · · · −Φp) .

The conditional mean and covariance matrix are

µt = φ0 + Πyt−1 +

p−1∑
i=1

Φ̃i rt−i ,

Σt = Σw .
11R. F. Engle and C. W. J. Granger, “Co-integration and error correction:

Representation, estimation, and testing”, Econometrica: Journal of the Econometric
Society, pp. 251–276, 1987.
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VECM - Matrix Π

The matrix Π is of extreme importance.
Notice that from the model rt = φ0 + Πyt−1 +

∑p−1
i=1 Φ̃i rt−i + wt

one can conclude that Πyt must be stationary even though yt is not!!!
If that happens, it is said that yt is cointegrated.
There are three possibilities for Π:

rank (Π) = 0: This implies Π = 0, thus yt is not cointegrated (so no
mystery here) and the VECM reduces to a VAR model on the
log-returns.
rank (Π) = N: This implies Π is invertible and thus yt must be
stationary already
0 < rank (Π) < N: This is the interestinc case and Π can be
decomposed as Π = αβT with α,β ∈ RN×r with full column rank.
This means that yt has r linearly independent cointegrated
components, i.e., βTyt , which can be used to design mean-reversion
statistical arbitrage investment strategies (e.g., pairs trading).
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Volatility clustering

Recall that conditional on the past history Ft−1, we can decompose
the returns as follows:

rt = µt + wt

where
µt is the conditional mean

µt = E[rt |Ft−1]

wt is a white noise with zero mean and conditional covariance

Σt = E[(rt − µt)(rt − µt)
T |Ft−1].

We will focus now on the modeling of the term wt and, more
specifically, the covariance Σt (in the univariate case, it is just the
variance σt).
The previously models focus on modeling the conditional mean but
assume that Σt is constant!
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Volatility clustering

As we know from financial stylized facts, the volatility (i.e., the square
root of conditional variance) is clustered:
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Moving average (MA) of squared returns
Before we start with complicated models, we can consider a simple
rolling means (aka moving average) of the squared returns:

σ2
t =

1
m

m∑
i=1

w2
t−i
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Exponentially Weighted Moving average (EWMA)
of squared returns

We can now try an EWMA of the squared returns (after fitting,
α = 0.097):

σ2
t = αw2

t−1 + (1− α)σ2
t−1
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ARCH model

The autoregressive conditional heteroskedasticity (ARCH) model is
one of the earliest model to deal with the volatility clustering effect.
The ARCH(m) model12 is

wt = σtzt ,

where zt is a white noise series with zero mean and constant unit
variance, and the conditional variance σ2

t is modeled by

σ2
t = ω +

m∑
i=1

αiw
2
t−i

Here, m is a nonnegative integer, ω > 0, αi ≥ 0 for all i > 0.

12R. F. Engle, “Autoregressive conditional heteroscedasticity with estimates of the
variance of United Kingdom inflation”, Econometrica: Journal of the Econometric
Society, pp. 987–1007, 1982.

D. Palomar Time Series Modeling 47 / 86



ARCH model

Even though the ARCH model can model the conditional
heteroskedasticity, it has several disadvantages:

positive and negative noise have the same effects on volatility, but in
practice they have different impact
too restrictive to capture some patterns, e.g., excess kurtosis
doesn’t provide any new insight, just a mechanical way to describe the
behavior of conditional variance
tend to overpredict the volatility because it responds slowly to large
isolated noise clusters.
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ARCH model example
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GARCH model

A limitation of the ARCH model is that the high volatility is not
persistent enough. This can be overcame by the Generalized ARCH
(GARCH) model.13

The GARCH(m, s) model is

wt = σtzt ,

where zt is a white noise series with zero mean and constant unit
variance, and the conditional variance σ2

t is modeled by

σ2
t = ω +

m∑
i=1

αiw
2
t−i +

s∑
j=1

βjσ
2
t−j .

Here, m and s are nonnegative integers, ω > 0, αi ≥ 0, βj ≥ 0 for all
i > 0 and j > 0 and

∑m
i=1 αi +

∑s
j=1 βj ≤ 1.

13T. Bollerslev, “Generalized autoregressive conditional heteroskedasticity”, Journal of
Econometrics, vol. 31, no. 3, pp. 307–327, 1986.
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GARCH example
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ARCH vs GARCH example
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Criticism of GARCH: Spike model
For criticism of GARCH see an insightful report by Patrick Burns:
https://www.burns-stat.com/pages/Present/3_realms_garch_modeling_annot.pdf

GARCH thinks volatility is composed of exponentially decaying spikes:

When the spikes happen is unpredictable.
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Criticism of GARCH: Spike model

Consider a GARCH(1,1):

σ2
t = ω + α1w

2
t−1 + β1σ

2
t−1

with parameters: ω, α1, and β1.
If we set ω = 0 and α1 = 1− β1, then we get an exponential
smoothing:

σ2
t = (1− β1)w2

t−1 + β1σ
2
t−1.

