Time Series Modeling of Financial Data

Prof. Daniel P. Palomar
The Hong Kong University of Science and Technology (HKUST)

MAFS6010R- Portfolio Optimization with R
MSc in Financial Mathematics
Fall 2019-20, HKUST, Hong Kong
Outline

1. Financial Data and Stylized Facts
2. i.i.d. Models
3. Mean Models
 - Exponential Smoothing Models
 - ARIMA Models
4. Variance/Covariance Models - Volatility Clustering
 - GARCH Models
 - Stochastic Volatility Model
 - Extension to Multivariate Case
5. Fitting of Models - Estimation or Calibration
6. Summary
Let p_t be the price of an asset at (discrete) time index t. The fundamental model is based on modeling the log-prices $y_t \triangleq \log p_t$ as a random walk:

$$y_t = \mu + y_{t-1} + \epsilon_t$$
Asset returns

- Simple return (a.k.a. linear or net return) is

\[R_t \triangleq \frac{p_t - p_{t-1}}{p_{t-1}} = \frac{p_t}{p_{t-1}} - 1. \]

- Log-return (a.k.a. continuously compounded return) is

\[r_t \triangleq y_t - y_{t-1} = \log \frac{p_t}{p_{t-1}} = \log (1 + R_t). \]

- Note \(r_t = \log (1 + R_t) \approx R_t \) when \(R_t \) is small.
A set of properties, common across many instruments, markets, and time periods, has been observed by independent studies and classified as “stylized facts.”

- **Lack of stationarity:** past returns do not necessarily reflect future performance (watch out fund’s brochures)
- **Absence of autocorrelations:** autocorrelations of returns are often insignificant (efficient market hypothesis)
- **Heavy tails:** Gaussian distributions generally do not hold in financial data (even after correcting for volatility clustering)
- **Gain/loss asymmetry:** basically asymmetry of the pdf
- **Aggregational Gaussianity:** for lower frequencies, the distribution tends to become more Gaussian.
- **Volatility clustering:** high-volatility events tend to cluster in time

Autocorrelation

- ACF of S&P 500 log-returns:
Non-Gaussianity and asymmetry

- Histograms of S&P 500 log-returns:
Volatility clustering

- S&P 500 log-returns:
Volatility clustering removed

- Standardized S&P 500 log-returns:
Outline

1. Financial Data and Stylized Facts
2. i.i.d. Models
3. Mean Models
 - Exponential Smoothing Models
 - ARIMA Models
4. Variance/Covariance Models - Volatility Clustering
 - GARCH Models
 - Stochastic Volatility Model
 - Extension to Multivariate Case
5. Fitting of Models - Estimation or Calibration
6. Summary
Denote log-return of N assets as $r_t \in \mathbb{R}^N$.

Denote \mathcal{F}_{t-1} as the previous historical data.

Financial modeling aims at modeling r_t conditional on \mathcal{F}_{t-1}.

Conditional on \mathcal{F}_{t-1}, we can decompose $r_t \in \mathbb{R}^N$ as follows:

$$r_t = \mu_t + w_t$$

where

- μ_t is the \textit{conditional mean}

 $$\mu_t = \mathbb{E}[r_t | \mathcal{F}_{t-1}]$$

- w_t is a white noise with zero mean and \textit{conditional covariance}

 $$\Sigma_t = \mathbb{E}[(r_t - \mu_t)(r_t - \mu_t)^T | \mathcal{F}_{t-1}]$$
It assumes r_t follows an i.i.d. distribution.

That is, both the conditional mean and conditional covariance are constant

$$\mu_t = \mu,$$
$$\Sigma_t = \Sigma_w.$$

Very simple model, however, it is one of the most fundamental assumptions for many important works, e.g., the Nobel prize-winning Markowitz portfolio theory2.

The factor model is

\[r_t = \alpha + B f_t + w_t, \]

where

- \(\alpha \) denotes a constant vector
- \(f_t \in \mathbb{R}^K \) with \(K \ll N \) is a vector of a few factors that are responsible for most of the randomness in the market,
- \(B \in \mathbb{R}^{N \times K} \) denotes how the low dimensional factors affect the higher dimensional market;
- \(w_t \) is a white noise residual vector that has only a marginal effect.

- The factors can be explicit or implicit.
- Widely used by practitioners (they buy factors at a high premium).
- Connections with Principal Component Analysis (PCA)\(^3\).

Factor models are special cases of the i.i.d. model with the variation being decomposed into two parts: low dimensional factors and marginal noise.

The explicit factor model
- explains the log-returns with a smaller number of fundamental or macroeconomic variables,
- however, in general there is no systematic method to choose the right factors.

The hidden factor model
- explores the structure of the covariance matrix,
- is a more systematical approach and thus it may provide a better explanatory power,
- however, does not have explicit econometric interpretations.
Outline

1 Financial Data and Stylized Facts

2 i.i.d. Models

3 Mean Models
 - Exponential Smoothing Models
 - ARIMA Models

4 Variance/Covariance Models - Volatility Clustering
 - GARCH Models
 - Stochastic Volatility Model
 - Extension to Multivariate Case

5 Fitting of Models - Estimation or Calibration

6 Summary
Outline

1. Financial Data and Stylized Facts
2. i.i.d. Models
3. Mean Models
 - Exponential Smoothing Models
 - ARIMA Models
4. Variance/Covariance Models - Volatility Clustering
 - GARCH Models
 - Stochastic Volatility Model
 - Extension to Multivariate Case
5. Fitting of Models - Estimation or Calibration
6. Summary
Time series decomposition

