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Joint Transmit–Receive Space–Time Equalization
in Spatially Correlated MIMO Channels:

A Beamforming Approach
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Abstract—Multi-input multi-output (MIMO) channels have
been shown in the literature to present a significant capacity
increase over single-input single-output ones in some situations.
To achieve this theoretical capacity, the constituent parallel
subchannels arising from the MIMO channel have to be properly
used. Many practical schemes are being currently developed
to achieve this goal. In this paper, we first show that, from
an information-theoretic point of view, beamforming becomes
asymptotically optimal as the spatial correlation of the channel
fading increases. In light of this result, wideband beamvectors are
jointly derived for both transmission and reception. We allow a
controlled partial response and design zero-forcing and minimum
mean–squared error transmit–receive filters. Conceptually, the
beamforming scheme is shown to decompose into two stages:
the first one corresponds to a spatial flattening of the MIMO
channel, i.e., choosing the subchannel with the highest gain at
each frequency; the second stage depends on the particular design
criterion and performs a power distribution at the transmitter
and defines the equalizer at the receiver. These methods are
further extended to the general case of multiple beamforming, i.e.,
when more than one subchannel are used. An exact and practical
implementation of a modified “waterfilling” solution required for
the filter design is proposed. All derived methods are assessed and
compared in terms of capacity and bit-error rate.

Index Terms—Array signal processing, beamforming, joint
transmit–receive equalization, multi-input multi-output (MIMO)
systems, space–time filtering, waterfilling.

I. INTRODUCTION

M ULTI-INPUT multi-output (MIMO) channels arise from
the use of multiple dimensions for transmission and re-

ception. Recently, MIMO channels arising from the use of spa-
tial diversity at both the transmitter and the receiver have at-
tracted considerable attention [1], [2]. They have been shown
to present a significant increase in capacity over single-input
single-output (SISO) systems because of the constituent parallel
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subchannels (also termed channel eigenmodes) existing within
the MIMO channel. The capacity of a MIMO channel depends
on a variety of factors such as the number of antennas utilized,
the correlation of the fades [3], the power allocation strategy,
and the frequency-selectivity of the channel [4].

Multiple high bit rate communication schemes have been re-
cently proposed for MIMO channels. In most situations, the
channel is assumed known at the receiver. A significant part of
the techniques assume no channel state information at the trans-
mitter (CSIT) [5]–[7]. Another significant part of the methods
assume CSIT and, therefore, the transmitter can adapt to each
channel realization [8], [9]. Channel knowledge at the trans-
mitter can be achieved either by means of a feedback channel
or by estimating the received channel and then applying the
channel reciprocity property (when applicable). In the sequel,
it is assumed that the channel is known at both ends of the
communication link and a joint transmit–receive processing is
considered.

One of the first approaches in the design of joint transmit–re-
ceive filters was done for frequency-selective SISO channels in
[10] (and references therein) to minimize the mean square error
(MSE), where an iterative “waterfilling” algorithm was found
for optimum energy distribution. In [11], the solution was ex-
tended to 2 2 MIMO channels. Decision feedback schemes
were considered in [12]. A generalization to matrix
channels was obtained in [13]. In [14], the case was general-
ized to an arbitrary matrix channel with correlated data
symbols, colored noise, both near- and far-end crosstalk and
excess bandwidth (although a closed-form expression was not
provided, an iterative solution was presented). In [8] and [15],
joint transmit–receive filters were derived using an elegant no-
tation for a general framework including excess bandwidth and
decision feedback systems. Remarkably, the joint transmit–re-
ceive design for MIMO systems was already solved in 1976 for
flat channels [16]. In [17], the flat MIMO case was considered
giving useful insights from the point of view of beamforming. In
[18] and [19], an interesting approach based on linear filtering
using a block notation was derived under a multirate filterbank
framework.