Thus we can say that GARCH is a glorified exponencial smoothing!
So indeed GARCH thinks volatility is composed of an overlap of
exponentially decaying spikes.
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Criticism of GARCH: Data hungry
Let’s generate multiple synthetic realizations of a GARCH model with
ω = 0, α1 = 0.07, and β1 = 0.925.
If each realization has 100,000 observations and we estimate the
parameters for each realization, we get the following scatter plot of
the estimates:

The range of estimates is about 0.01, which is good, but we used
100,000 observations (4 centuries of daily data).
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Criticism of GARCH: Data hungry

If instead each realization has 2,000 observations (which is still a large
number) and we estimate the parameters for each realization, we get
the following scatter plot of the estimates:

The estimates are not as good now, and 2,000 observations is still a
lot (8 years of daily data).
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Stochastic volatility model

As an alternative to the GARCH class of models, Taylor porposed in a
seminal work14 to model the volatility probabilistically, i.e., through a
state-space model where the logarithm of the squared volatilities
follows an AR(1) process.
This is called stochastic volatility (SV) model.
The SV model has not enjoyed the popularity of the GARCH class
models.
There are very few software packages available to fit SV models.
Fitting an SV model is computationally intensive.

14S. Taylor, “Financial returns modelled by the product of two stochastic processes: A
study of daily sugar prices 1691â79”, in Time Series Analysis: Theory and Practice 1,
O. Anderson, Ed., North-Holland, Amsterdam, 1982, pp. 203–226.
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SV model
Recall the decomposition of the returns as rt = µt + wt , where wt is
the innovation and can be understood as the demeaned return.
The instantaneous variance of wt , which before we denoted by the
latent variable σ2

t , here is modeled as σ2
t = exp (ht) and ht is allowed

to smoothly change following an AR(1) process:

wt = exp (ht/2) zt

ht − h̄ =φ
(
ht−1 − h̄

)
+ ut

where zt is white noise with zero mean and unit variance.
Equivalently, we can write this model in terms of σt as

wt =σtzt

log
(
σ2
t

)
=h̄ + φ

(
log
(
σ2
t−1
)
− h̄
)

+ ut

Compare with the GARCH(1,1) model:

σ2
t = ω + α1w

2
t−1 + β1σ

2
t−1.
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SV example
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Components model

For completeness, it is worth mentioning that there are other possible
models out there: The components model is one such example.
Recall the GARCH(1,1) model:

σ2
t = ω + α1w

2
t−1 + β1σ

2
t−1.

The components model is

qt =ω + ρqt−1 + φ
(
w2
t−1 − qt−1

)
σ2
t =qt + α1

(
w2
t−1 − qt−1

)
+ β1

(
σ2
t−1 − qt−1

)
.

The interpretation is that there is a smooth long-term trend in
volatility, qt , and then a short-term volatility that wiggles around the
long-term trend.
The parameter ρ is the persistence in the components model.
This model can have a high volatility long-term regime but low
volatility short-term, and vice versa.
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Multivariate GARCH model

The multivariate noise (a vector) is modeled as

wt = Σ
1/2
t zt ,

where zt ∈ RN is an i.i.d. white noise series with zero mean and
constant covariance matrix I.

The key is to model the conditional covariance matrix Σt .
But watch out as the number of parameters may quickly explode...
and that will inevitably produce overfitting.
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VEC GARCH model

One of the first extensions to the vector case is the vector (VEC)
GARCH model:

vech (Σt) = a0 +
m∑
i=1

Ãivech(wt−iwT
t−i ) +

s∑
j=1

B̃jvech (Σt−j) ,

where m and s are nonnegative integers, vech (·) is the
half-vectorization operator that keeps the N(N + 1)/2 lower triangular
part of its N × N matrix argument, a0 is an N(N + 1)/2 dimensional
vector, and Ãi , B̃j are N(N + 1)/2 by N(N + 1)/2 matrices.
Advantage: This model is very flexible.
Disadvantages: Does not guarantee Σt to be a positive definite
covariance matrix and the number of parameters grows quickly as
O
(
(m + s)N4).
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Diagonal VEC (DVEC) model

The DVEC model15 is more parsimonious model assuming that Ãi , B̃j

are diagonal and can be simplified as

Σt = A0 +
m∑
i=1

Ai � (wt−iwT
t−i ) +

s∑
j=1

Bj �Σt−j ,

where Ai ,Bj are symmetric N × N matrix parameters. Here, the
operator � denotes the Hadamard (elementwise) product can be
interpreted as moving weight matrices.
Advantage: This is an element-wise GARCH model, so very simple.
Disadvantages: Still Σt is not guaranteed to be positive-definite and
the number of parameters grows more slowly but still fast as
O
(
(m + s)N2).