- Time series data can exhibit a variety of patterns, and it is often helpful to split a time series into several components, each representing an underlying pattern category.\(^4\)
- Additive decomposition:
 \[y_t = S_t + T_t + R_t \]
 where \(y_t \) is the data, \(S_t \) is the seasonal component, \(T_t \) is the trend-cycle component, and \(R_t \) is the remainder (noisy) component.
- Multiplicative decomposition:
 \[y_t = S_t \times T_t \times R_t. \]

- Multiplicative decompositions are common with economic time series.
- An alternative to using a multiplicative decomposition is to first use a log transformation and then use an additive decomposition:
 \[\log y_t = \log S_t + \log T_t + \log R_t. \]

Time series decomposition: Example

Time series (grey) with trend-cycle component (red):\(^5\)

\(^5\)Credit: Hyndman and Athanasopoulos at https://otexts.com/fpp3
Time series decomposition: Example

Time series decomposition into trend-cycle component, seasonal component, and residual component:

Credit: Hyndman and Athanasopoulos at https://otexts.com/fpp3
Moving average (MA) smoothing

- One classical way to obtain the trend-cycle component of a time series is with the moving average.
- A moving average of order m is

$$\hat{y}_t = \frac{1}{m} \sum_{i=1}^{m} y_{t-i}.$$

- We can also use a centered moving average for smoothing (not forecasting purposes):

$$\hat{y}_t = \frac{1}{m} \sum_{i=-k}^{k} y_{t-i}$$

where $m = 2k + 1$.
- It is also called rolling means since it is computing the mean on a rolling-window basis.
The classical decomposition method for \(y_t = S_t + T_t + R_t \) originated in the 1920s.\(^7\)

It is a relatively simple procedure, and forms the starting point for most other methods of time series decomposition.

Steps:

1. Compute the trend-cycle component \(\hat{T}_t \) using an MA.
2. Detrend series: \(y_t - \hat{T}_t \)
3. To estimate the seasonal component \(\hat{S}_t \) for each season, simply average the detrended time series for that season; for example, with monthly data, the seasonal component for March is the average of all the detrended March values.
4. Compute the remainder as \(\hat{R}_t = y_t - \hat{T}_t - \hat{S}_t \).

While classical decomposition is still widely used, it is not recommended, as there are now several much better methods.

Exponential smoothing

- Exponential smoothing was proposed in the late 1950s, and has motivated some of the most successful forecasting methods.⁸
- Forecasts produced using exponential smoothing methods are weighted averages of past observations, with the weights decaying exponentially as the observations get older.
- The simplest of the exponentially smoothing methods is naturally called simple exponential smoothing:

\[
\hat{y}_t = \alpha y_{t-1} + (1 - \alpha)\hat{y}_{t-1}
\]

with \(0 \leq \alpha \leq 1 \).
- Recall the expression for the MA:

\[
\hat{y}_t = \frac{1}{m} \sum_{i=1}^{m} y_{t-i}.
\]

Exponential smoothing: Component form

- The simple exponential smoothing
 \[\hat{y}_{t+1} = \alpha y_t + (1 - \alpha) \hat{y}_t \]

 can be rewritten in a different form called component form.

- Component form of the simple exponential smoothing:
 - Forecast equation
 \[\hat{y}_{t+1} = \ell_t \]
 - Smoothing equation
 \[\ell_t = \alpha y_t + (1 - \alpha) \ell_{t-1} \]

 where \(\ell_t \) is the level (or smoothed value) of the series at time \(t \).
Holt extended in 1957 the simple exponential to allow a trend (slope of the level):

Forecast equation
\[\hat{y}_{t+1} = \ell_t + b_t \]

Level equation
\[\ell_t = \alpha y_t + (1 - \alpha)(\ell_{t-1} + b_{t-1}) \]

Trend equation
\[b_t = \beta (\ell_t - \ell_{t-1}) + (1 - \beta) b_{t-1} \]

where \(\ell_t \) is the level (or smoothed value) and \(b_t \) denotes the trend (slope) of the series at time \(t \).
Holt and Winters extended Holt’s method to capture seasonability in 1960:

- **Forecast equation**
 \[\hat{y}_{t+1} = \ell_t + b_t + s_{t+1-m} \]

- **Level equation**
 \[\ell_t = \alpha (y_t - s_{t-m}) + (1 - \alpha) (\ell_{t-1} + b_{t-1}) \]

- **Trend equation**
 \[b_t = \beta (\ell_t - \ell_{t-1}) + (1 - \beta) b_{t-1} \]

- **Seasonal equation**
 \[s_t = \gamma (y_t - \ell_{t-1} - b_{t-1}) + (1 - \gamma) s_{t-m} \]

where \(m \) denotes the period of the seasonality (so for monthly data \(m = 12 \), i.e., one year).
More generally, while the level equation is always there, one can choose whether to have trend and seasonal terms and also one can choose whether they are additive or multiplicative.

This can be expressed compactly with three letters (E,T,S) defining the error, trend, and seasonality type (to choose from None, Additive, and Multiplicative):

- ETS(A,N,N) corresponds to the simple exponential smoothing;
- ETS(A,A,N) corresponds to Holt’s method;
- ETS(A,A,A) corresponds to Holt-Winters’ method.