This paper considers space–time filtering for frequency-se-
lective MIMO channels at both sides of the link, commonly
referred to linear precoder at the transmitter and equalizer
at the receiver. The focus is on simplified processing, i.e., a
beamforming approach, which is preferred in terms of com-
plexity because only one data stream needs to be considered
and coding and transmission can be done in a much easier
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manner (as in single antenna systems) [20]. Since beamforming
implies a rank-one transmit covariance matrix, we first prove
the asymptotic optimality (in the sense of achieving capacity)
of beamforming on MIMO channels as the spatial channel
fading correlation increases at least at one end of the link. Then,
we jointly derive optimum transmit and receive beamvectors
according to different criteria such as zero-forcing (ZF) or
minimum mean squared error (MMSE) allowing an arbitrary
partial response termed partial response-joint ZF (PR-JZF)
and partial response-joint MMSE (PR-JMMSE), respectively.
Conceptually, the beamforming scheme is shown to decompose
into two stages: the first one corresponds to a spatial flattening
of the MIMO channel (i.e., choosing the subchannel with the
highest gain at each frequency); the second stage depends on
the particular design criterion and performs a power distribution
at the transmitter and defines the equalizer at the receiver. The
derivation of the filters is then extended to the more general
case of using a set of parallel subchannels or eigenmodes
(multiple beamforming), using the PR-JZF criterion (which
is a generalization of the ZF criterion used in [18]) and the
PR-JMMSE criterion (generalizing the results of [8] with a
derivation much simpler and shorter). We also propose an exact
and practical algorithm for the modified waterfilling solution
that is required in the MMSE solution as an alternative to the
existing iterative approaches [10], [11], and [8]. This algorithm
is based on and generalizes the work in [21, Ch. 4] and
[19, Alg. 1], where the classical capacity-achieving waterfilling
solution was considered.

The paper is structured as follows. The signal model is intro-
duced in Section II. In Section III, the asymptotic optimality of
beamforming is proven. Then, in Section IV, the joint deriva-
tion of the transmit–receive beamvectors is carried out and fur-
ther extended to the case of multiple beamforming in Section V.
A practical and exact implementation of the generalized water-
filling algorithm is given in Section VI. Section VII is devoted
to the numerical simulations using realistic channel models. The
final conclusions of the paper are summarized in Section VIII.

The following notation is used. Boldface uppercase letters de-
note matrices, boldface lowercase letters denote column vectors,
and italics denote scalars. The superscripts, , and
denote transpose, complex conjugate, and Hermitian operations,
respectively. The determinant and trace of a matrix are denoted
by and , respectively. denotes the (th, th) el-
ement of matrix . and denote real and imaginary
parts and and denote mathematical expectation and
Fourier transform, respectively. We define .

II. SIGNAL MODEL

A frequency-selective MIMO ( ) channel corre-
sponding to the generic situation of transmit and receive
antennas (depicted in Fig. 1) can be represented by a channel
matrix defined as

(1)

Fig. 1. General squeme of a multiantenna MIMO channel.

where denotes the number of resolvable multipath compo-
nents and matrix is the channel matrix at delay defined
as

...
...

...
. . .

...

where is the complex transmission coefficient (fading or
gain) from the th transmit antenna to theth receive antenna.
The statistics and correlations of the fades, e.g., power delay
profile and spatial correlation, make the channel representa-
tive of a specific to a particular environment such as indoor or
outdoor.

The received signal can be expressed as

(2)

where , , and are
the vector-valued transmitted signal, received signal, and noise,
respectively. The noise (possibly including interferences)
is assumed to be a complex Gaussian stationary stochastic
vector process with arbitrary spatial and temporal correlation

and the convolution operator
is defined over matrices similarly to the matrix product, i.e.,

.
Assuming the utilization of a matrix linear filter at the trans-

mitter (also known as linear precoder), the transmitted signal
can be written as (see Fig. 2)

(3)

where is the vector of symbols to be trans-
mitted, is the space–time matrix precoder,
is the symbol period, and is the number of simultaneous
symbols transmitted or, equivalently, the number of spatial
subchannels used. We can think of each column of as a
wideband beamvector associated to a symbol. In other words,
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Fig. 2. Scheme of the transmit–receive linear filtering approach.

a space–time matrix filter represents a multiple beamforming
scheme.

Similarly, assuming a matrix linear filter at the receiver (also
known as equalizer), the processed and sampled signal is (see
Fig. 2)

(4)

where is the space–time matrix equalizer. The
detection of the symbols is then performed over , possibly
including a decision feedback (DF) equalizer.

In the case of simplified signal processing (i.e., beam-
forming), as will be seen in the sequel with detail, a single
subchannel is used (i.e., ), the transmit covariance
matrix becomes rank-one and, therefore, the transmit and
receive filters simplify to beamvectors and

, respectively.