15T. Bollerslev, R. F. Engle, and J. M. Wooldridge, “A capital asset pricing model
with time-varying covariances”, The Journal of Political Economy, pp. 116–131, 1988.
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BEKK model

To guarantee a positive-definite Σt , the Baba-Engle-Kraft-Kroner
(BEKK) model16 was proposed as

Σt = A0AT
0 +

m∑
i=1

Ai (wt−iwT
t−i )A

T
i +

s∑
j=1

BjΣt−jBT
j ,

where Ai ,Bj are N × N matrix parameters and A0 is lower triangular.

Advantage: Guarantees positive definiteness of Σt .
Disadvantages:

The parameters Ai and Bj do not have direct interpretations.
Number of parameters still increases as O

(
(m + s)N2

)
(although now

roughly the number of parameters is twice as that in DVEC).

16R. F. Engle and K. F. Kroner, “Multivariate simultaneous generalized ARCH”,
Econometric Theory, vol. 11, no. 01, pp. 122–150, 1995.
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CCC model

The constant conditional correlation (CCC) model17 restricts the
number of parameters while still guaranteeing the positive definite
covariance.
The idea is to model the conditional heteroskedasticity in each asset
while having a constant correlation.
Mathematically, the model is

Σt = DtCDt ,

where Dt = Diag (σ1,t , . . . , σN,t) is the time-varying conditional
volatilities of each stock and C is the CCC matrix of the standardized
noise vector ηt = D−1

t wt .

Advantages: Guarantees positive definiteness of Σt and small number
of parameters that grows as O

(
(m + s)N + N2).

Disadvantages: Not too flexible due to constant asset correlations.
17T. Bollerslev, “Modelling the coherence in short-run nominal exchange rates: A

multivariate generalized arch model”, The Review of Economics and Statistics,
pp. 498–505, 1990.
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DCC model

The main limitation of the CCC model is that the correlation is
constant.
To overcome this drawback, the dynamic conditional correlation
(DCC) was proposed18 as

Σt = DtCtDt ,

where Ct contains diagonal elements equal to 1.
In particular, Engle modeled it as follows:

Cij ,t =
qij ,t√
qii ,tqjj ,t

with each qij ,t modeled by a simple GARCH(1,1) model:

qij ,t = αηi ,t−1ηj ,t−1 + (1− α) qij ,t−1

18R. F. Engle, “Dynamic conditional correlation: A simple class of multivariate
generalized autoregressive conditional heteroskedasticity models”, Journal of Business &
Economic Statistics, vol. 20, no. 3, pp. 339–350, 2002.

D. Palomar Time Series Modeling 68 / 86



DCC model

More compactly, in matrix form:

Qt = αηtη
T
t + (1− α) Qt−1.

and
Ct = Diag−1/2 (Qt) QtDiag−1/2 (Qt) .

Advantages: Guarantees positive definiteness of Σt and small number
of parameters that grows as O ((m + s)N).
Disadvantages: Good flexibility, although it forces all the correlation
coefficients to have the same memory via the same α.
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Beyond

The previous models for the conditional mean and covariance matrix
can be jointly combined to fit the financial data better.
Limitations:

High-frequency data: when the sampling period becomes very small,
say minutes, seconds, or even smaller, the previous models become
invalid and one reaches a “quantum regime” where things are not fluid
anymore but quantized into the limit order book. Not only the models
have to be properly modified, but also the computer and internet
communication speed matter (e.g., co-location of computers).
Heavy tails: most models assume a Gaussian distribution for simplicity,
but they can be easily extended to deal with heavy-tailed distributions.
Lack of stationarity: financial data is only stationary for some time
horizon, this produces a tradeoff between having enough data to
properly estimate the parameters of the model but still within the
stationarity time horizon.
Other practical details: different stocks may have a different historical
length and some days the prices may be missing due to no trading or
bad quality of data.
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Great References on Time Series Models