In R, the package **forecast** allows to compute all these variations conveniently.
Outline

1. Financial Data and Stylized Facts

2. i.i.d. Models

3. Mean Models
 - Exponential Smoothing Models
 - ARIMA Models

4. Variance/Covariance Models - Volatility Clustering
 - GARCH Models
 - Stochastic Volatility Model
 - Extension to Multivariate Case

5. Fitting of Models - Estimation or Calibration

6. Summary
ARIMA models to capture time-correlation

- ARIMA models provide another approach to time series modeling and forecasting.
- While exponential smoothing models are based on a description of the trend and seasonality in the data, ARIMA models aim to describe the autocorrelations in the data.

S&P 500 index

ACF of log-returns

D. Palomar

Time Series Modeling
Recall that we model the log-returns \(r_t = \Delta y_t = y_t - y_{t-1} \), where \(y_t \) denotes the log-prices.

The VAR (Vector Auto-Regressive) model of order 1 is

\[
 r_t = \phi_0 + \Phi_1 r_{t-1} + w_t,
\]

where

- the vector \(\phi_0 \in \mathbb{R}^N \) and the matrix \(\Phi_1 \in \mathbb{R}^{N \times N} \) are parameters,
- \(w_t \) is a white noise series with zero mean and constant covariance matrix \(\Sigma_w \).

The conditional mean and covariance matrix are

\[
 \mu_t = \phi_0 + \Phi_1 r_{t-1},
 \Sigma_t = \Sigma_w.
\]
A univariate AR(1) path looks like
The VAR (Vector Auto-Regressive) model of order p is

$$r_t = \phi_0 + \sum_{i=1}^{p} \Phi_i r_{t-i} + w_t,$$

where p is a nonnegative integer and

- the vector $\phi_0 \in \mathbb{R}^N$ and the matrices $\Phi_i \in \mathbb{R}^{N \times N}$ are parameters,
- w_t is a white noise series with zero mean and constant covariance matrix Σ_w.

The conditional mean and covariance matrix are

$$\mu_t = \phi_0 + \sum_{i=1}^{p} \Phi_i r_{t-i},$$

$$\Sigma_t = \Sigma_w.$$
The VARMA (Vector Auto-Regressive and Moving Average) model is

\[r_t = \phi_0 + \sum_{i=1}^{p} \Phi_i r_{t-i} + w_t - \sum_{j=1}^{q} \Theta_j w_{t-j}, \]

where \(p \) and \(q \) are nonnegative integers and

- the vector \(\phi_0 \in \mathbb{R}^N \) and the matrices \(\Phi_i, \Theta_j \in \mathbb{R}^{N \times N} \) are parameters,
- \(w_t \) is a white noise series with zero mean and constant covariance matrix \(\Sigma_w \).

The conditional mean and covariance matrix are

\[\mu_t = \phi_0 + \sum_{i=1}^{p} \Phi_i r_{t-i} - \sum_{j=1}^{q} \Theta_j w_{t-j}, \]

\[\Sigma_t = \Sigma_w. \]
Order selection of models

- All time series models have an order that is typically assumed to be known and given, e.g., the orders p and q in a VARMA(p,q) model.
- In practice, the order of a model is unknown and also has to be determined from the observed data.
- Observe that the higher the order, the more parameters the model has to fit the data and, thus, the better the fit. So it seems the best model will be the one with higher order.
- However, this is completely wrong, because it will be doomed to overfit the data: one thing is to fit better the training data, a very different one is to fit better the future coming data.
- In practice, there are two common approaches:
 - cross-validation: splitting the data into a training part and a cross-validation part, the latter being used to test the model trained with the training data for different combinations of orders.
 - penalized estimation methods: penalizing the number of parameters of the model with a penalty term like: AIC, BIC, SIC, HQIC, etc.\(^9\)

It is a commonly held myth that ARIMA models are more general than exponential smoothing.10

While linear exponential smoothing models are all special cases of ARIMA models, the non-linear exponential smoothing models have no equivalent ARIMA counterparts.

On the other hand, there are also many ARIMA models that have no exponential smoothing counterparts. In particular, all ETS models are non-stationary, while some ARIMA models are stationary.

A multivariate time series y_t is said to be a VARIMA($p,1,q$) process if it is nonstationary but after differencing the series times $x_t = y_t - y_{t-1}$ then x_t follows a stationary VARMA(p,q) model.

More generally, a VARIMA(p,d,q) process has to be differenced d times to obtain a stationary VARMA(p,q) process.

In finance, price series p_t (or log-prices $y_t = \log(p_t)$) are believed to be nonstationary, but the log-return series $r_t = y_t - y_{t-1} = \log(p_t) - \log(p_{t-1})$ is stationary.

Thus, it is the same to talk about a VARIMA($p,1,q$) log-price series and about a VARMA(p,q) log-return series.
Until now we have focused on modeling directly the log-returns
\[r_t = \Delta y_t = y_t - y_{t-1}, \]
where \(y_t \) denotes the log-prices.

The reason is that in general the log-price time series \(y_t \) is not weakly stationary (first and second-order moments are not constant).

Example: think of Apple stock whose log-prices keep increasing.

On the other hand, the log-return time series \(r_t \) is weakly stationary (at least over some time horizon), which is good.

However, it turns out that differencing may destroy part of the structure in the relationship among the log-prices of the stocks which may be invaluable for forecasting.