III. A SYMPTOTIC OPTIMALITY OF BEAMFORMING IN

CORRELATED MIMO CHANNELS

A frequency-selective MIMO channel with
transmit and receive antennas has potentially

parallel subchannels at frequency

[9], where denotes the number of rays between the
transmitter and the receiver at frequency. In a rich scattering
environment, and, therefore, the
number of potential parallel subchannels is
for the whole utilized bandwidth. The capacity of a MIMO
channel is given by [22], [23]

(5)

where is the bandwidth of the transmitted signal, and
are the power spectral density matrices of the trans-

mitted signal and the received noise, respectively, de-
notes the th diagonal element of matrix (with diag-
onal elements in decreasing order), which is obtained from the
singular value decomposition (SVD) of the whitened channel

, and
represents the power allocated to theth spatial subchannel. The
maximization in (5) is over all that satisfy the average
transmit power constraint given by

(6)

where is the maximum average transmit power in units of
energy per second.

As can be seen from (5), the global channel capacity is given
by the sum of the capacity of the spatial subchannels. There-
fore, in order to achieve capacity, all these constituent subchan-
nels must be properly used by allocating the power according to
the optimum waterfilling solution [23]

(7)

where is the “waterlevel” chosen to satisfy the power con-
straint of (6) with equality.

If the transmitter uses beamforming, then the transmit covari-
ance matrix becomes rank-one and the maximum bit rate
that can be achieved is [24]

(8)

which means that, at each frequency, only the spatial subchannel
with highest gain is used. For a multiple beamforming scheme
that uses beamvectors simultaneously (with ), the
maximum achievable bit rate is given by an expression similar to
(5) in which the sum is only over thespatial subchannels with
highest gain [24]. Clearly, beamforming is in principle a sub-
optimum approach because it uses only one spatial subchannel
at each frequency [compare (8) with (5)]. However, as we shall
see, for some particular situations with high spatial correlation
or low signal-to-interference-plus noise ratio (SINR), it may be
optimum or almost optimum.

To analyze the effect of the spatial fading correlation, we
model the random channel at delay in the delay-tapped
channel of (1) as (see [3] for fur-
ther details), where is a circularly symmetric complex
Gaussian random matrix with independent and identically
distributed (i.i.d.) entries, and and are fixed matrices
that introduce correlation among the entries of . To be
specific, and are the
fading correlation matrices at the transmitter and at the receiver,
respectively, ( and represent one of the infinite ways
to decompose and ). In the frequency domain, we have

. The rank of (with respect
to ) decreases as the fading at the transmitter (receiver)
becomes more correlated (a fully correlated fading corresponds
to a rank-one correlation matrix). It then follows that for
asymptotically fully correlated fading at either the transmit or
the receive side, the channel matrix becomes asymptotically
rank-one

(9)

where and represent the
transmit and receive spatial signatures at frequency. In fact,
using the more general MIMO channel model described in [25],
it is possible to have rank-one channels even with uncorrelated
fading at both the transmitter and the receiver (called “pin-hole”
channels in [25]). The asymptotic channel given by (9) has a
single nonvanishing singular value, in which case (5) and (8)
are equivalent and, therefore, beamforming is asymptotically
optimum as the spatial correlation increases.

Regardless of the spatial correlation, beamforming also be-
comes optimum for sufficiently low SINR. To be more specific,
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beamforming is optimum if and only if the waterfiling power
allocation in (7) presents at most one active spatial subchannel
per frequency (assuming eigenvalues in de-
creasing order), i.e., if

(10)

where denotes the set of active frequencies (with
according to the waterfilling solution in (7) over the highest

spatial subchannels) and is the size of .
Thus, for beamforming to become an optimum scheme, the

channel matrix does not have to be strictly rank-one as indicated
in (9). It suffices to have a fading correlation high enough to
make sufficiently small so that (10) is satisfied (which
also depends on or, equivalently, on the SINR). As will be
observed from numerical simulations in Section VII, for corre-
lated scenarios with an angle spread (AS) of the order of 8, (10)
is indeed satisfied.

In [26] and [27], the optimality of beamforming was analyzed
for different degrees of channel feedback quality. In [28], dif-
ferent transmission strategies are considered (including a beam-
forming approach) depending on the degree of channel knowl-
edge at the transmitter and the spatial correlation. Interestingly,
beamforming happens to be optimum for multiuser scenarios
with a sufficiently large number of users regardless of the spa-
tial correlation [29].