H. Lütkepohl, New Introduction to Multiple Time Series Analysis.
Springer Science & Business Media, 2007

R. S. Tsay, Analysis of Financial Time Series, 3rd. John Wiley & Sons,
2010

R. S. Tsay, Multivariate Time Series Analysis: With R and Financial
Applications. John Wiley & Sons, 2014
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Model fitting

Each model has some parameters that need to be
fitted/estimated/calibrated to fit the observed data.
About the fitting process:

In some cases, this fitting can be as simple as a least squares (LS)
problem.
In some other cases, it can be more involved but still doable with
closed-form expressions or fixed-point solutions that can be solved
iteratively.
In some extreme cases, no analytical expressions can be found and one
has to resort to numerical Monte-Carlo based methods that require
intensive computational power (e.g., to approximate an integral).

About the model itself:
Some models are stable in the sense that the parameter estimation is
reliable and not too sensitive to each data realization.
However, other models are extremely sensitive to the data: different
realizations of the estimation errors may give you very different values
for the parameters.
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General estimation methodologies: LS

Least squares (LS) estimator:
The idea is to define an error between the observed financial data and
the model under consideration, and then minimize the `2-norm of the
error.
For example, for a VAR(1) model rt = φ0 + Φ1rt−1 + wt , where we
have T observations, the problem to solve would be

minimize
φ0,Φ1

∑T
t=2 ‖rt − φ0 −Φ1rt−1‖2 .
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General estimation methodologies: MLE

Maximum likelihood estimator (MLE):
The idea is to assume some distribution for the residual of the model
wt , typically Gaussian for mathematical simplicity and tractability:

f (r) =
1√

(2π)N |Σ|
e−

1
2 (r−µ)TΣ−1(r−µ)

Then, given the T samples, the negative log-likelihood function is
formed

`(µ,Σ) =
T

2
log |Σ|+ 1

2

T∑
t=1

(rt − µ)TΣ−1(rt − µ) + const.

Finally, one can minimize the negative log-likelihood with respect to
the parameters to be estimated, like µ and Σ.
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Estimation of i.i.d. model: Sample estimators

i.i.d. model:
rt = µ + wt ,

where µ ∈ RN is the mean and wt ∈ RN is a white noise series with
zero mean and constant covariance matrix Σ.
Good old sample estimators (sample mean and sample covariance
matrix):

µ̂ =
1
T

T∑
t=1

rt ,

Σ̂ =
1

T − 1

T∑
t=1

(rt − µ̂)(rt − µ̂)T .

In practice: they are horrible!
They can be improved with heavy-tail estimators and shrinkage.

D. Palomar Time Series Modeling 76 / 86



Estimation of i.i.d. model: LS estimator

Minimize the least-square error in the T observed i.i.d. samples:

minimize
µ

1
T

∑T
t=1 ‖rt − µ‖22 .

The optimal solution is the sample mean:

µ̂ =
1
T

T∑
t=1

rt

The sample covariance of the residuals is the sample covariance
estimator:

Σ̂ =
1
T

T∑
t=1

(rt − µ̂)(rt − µ̂)T .
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Estimation of i.i.d. model: Gaussian Maximum
Likelihood Estimator (MLE)

Assume rt are i.i.d. Gaussian distributed:

f (r) =
1√

(2π)N |Σ|
e−

1
2 (r−µ)TΣ−1(r−µ)

Given the T i.i.d. samples, the negative log-likelihood function is

`(µ,Σ) =
T

2
log |Σ|+ 1

2

T∑
t=1

(rt − µ)TΣ−1(rt − µ) + const.

Setting the derivative of `(µ,Σ) w.r.t. µ and Σ−1 to zero and solving
the equations yield:

µ =
1
T

T∑
t=1

rt ,

Σ =
1
T

T∑
t=1

(rt − µ) (rt − µ)T .
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Estimation of Factor Model: MLE

Likelihood of the factor model:
The log-likelihood of the parameters (α,Σ) given T i.i.d. observations
rt = α + Bft + wt is

L (α,Σ) = log p (x1, . . . , xT | α,Σ)

= −TN

2
log (2π)− T

2
log |Σ| − 1

2

T∑
t=1

(xt −α)T Σ−1 (xt −α)

Maximum likelihood estimation (MLE):

minimize
α,Σ,B,Ψ

T
2 log |Σ|+ 1

2
∑T

t=1 (xt −α)T Σ−1 (xt −α)

subject to Σ = BBT + Ψ

Without constraint Σ = BBT + Ψ, the solution is trivially the sample
mean and sample covariance matrix as we have seen before.
However, with such difficult nonconvex constraint, the problem
becomes very involved and sophisticated methods are necessary.
D. Palomar Time Series Modeling 79 / 86