So it makes sense to analyze the original (probably non-stationary, be careful!) time series in \(y_t \) directly:

\[y_t = \phi_0 + \sum_{i=1}^{p} \Phi_i y_{t-i} + w_t. \]
The VECM11 is better written as

\[r_t = \phi_0 + \Pi y_{t-1} + \sum_{i=1}^{p-1} \tilde{\Phi}_i r_{t-i} + w_t, \]

where the term Πy_{t-1} is called error correction term and

\[\tilde{\Phi}_j = - \sum_{i=j+1}^{p} \Phi_i \]

\[\Pi = - (I - \Phi_1 - \cdots - \Phi_p). \]

The conditional mean and covariance matrix are

\[\mu_t = \phi_0 + \Pi y_{t-1} + \sum_{i=1}^{p-1} \tilde{\Phi}_i r_{t-i}, \]

\[\Sigma_t = \Sigma_w. \]

The matrix Π is of extreme importance.

Notice that from the model $r_t = \phi_0 + \Pi y_{t-1} + \sum_{i=1}^{p-1} \tilde{\Phi}_i r_{t-i} + w_t$ one can conclude that Πy_t must be stationary even though y_t is not!!!

If that happens, it is said that y_t is cointegrated.

There are three possibilities for Π:

- $\text{rank}(\Pi) = 0$: This implies $\Pi = 0$, thus y_t is not cointegrated (so no mystery here) and the VECM reduces to a VAR model on the log-returns.
- $\text{rank}(\Pi) = N$: This implies Π is invertible and thus y_t must be stationary already
- $0 < \text{rank}(\Pi) < N$: This is the interesting case and Π can be decomposed as $\Pi = \alpha \beta^T$ with $\alpha, \beta \in \mathbb{R}^{N \times r}$ with full column rank. This means that y_t has r linearly independent cointegrated components, i.e., $\beta^T y_t$, which can be used to design mean-reversion statistical arbitrage investment strategies (e.g., pairs trading).
1 Financial Data and Stylized Facts
2 i.i.d. Models
3 Mean Models
 - Exponential Smoothing Models
 - ARIMA Models
4 Variance/Covariance Models - Volatility Clustering
 - GARCH Models
 - Stochastic Volatility Model
 - Extension to Multivariate Case
5 Fitting of Models - Estimation or Calibration
6 Summary
Volatility clustering

- Recall that conditional on the past history \mathcal{F}_{t-1}, we can decompose the returns as follows:

\[r_t = \mu_t + w_t \]

where

- μ_t is the conditional mean

\[\mu_t = \mathbb{E}[r_t | \mathcal{F}_{t-1}] \]

- w_t is a white noise with zero mean and conditional covariance

\[\Sigma_t = \mathbb{E}[(r_t - \mu_t)(r_t - \mu_t)^T | \mathcal{F}_{t-1}] . \]

- We will focus now on the modeling of the term w_t and, more specifically, the covariance Σ_t (in the univariate case, it is just the variance σ_t).

- The previously models focus on modeling the conditional mean but assume that Σ_t is constant!
Volatility clustering

As we know from financial stylized facts, the volatility (i.e., the square root of conditional variance) is clustered:
Outline

1. Financial Data and Stylized Facts
2. i.i.d. Models
3. Mean Models
 - Exponential Smoothing Models
 - ARIMA Models
4. Variance/Covariance Models - Volatility Clustering
 - GARCH Models
 - Stochastic Volatility Model
 - Extension to Multivariate Case
5. Fitting of Models - Estimation or Calibration
6. Summary
Moving average (MA) of squared returns

Before we start with complicated models, we can consider a simple rolling means (aka moving average) of the squared returns:

$$\sigma_t^2 = \frac{1}{m} \sum_{i=1}^{m} w_{t-i}^2$$

Envelope based on simple rolling means of squares (lookback=20) 2008−01−03 / 2012−03−12

![Graph showing the envelope based on simple rolling means of squares.](image-url)
Exponentially Weighted Moving average (EWMA) of squared returns

- We can now try an EWMA of the squared returns (after fitting, $\alpha = 0.097$):

$$\sigma^2_t = \alpha \sigma^2_{t-1} + (1 - \alpha) \sigma^2_{t-1}$$
ARCH model

- The autoregressive conditional heteroskedasticity (ARCH) model is one of the earliest model to deal with the volatility clustering effect.
- The ARCH\((m)\) model\(^{12}\) is

\[
W_t = \sigma_t Z_t,
\]

where \(Z_t\) is a white noise series with zero mean and constant unit variance, and the conditional variance \(\sigma^2_t\) is modeled by

\[
\sigma^2_t = \omega + \sum_{i=1}^{m} \alpha_i w^2_{t-i}
\]

Here, \(m\) is a nonnegative integer, \(\omega > 0\), \(\alpha_i \geq 0\) for all \(i > 0\).

Even though the ARCH model can model the conditional heteroskedasticity, it has several disadvantages:

- positive and negative noise have the same effects on volatility, but in practice they have different impact
- too restrictive to capture some patterns, e.g., excess kurtosis
- doesn’t provide any new insight, just a mechanical way to describe the behavior of conditional variance
- tend to overpredict the volatility because it responds slowly to large isolated noise clusters.
Envelop based on ARCH(5) 2008−01−03 / 2012−03−12

-0.05
 0.00
 0.05
 0.10
-0.05
 0.00
 0.05
 0.10
A limitation of the ARCH model is that the high volatility is not persistent enough. This can be overcame by the Generalized ARCH (GARCH) model.\(^{13}\)

The GARCH\((m, s)\) model is

\[
W_t = \sigma_t z_t,
\]

where \(z_t\) is a white noise series with zero mean and constant unit variance, and the conditional variance \(\sigma^2_t\) is modeled by

\[
\sigma^2_t = \omega + \sum_{i=1}^{m} \alpha_i w^2_{t-i} + \sum_{j=1}^{s} \beta_j \sigma^2_{t-j}.
\]

Here, \(m\) and \(s\) are nonnegative integers, \(\omega > 0\), \(\alpha_i \geq 0\), \(\beta_j \geq 0\) for all \(i > 0\) and \(j > 0\) and \(\sum_{i=1}^{m} \alpha_i + \sum_{j=1}^{s} \beta_j \leq 1\).