IV. JOINT TRANSMIT–RECEIVE BEAMFORMING DESIGN

The transmit precoding filter can be designed to achieve ca-
pacity and then the receive equalizer according to some criteria
such as ZF or MMSE as was done in [19]. Another interesting
alternative is to consider the signal constellation fixed (possibly
obtained after some kind of optimization process) and perform
a joint equalization of the channel, i.e., to jointly design the
transmit and receive space–time filters according to some cri-
teria such as ZF or MMSE as in [18] and [8], respectively.

Motivated by the previous result of the asymptotic optimality
of beamforming, we focus on the joint design of transmit and
receive beamvectors [see Fig. 3(a)]. Beamforming implies that
a single symbol is transmitted per symbol period, i.e., that only
one spatial subchannel is being used ( ). For clarity of pre-
sentation, we consider Nyquist bandlimited systems, i.e., lim-
ited to [ ). The generalization to the case of ex-
cess-bandwidth systems is straightforward following the elegant
approach of [8].

Given the transmitted signal , the
transmit power constraint is

(11)

where and
is the power spectral density of

the data symbols . We similarly define
and .

In the following sections, optimum transmit and receive
wideband (frequency-selective) beamvectors and are

Fig. 3. Schematic of the flattening of the MIMO channel to an equivalent SISO
channel. (a) Basic communication scheme. (b) Decomposed communication
scheme. (c) Equivalent flattened channel scheme.

jointly designed according to the ZF and MMSE criteria. An
arbitrary controlled intersymbol interference (ISI) commonly
termed desired impulse response (DIR) or partial response is
allowed in the design [30]. To start with, the partial response

is assumed fixed and given by the design specifications.
Section IV-C deals with the optimum choice of . Note that
the classical criteria without partial response is obtained by
choosing , where and represent an
arbitrary attenuation and delay respectively. We will make use
of the definitions and .

A. Joint Tx–Rx Beamforming Design Under the PR-JZF
Criterion

The partial response joint ZF (PR-JZF) criterion gen-
eralizes the classical ZF criterion by allowing any de-
sired partial response . It is given by imposing

. In the frequency
domain, this can be expressed as

(12)

For simplicity of notation, we define . It is as-
sumed that , (for excess-band-
width systems this requirement is relaxed) so that (12) can be
satisfied. We further impose the minimization of the noise power
after filtering at the receiver

(13)
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The Lagrangian containing (11)–(13) can be written as

(14)

Setting and using the ZF constraint of (12) to
find the Lagrangian multipliers, we obtain the following expres-
sion for the receive beamvector as a function of the transmit
beamvector:

(15)

Introducing (15) into the design equations and decomposing
without loss of generality (w.l.o.g.) the transmit beamvector as

, where , we obtain the following con-
strained minimization:

s.t. (16)

In order to minimize , must
equal the maximum eigenvalue of ( ), being
its associated eigenvector. The error functionbecomes then
a convex function. Again, forming the Lagrangian and setting

, the following solution is obtained:

(17)

where is found by
imposing the power constraint with equality because the error
function is monotonic decreasing in . Note that the phase
of does not affect the solution and can be freely chosen.

B. Joint Tx–Rx Beamforming Design Under the PR-JMMSE
Criterion

The partial response-joint (MMSE) criterion generalizes the
classical MMSE criterion by allowing any desired partial re-
sponse . It is based on the minimization of

(18)

where is given by (4). The Lagrangian containing (18) in
the frequency domain along with the average transmit power
constraint of (11) is

(19)

Setting , we obtain

(20)

(21)

where we have used the matrix inversion lemma.1 Using (20)
into the MSE of (18) along with the power constraint of (11)
reduces to the following constrained minimization problem:

s.t. (22)

In this case, again, must equal the
maximum eigenvalue of ( ) and must be its
corresponding eigenvector.

The optimal that minimizes the convex functionsub-
ject to the convex constraint (11) is given by the following mod-
ified waterfilling solution [31]:

(23)

where

(chosen so that the power constraint is satisfied with equality
since the error function is monotonically decreasing in )
and denotes the set of frequencies for which . Again,
the phase of is not defined and can be freely chosen. The
solution corresponding to (23) can be solved as in [10], [11],
and [8], where a parametric approach is given by expressing the
MSE and the transmit power as a function of the parameter
and then selecting one point of the curve. This method becomes
an iterative solution when having a given transmit power. In
Section VI, a nonparametric and exact algorithm is given.