Estimation of VAR model with sparsity
Sparsity refers to parameters having zero entries, so effectively
reducing the number of parameters and the danger of overfitting.
Mathematically, the number of nonzero entries of a vector or matrix is
expressed via the `0-pseudo norm ‖·‖0.
In practice, the `0-pseudo norm is tough to manage and optimize and
it is commonly approximated with the `1-norm ‖·‖1.
Countless of examples where sparsity naturally arises in finance:

Sparse PCA for factor modeling: computation of sparse eigenvectors is
key in the high-dimensional setting for automatic feature selection.19,20

Sparse parameters in all the multivariate models are required for
parameter reduction (feature selection) such as VAR:

minimize
φ0,Φ1

∑T
t=1 ‖rt − φ0 −Φ1rt−1‖2

subject to ‖Φ1‖0 ≤ P
19J. Song, P. Babu, and D. P. Palomar, “Sparse generalized eigenvalue problem via

smooth optimization”, IEEE Trans. Signal Process., vol. 63, no. 7, pp. 1627–1642, 2015.
20K. Benidis, Y. Sun, P. Babu, and D. P. Palomar, “Orthogonal sparse PCA and

covariance estimation via procrustes reformulation”, IEEE Trans. Signal Process.,
vol. 64, no. 23, pp. 6211–6226, 2016.
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Estimation of models with low rank
Low-rank matrices are also useful to effectively reduce the number of
parameters to be estimated and the danger of overfitting.
For example, a VAR(1) model has parameters φ0 and Φ1, which
amounts to N + N2 parameters. If the matrix has, say, rank r � N,
then the number of parameters becomes N + 2Nr , which can be much
smaller. If N = 100 and r = 5, then we go from 10, 100 parameters to
1, 100, which is one order of magnitude smaller.
Low-rank naturally arises in finance:

Low-rank matrices are required to discover the low-dimensional
structure in models like VAR:

minimize
φ0,Φ1

∑T
t=1 ‖rt − φ0 −Φ1rt−1‖2

subject to rank (Φ1) ≤ K

Low-rank matrices are necessary in multivariate GARCH models for
dimensionality reduction:

minimize
{Σt},{Bi}

T
2 log |Σ|+ 1

2

∑T
t=1 wt

TΣ−1wt

subject to Σt = B0BT
0 +

∑s
j=1 BjΣt−jBT

j

rank (Bj) ≤ K .
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Estimation of VECM with low rank matrix Π

Another example where a low-rank matrix is required is in VECM
modeling, in particular for matrix Π:

minimize
φ0,Φ1,Π

∑T
t=1 ‖rt − φ0 −Πyt−1 −Φ1rt−1‖2

subject to ‖Φ1‖0 ≤ P
rank (Π) ≤ K .
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Estimation of SV model
Recall the SV model:

wt = exp (ht/2) zt

ht − h̄ =φ
(
ht−1 − h̄

)
+ ut

This is reminiscent of the popular linear state-space model under a
Gaussian distribution easily estimated with Kalman21:

yt =axt + zt

xt =bxt−1 + ut .

However, Kalman filter cannot be used here since the SV model is not
additive, not linear, and not Gaussian.
Solutions:

extended Kalman filter: simple estimation but it’s just an
approximation;
Markow Chain Monte Carlo (MCMC) methods: computationally
intensive but accurate (e.g., the R package stochvol).

21J. Durbin and S. J. Koopman, Time Series Analysis by State Space Methods, 2nd
Ed. Oxford University Press, 2012.
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Summary

The returns can be expressed as rt = µt + wt where µt = E[rt |Ft−1]
is the conditional mean on the history Ft−1 and wt is the residual
with conditional covariance matrix Σt = E[(rt − µt)(rt − µt)

T |Ft−1].

We have overviewed many models for the conditional mean: i.i.d.
model, factor model, VAR models, VMA models, VARMA models,
VECM, etc.
We have overviewed the two basic models for the univariate
conditional volatility that attemps to model the volatility clustering:
ARCH and GARCH.
The volatility clustering models can be extended to the multivariate
case: VEC, DVEC, BEKK, CCC, DCC.
The estimation of these models can be simple in some cases but also
very difficult in other cases like the volatility clustering models.
Many packages available in R for the fitting of these models.
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Thanks

For more information visit:

https://www.danielppalomar.com
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