GARCH example

Envelope based on GARCH(1,1) 2008–01–03 / 2012–03–12

-0.05 0.00 0.05 0.10

0.10

0.05

0.00

-0.05

ARCH vs GARCH example

Envelope based on ARCH(5)

Envelope based on GARCH(1,1)
Criticism of GARCH: Spike model

For criticism of GARCH see an insightful report by Patrick Burns: https://www.burns-stat.com/pages/Present/3_realms_garch_modeling_annot.pdf

- GARCH thinks volatility is composed of exponentially decaying spikes:

 ![Volatility Over Time Graph](image)

 - When the spikes happen is unpredictable.
Consider a GARCH(1,1):

$$\sigma_t^2 = \omega + \alpha_1 w_{t-1}^2 + \beta_1 \sigma_{t-1}^2$$

with parameters: ω, α_1, and β_1.

If we set $\omega = 0$ and $\alpha_1 = 1 - \beta_1$, then we get an exponential smoothing:

$$\sigma_t^2 = (1 - \beta_1) w_{t-1}^2 + \beta_1 \sigma_{t-1}^2.$$

Thus we can say that GARCH is a glorified exponential smoothing!

So indeed GARCH thinks volatility is composed of an overlap of exponentially decaying spikes.
Let’s generate multiple synthetic realizations of a GARCH model with $\omega = 0$, $\alpha_1 = 0.07$, and $\beta_1 = 0.925$.

If each realization has 100,000 observations and we estimate the parameters for each realization, we get the following scatter plot of the estimates:

The range of estimates is about 0.01, which is good, but we used 100,000 observations (4 centuries of daily data).
Criticism of GARCH: Data hungry

- If instead each realization has 2,000 observations (which is still a large number) and we estimate the parameters for each realization, we get the following scatter plot of the estimates:

- The estimates are not as good now, and 2,000 observations is still a lot (8 years of daily data).
Outline

1. Financial Data and Stylized Facts

2. i.i.d. Models

3. Mean Models
 - Exponential Smoothing Models
 - ARIMA Models

4. Variance/Covariance Models - Volatility Clustering
 - GARCH Models
 - Stochastic Volatility Model
 - Extension to Multivariate Case

5. Fitting of Models - Estimation or Calibration

6. Summary
Stochastic volatility model

- As an alternative to the GARCH class of models, Taylor proposed in a seminal work14 to model the volatility probabilistically, i.e., through a state-space model where the logarithm of the squared volatilities follows an AR(1) process.
- This is called \textbf{stochastic volatility (SV)} model.
- The SV model has not enjoyed the popularity of the GARCH class models.
- There are very few software packages available to fit SV models.
- Fitting an SV model is computationally intensive.

SV model

- Recall the decomposition of the returns as $r_t = \mu_t + w_t$, where w_t is the innovation and can be understood as the demeaned return.

- The instantaneous variance of w_t, which before we denoted by the latent variable σ^2_t, here is modeled as $\sigma^2_t = \exp(h_t)$ and h_t is allowed to smoothly change following an AR(1) process:

 \[w_t = \exp(h_t/2) z_t \]
 \[h_t - \bar{h} = \phi (h_{t-1} - \bar{h}) + u_t \]

 where z_t is white noise with zero mean and unit variance.

- Equivalently, we can write this model in terms of σ_t as

 \[w_t = \sigma_t z_t \]
 \[\log(\sigma^2_t) = \bar{h} + \phi (\log(\sigma^2_{t-1}) - \bar{h}) + u_t \]

- Compare with the GARCH(1,1) model:

 \[\sigma^2_t = \omega + \alpha_1 w^2_{t-1} + \beta_1 \sigma^2_{t-1}. \]
Envelope based on stochastic volatility
Components model

- For completeness, it is worth mentioning that there are other possible models out there: The components model is one such example.
- Recall the GARCH(1,1) model:
 \[
 \sigma_t^2 = \omega + \alpha_1 w_{t-1}^2 + \beta_1 \sigma_{t-1}^2.
 \]
- The components model is
 \[
 q_t = \omega + \rho q_{t-1} + \phi (w_{t-1}^2 - q_{t-1})
 \]
 \[
 \sigma_t^2 = q_t + \alpha_1 (w_{t-1}^2 - q_{t-1}) + \beta_1 (\sigma_{t-1}^2 - q_{t-1}).
 \]
- The interpretation is that there is a smooth long-term trend in volatility, \(q_t \), and then a short-term volatility that wiggles around the long-term trend.
- The parameter \(\rho \) is the persistence in the components model.
- This model can have a high volatility long-term regime but low volatility short-term, and vice versa.
Outline

1. Financial Data and Stylized Facts
2. i.i.d. Models
3. Mean Models
 - Exponential Smoothing Models
 - ARIMA Models
4. Variance/Covariance Models - Volatility Clustering
 - GARCH Models
 - Stochastic Volatility Model
 - Extension to Multivariate Case
5. Fitting of Models - Estimation or Calibration
6. Summary
The multivariate noise (a vector) is modeled as

$$w_t = \Sigma_t^{1/2} z_t,$$

where $z_t \in \mathbb{R}^N$ is an i.i.d. white noise series with zero mean and constant covariance matrix \mathbf{I}.