JMMSE Versus JZF:In classical receive-only filter design,
it is well-known that as the noise power goes to zero (in our
case, as the SINR goes to infinity), the MMSE solution tends to
the ZF one [32]. For the case of joint transmit–receive design,
this assertion holds as well, as we show next. As will be fur-
ther analyzed in Section IV-D, is the channel frequency-de-
pendent effective gain. For , the expression of in
(21) clearly tends to (15). As for , the normalized beamvector

is clearly the same in both criteria [the eigenvector corre-
sponding to the maximum eigenvalue of ( )] and
the scaling factor is asymptotically equal. Indeed, from
(23)

where we have used the fact that .

1Matrix Inversion Lemma: (A+BCD) = A � A B

(DA B+C ) DA :
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C. Design of the Partial Response

Thus far, we have assumed that the partial response filter
used in (12) and (18) was given and fixed by the design specifi-
cations (e.g., we may have a detector matched to a given partial
response such as the duobinary channel , or the DC-notch
channel [30]). However, we can also consider as ad-
ditional degrees of freedom in the design procedure to improve
performance. In that case, the resulting should be taken
into account by the subsequent detector. In principle, we are
interested in a symbol-by-symbol detector, possibly including
a DF block (the DF filter is given by the strictly causal filter

2). A DF scheme is computationally appealing, although
it may present problems of error propagation at low SINR. It
is also possible to use a maximum-likelihood sequence esti-
mator (MLSE). In that case, however, the previous derivations
of transmit and receive filters are not optimal anymore since the
receive filter correlates the noise and (13) or (18) do not cor-
respond to the optimal metric of the MLSE (they correspond
instead to a MLSE that ignores the temporal noise correlation).

To optimize , we first rewrite the error function of (16)
and (22) as

(24)

where with for
the ZF case and for the MMSE case. Using well-known
results on spectral factorization theory [30] (see also [33]),
can be written as

where is canonical, i.e., causal, monic and minimum phase,
and is given by3

Using the Schwarz inequality, it can be shown that the error
function in (24) is minimized for and is given by

The previous error is minimized when lies along the direc-
tion of the eigenvector corresponding to the maximum eigen-
value of ( ) and with squared norm given by

where is chosen to satisfy the power constraint of (11) with
equality.

2This implies thatg(f) has to be a monic filter, i.e., with the first tap equal
to one.

3We assume thatq(f) is not zero over any measurable interval so that the
spectral factorization exists [30].

D. Conceptual Interpretation of the Joint Beamforming
Scheme

To get insight into the solutions obtained for the joint wide-
band beamforming design, we decompose the frequency-depen-
dent beamvectors as follows:

where and contain the spatial structure of the beamvec-
tors and are normalized w.l.o.g. so that and

, and and are frequency-dependent scaling
factors [see Fig. 3(b) where ,

].
The normalized receive beamvector, corresponding to

both the ZF (15) and the MMSE criterion (21), coincides and
is given by

The normalized transmit beamvector is also identical for
both criteria and corresponds to the eigenvector associated with
the maximum eigenvalue of ( ). Interestingly, the
expressions obtained for the normalized beamvectorsand
maximize the SINR and the mutual information at frequency.

The frequency-dependent SINR can then be expressed as

where
is the effective gain of the spatially flattened channel and

is the allocated power at frequency.
We can conclude that the normalized beamvectors are equiv-

alent for all criteria and essentially select the constituent spatial
SISO subchannel arising within the MIMO channel with highest
gain [see Fig. 3(c)]. Equivalently, we can say that the MIMO
channel is spatially flattened in the sense that it is reduced to a
SISO one, , with maximum effective gain.
The scaling factors are regular filters that operate on the equiv-
alent spatially flattened channel [see Fig. 3(c)]. These scaling
factors differ for different criteria such as ZF, MMSE, and ca-
pacity-achieving solution.

V. EXTENSION TOMULTIPLE-BEAMFORMING DESIGN

In this section, we generalize the derivation of the
transmit–receive filters of the previous section to the case
of multiple beamforming, i.e., matrix filters and as
opposed to vector filters. The average transmit power constraint
is given by

(25)

where and
is the power spectral density

matrix of the data vector .