The key is to model the conditional covariance matrix Σ_t.

But watch out as the number of parameters may quickly explode... and that will inevitably produce overfitting.
One of the first extensions to the vector case is the vector (VEC) GARCH model:

\[\text{vech} (\Sigma_t) = a_0 + \sum_{i=1}^{m} \tilde{A}_i \text{vech}(w_{t-i}w_{t-i}^T) + \sum_{j=1}^{s} \tilde{B}_j \text{vech} (\Sigma_{t-j}), \]

where \(m \) and \(s \) are nonnegative integers, \(\text{vech} (\cdot) \) is the half-vectorization operator that keeps the \(N(N+1)/2 \) lower triangular part of its \(N \times N \) matrix argument, \(a_0 \) is an \(N(N+1)/2 \) dimensional vector, and \(\tilde{A}_i, \tilde{B}_j \) are \(N(N+1)/2 \) by \(N(N+1)/2 \) matrices.

- **Advantage:** This model is very flexible.
- **Disadvantages:** Does not guarantee \(\Sigma_t \) to be a positive definite covariance matrix and the number of parameters grows quickly as \(O \left((m+s)N^4 \right) \).
The DVEC model15 is more parsimonious model assuming that \tilde{A}_i, \tilde{B}_j are diagonal and can be simplified as

$$\Sigma_t = A_0 + \sum_{i=1}^{m} A_i \odot (w_{t-i} w_{t-i}^T) + \sum_{j=1}^{s} B_j \odot \Sigma_{t-j},$$

where A_i, B_j are symmetric $N \times N$ matrix parameters. Here, the operator \odot denotes the Hadamard (elementwise) product can be interpreted as moving weight matrices.

- **Advantage:** This is an element-wise GARCH model, so very simple.
- **Disadvantages:** Still Σ_t is not guaranteed to be positive-definite and the number of parameters grows more slowly but still fast as $O \left((m + s) N^2 \right)$.

To guarantee a positive-definite Σ_t, the Baba-Engle-Kraft-Kroner (BEKK) model\(^{16}\) was proposed as

$$
\Sigma_t = A_0 A_0^T + \sum_{i=1}^{m} A_i (w_{t-i} w_{t-i}^T) A_i^T + \sum_{j=1}^{s} B_j \Sigma_{t-j} B_j^T,
$$

where A_i, B_j are $N \times N$ matrix parameters and A_0 is lower triangular.

Advantage: Guarantees positive definiteness of Σ_t.

Disadvantages:

- The parameters A_i and B_j do not have direct interpretations.
- Number of parameters still increases as $O \left((m + s) N^2\right)$ (although now roughly the number of parameters is twice as that in DVEC).

The constant conditional correlation (CCC) model17 restricts the number of parameters while still guaranteeing the positive definite covariance.

The idea is to model the conditional heteroskedasticity in each asset while having a constant correlation.

Mathematically, the model is

\[
\Sigma_t = D_t C D_t^{-1},
\]

where \(D_t = \text{Diag}(\sigma_{1,t}, \ldots, \sigma_{N,t}) \) is the time-varying conditional volatilities of each stock and \(C \) is the CCC matrix of the standardized noise vector \(\eta_t = D_t^{-1} w_t \).

Advantages: Guarantees positive definiteness of \(\Sigma_t \) and small number of parameters that grows as \(O ((m + s) N + N^2) \).

Disadvantages: Not too flexible due to constant asset correlations.

DCC model

- The main limitation of the CCC model is that the correlation is constant.
- To overcome this drawback, the dynamic conditional correlation (DCC) was proposed as
 \[\Sigma_t = D_t C_t D_t, \]
 where \(C_t \) contains diagonal elements equal to 1.
- In particular, Engle modeled it as follows:
 \[C_{ij,t} = \frac{q_{ij,t}}{\sqrt{q_{ii,t} q_{jj,t}}} \]
 with each \(q_{ij,t} \) modeled by a simple GARCH(1,1) model:
 \[q_{ij,t} = \alpha \eta_{i,t-1} \eta_{j,t-1} + (1 - \alpha) q_{ij,t-1} \]

DCC model

- More compactly, in matrix form:

\[Q_t = \alpha \eta_t \eta_t^T + (1 - \alpha) Q_{t-1}. \]

and

\[C_t = \text{Diag}^{-1/2} (Q_t) Q_t \text{Diag}^{-1/2} (Q_t). \]

- Advantages: Guarantees positive definiteness of \(\Sigma_t \) and small number of parameters that grows as \(O((m + s)N) \).

- Disadvantages: Good flexibility, although it forces all the correlation coefficients to have the same memory via the same \(\alpha \).
Beyond

- The previous models for the conditional mean and covariance matrix can be jointly combined to fit the financial data better.

- Limitations:
 - High-frequency data: when the sampling period becomes very small, say minutes, seconds, or even smaller, the previous models become invalid and one reaches a “quantum regime” where things are not fluid anymore but quantized into the limit order book. Not only the models have to be properly modified, but also the computer and internet communication speed matter (e.g., co-location of computers).
 - Heavy tails: most models assume a Gaussian distribution for simplicity, but they can be easily extended to deal with heavy-tailed distributions.
 - Lack of stationarity: financial data is only stationary for some time horizon, this produces a tradeoff between having enough data to properly estimate the parameters of the model but still within the stationarity time horizon.
 - Other practical details: different stocks may have a different historical length and some days the prices may be missing due to no trading or bad quality of data.
Great References on Time Series Models

Outline

1. Financial Data and Stylized Facts

2. i.i.d. Models

3. Mean Models
 - Exponential Smoothing Models
 - ARIMA Models

4. Variance/Covariance Models - Volatility Clustering
 - GARCH Models
 - Stochastic Volatility Model
 - Extension to Multivariate Case

5. Fitting of Models - Estimation or Calibration

6. Summary
Model fitting

- Each model has some parameters that need to be fitted/estimated/calibrated to fit the observed data.

About the fitting process:
- In some cases, this fitting can be as simple as a least squares (LS) problem.
- In some other cases, it can be more involved but still doable with closed-form expressions or fixed-point solutions that can be solved iteratively.
- In some extreme cases, no analytical expressions can be found and one has to resort to numerical Monte-Carlo based methods that require intensive computational power (e.g., to approximate an integral).

About the model itself:
- Some models are stable in the sense that the parameter estimation is reliable and not too sensitive to each data realization.
- However, other models are extremely sensitive to the data: different realizations of the estimation errors may give you very different values for the parameters.
Least squares (LS) estimator:

- The idea is to define an error between the observed financial data and the model under consideration, and then minimize the ℓ_2-norm of the error.
- For example, for a VAR(1) model $r_t = \phi_0 + \Phi_1 r_{t-1} + w_t$, where we have T observations, the problem to solve would be

$$\min_{\phi_0, \Phi_1} \sum_{t=2}^{T} ||r_t - \phi_0 - \Phi_1 r_{t-1}||^2.$$
General estimation methodologies: MLE

Maximum likelihood estimator (MLE):

- The idea is to assume some distribution for the residual of the model w_t, typically Gaussian for mathematical simplicity and tractability:

 $$f(r) = \frac{1}{\sqrt{(2\pi)^N |\Sigma|}} e^{-\frac{1}{2}(r-\mu)^T \Sigma^{-1}(r-\mu)}$$

- Then, given the T samples, the negative log-likelihood function is formed

 $$\ell(\mu, \Sigma) = \frac{T}{2} \log |\Sigma| + \frac{1}{2} \sum_{t=1}^{T} (r_t - \mu)^T \Sigma^{-1}(r_t - \mu) + \text{const.}$$

- Finally, one can minimize the negative log-likelihood with respect to the parameters to be estimated, like μ and Σ.
i.i.d. model:

\[r_t = \mu + w_t, \]

where \(\mu \in \mathbb{R}^N \) is the mean and \(w_t \in \mathbb{R}^N \) is a white noise series with zero mean and constant covariance matrix \(\Sigma \).

Good old sample estimators (sample mean and sample covariance matrix):

\[
\hat{\mu} = \frac{1}{T} \sum_{t=1}^{T} r_t,
\]

\[
\hat{\Sigma} = \frac{1}{T - 1} \sum_{t=1}^{T} (r_t - \hat{\mu})(r_t - \hat{\mu})^T.
\]

In practice: they are horrible!

They can be improved with heavy-tail estimators and shrinkage.
Estimation of i.i.d. model: LS estimator

- Minimize the least-square error in the T observed i.i.d. samples:
 \[
 \min_{\mu} \frac{1}{T} \sum_{t=1}^{T} \| r_t - \mu \|_2^2.
 \]

- The optimal solution is the sample mean:
 \[
 \hat{\mu} = \frac{1}{T} \sum_{t=1}^{T} r_t
 \]

- The sample covariance of the residuals is the sample covariance estimator:
 \[
 \hat{\Sigma} = \frac{1}{T} \sum_{t=1}^{T} (r_t - \hat{\mu})(r_t - \hat{\mu})^T.
 \]
Estimation of i.i.d. model: Gaussian Maximum Likelihood Estimator (MLE)

- Assume \(r_t \) are i.i.d. Gaussian distributed:
 \[
 f(r) = \frac{1}{\sqrt{(2\pi)^N |\Sigma|}} e^{-\frac{1}{2}(r-\mu)^T \Sigma^{-1} (r-\mu)}
 \]

- Given the \(T \) i.i.d. samples, the negative log-likelihood function is
 \[
 \ell(\mu, \Sigma) = \frac{T}{2} \log |\Sigma| + \frac{1}{2} \sum_{t=1}^{T} (r_t - \mu)^T \Sigma^{-1} (r_t - \mu) + \text{const}.
 \]

- Setting the derivative of \(\ell(\mu, \Sigma) \) w.r.t. \(\mu \) and \(\Sigma^{-1} \) to zero and solving the equations yield:
 \[
 \mu = \frac{1}{T} \sum_{t=1}^{T} r_t,
 \]
 \[
 \Sigma = \frac{1}{T} \sum_{t=1}^{T} (r_t - \mu)(r_t - \mu)^T.
 \]
Estimation of Factor Model: MLE

Likelihood of the factor model:
The log-likelihood of the parameters \((\alpha, \Sigma)\) given \(T\) i.i.d. observations \(r_t = \alpha + Bf_t + w_t\) is

\[
L(\alpha, \Sigma) = \log p(x_1, \ldots, x_T | \alpha, \Sigma)
= -\frac{TN}{2} \log (2\pi) - \frac{T}{2} \log |\Sigma| - \frac{1}{2} \sum_{t=1}^{T} (x_t - \alpha)^T \Sigma^{-1} (x_t - \alpha)
\]

Maximum likelihood estimation (MLE):

\[
\begin{align*}
\text{minimize} & \quad \frac{T}{2} \log |\Sigma| + \frac{1}{2} \sum_{t=1}^{T} (x_t - \alpha)^T \Sigma^{-1} (x_t - \alpha) \\
\text{subject to} & \quad \Sigma = BB^T + \Psi
\end{align*}
\]

- Without constraint \(\Sigma = BB^T + \Psi\), the solution is trivially the sample mean and sample covariance matrix as we have seen before.
- However, with such difficult nonconvex constraint, the problem becomes very involved and sophisticated methods are necessary.
Estimation of VAR model with sparsity

- Sparsity refers to parameters having zero entries, so effectively reducing the number of parameters and the danger of overfitting.
- Mathematically, the number of nonzero entries of a vector or matrix is expressed via the ℓ_0-pseudo norm $\|\cdot\|_0$.
- In practice, the ℓ_0-pseudo norm is tough to manage and optimize and it is commonly approximated with the ℓ_1-norm $\|\cdot\|_1$.
- Countless of examples where sparsity naturally arises in finance:
 - Sparse PCA for factor modeling: computation of sparse eigenvectors is key in the high-dimensional setting for automatic feature selection.19,20
 - Sparse parameters in all the multivariate models are required for parameter reduction (feature selection) such as VAR:

\[
\begin{align*}
\text{minimize} \quad & \phi_0, \Phi_1 \quad \sum_{t=1}^T \| r_t - \phi_0 - \Phi_1 r_{t-1} \|^2 \\
\text{subject to} \quad & \| \Phi_1 \|_0 \leq P
\end{align*}
\]

Estimation of models with low rank

- Low-rank matrices are also useful to effectively reduce the number of parameters to be estimated and the danger of overfitting.
- For example, a VAR(1) model has parameters ϕ_0 and Φ_1, which amounts to $N + N^2$ parameters. If the matrix has, say, rank $r \ll N$, then the number of parameters becomes $N + 2Nr$, which can be much smaller. If $N = 100$ and $r = 5$, then we go from 10,100 parameters to 1,100, which is one order of magnitude smaller.
- Low-rank naturally arises in finance:
 - Low-rank matrices are required to discover the low-dimensional structure in models like VAR:
 $\begin{align*}
 \minimize_{\phi_0, \Phi_1} & \quad \sum_{t=1}^{T} \| r_t - \phi_0 - \Phi_1 r_{t-1} \|^2 \\
 \text{subject to} & \quad \text{rank}(\Phi_1) \leq K
 \end{align*}$
 - Low-rank matrices are necessary in multivariate GARCH models for dimensionality reduction:
 $\begin{align*}
 \minimize_{\{\Sigma_t\}, \{B_i\}} & \quad \frac{T}{2} \log |\Sigma| + \frac{1}{2} \sum_{t=1}^{T} w_t^T \Sigma^{-1} w_t \\
 \text{subject to} & \quad \Sigma_t = B_0 B_0^T + \sum_{j=1}^{s} B_j \Sigma_{t-j} B_j^T \\
 & \quad \text{rank}(B_j) \leq K.
 \end{align*}$
Another example where a low-rank matrix is required is in VECM modeling, in particular for matrix Π:

\[
\begin{align*}
\text{minimize } & \sum_{t=1}^{T} \| r_t - \phi_0 - \Pi y_{t-1} - \Phi_1 r_{t-1} \|^2 \\
\text{subject to } & \| \Phi_1 \|_0 \leq P \\
& \text{rank} (\Pi) \leq K.
\end{align*}
\]
Estimation of SV model

- Recall the SV model:

\[w_t = \exp \left(\frac{h_t}{2} \right) z_t \]
\[h_t - \bar{h} = \phi \left(h_{t-1} - \bar{h} \right) + u_t \]

- This is reminiscent of the popular linear state-space model under a Gaussian distribution easily estimated with Kalman21:

\[y_t = ax_t + z_t \]
\[x_t = bx_{t-1} + u_t. \]

- However, Kalman filter cannot be used here since the SV model is not additive, not linear, and not Gaussian.

- Solutions:
 - extended Kalman filter: simple estimation but it’s just an approximation;
 - Markow Chain Monte Carlo (MCMC) methods: computationally intensive but accurate (e.g., the R package stochvol).

Outline

1. Financial Data and Stylized Facts
2. i.i.d. Models
3. Mean Models
 - Exponential Smoothing Models
 - ARIMA Models
4. Variance/Covariance Models - Volatility Clustering
 - GARCH Models
 - Stochastic Volatility Model
 - Extension to Multivariate Case
5. Fitting of Models - Estimation or Calibration
6. Summary
The returns can be expressed as $r_t = \mu_t + w_t$ where $\mu_t = \mathbb{E}[r_t|\mathcal{F}_{t-1}]$ is the conditional mean on the history \mathcal{F}_{t-1} and w_t is the residual with conditional covariance matrix $\Sigma_t = \mathbb{E}[(r_t - \mu_t)(r_t - \mu_t)^T|\mathcal{F}_{t-1}]$.

We have overviewed many models for the conditional mean: i.i.d. model, factor model, VAR models, VMA models, VARMA models, VECM, etc.

We have overviewed the two basic models for the univariate conditional volatility that attempts to model the volatility clustering: ARCH and GARCH.

The volatility clustering models can be extended to the multivariate case: VEC, DVEC, BEKK, CCC, DCC.

The estimation of these models can be simple in some cases but also very difficult in other cases like the volatility clustering models.

Many packages available in R for the fitting of these models.
Thanks

For more information visit:

https://www.danielppalomar.com