736 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 5, JUNE 2003

We first formulate the problem under the PR-JZF criterion,
which is an extension of the result obtained in [18] where a dif-
ferent derivation was done based on the maximization of the
SINR subject to the ZF constraint. The ZF criterion with arbi-
trary partial response can be expressed in the frequency
domain as

(26)

and the noise minimization at the receiver is

(27)

The Lagrangian containing (25)–(27) can be written as in (28),
shown at the bottom of the page from which can be found
as a function of by setting and using the
constraints to find the Lagrangian multipliers

(29)

where .
Alternatively, the problem can be formulated under the

PR-JMMSE criterion. It is based on the minimization of the
MSE . The solution to this problem
for the particular case of was obtained
in [8] by proving a series of lemmas on the diagonality of some
matrix expressions. In [34], instead of minimizing the Euclidean
norm of the error vector (equivalently, the trace of the error
matrix), a unified framework that includes most reasonable
objective functions is developed based on majorization theory.
In the following, we make use of a basic result of the theory of
majorization [35] and provide a compact and simple original
derivation of the solution for a general choice of the partial re-
sponse (which includes DF schemes).4 The MSE can be
written in the frequency domain as shown in (30), at the bottom
of the page, where .
Again, we can obtain as a function of as

(31)

4The considered design accounting for an arbitrary partial response is mathe-
matically equivalent to having as a design criterion a weighted trace of the error
matrix. We would like to thank C. Aldana for pointing out the existence of [36]
(at that time unpublished), where the weighted trace criterion is considered and
solved using the Karush–Kuhn–Tucker conditions arising in convex optimiza-
tion theory.

To obtain the optimal , we consider the PR-JZF and the
PR-JMMSE criteria in a unified way. Plugging (29) and (31)
into (27) and (30), respectively, (and applying the matrix inver-
sion lemma in the PR-JMMSE method), the noise error in the
PR-JZF criterion (27) and the MSE in the PR-JMMSE criterion
(30) are obtained setting and , respectively, in

(32)

where .

Defining and
, the problem can be written as

s.t. (33)

In Appendix A, it is shown that the optimal is (if ,
instead of use )

(34)

where and are unitary matrices that diagonalize
and ( ), respectively

(35)

(36)

where the eigenvalues of and ( ) (equiv-
alently, the diagonal elements of and ) are de-
noted by and , respectively. The only unknowns
now are the diagonal elements of denoted by .
The constrained minimization problem can be finally written in
convex form as

s.t. (37)

where the dependence on the frequency has been omitted for
simplicity of notation. Assuming that are in decreasing

(28)

(30)
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order w.l.o.g., it follows that the error is minimized for
in increasing order (see Appendix B). The optimal { } that
minimizes the convex function subject to the convex region
corresponding to the power constraint (25) is given similarly
to (17) and (23)

for (PR-JZF)

for (PR-JMMSE)

(38)

where ,
(both chosen

to satisfy the power constraint with equality), and denotes
the set of frequencies for which . Although is
assumed real, an arbitrary phase can be absorved inor .

The modified waterfilling solution resulting from the
PR-JMMSE criterion can be efficiently implemented using the
algorithm given in Section VI. The partial response for
the multiple beamforming case can also be designed using the
theory of spectral factorization on matrices as in Section IV-C.
For more details, the reader is referred to [15].

VI. PRACTICAL WATERFILLING ALGORITHM

In this section, an efficient and exact practical implementa-
tion of a generalized modified waterfilling algorithm is derived
based on [21, Ch. 4] and [19, Alg. 1].

The design equations for the PR-JMMSE criterion (23) and
(38), noting that in a practical implementation the continuous
frequency domain is approximated by a finite set of frequency
bins, can be cast into the following general form:

(39)

where is a constant (commonly termed “waterlevel”) selected
to satisfy the constraint. It is important to remark that the wa-
terfilling solution of (39) is a generalization of the classical ca-
pacity-achieving waterfilling solution which is obtained by par-
ticularizing as in [21, Ch. 4] and [19, Alg. 1].

We can proceed in the same way as in [21, Ch. 4] by making
the hypothesis that all subchannels are active and expressing
(39) in matrix form as

...
...

...
...

...
...

...

Summing the first rows and using , the wa-
terlevel is obtained as

from which the potential values of the energiesfor
is straightforwardly computed as .
If all the energies are nonnegative, the problem is solved. Oth-

erwise, some of the subchannels have to be removed, i.e.,
their energy has to be set to zero, and the process has to be
repeated until no negative energy arises. To know the order in
which the channels have to be removed, we first obtain the fol-
lowing lemma.

Lemma 1: Given two lists of positive numbers { }
and { }, and a set of energies , where

( ), if and
for a given are removed from the lists, then increases if

and decreases if .
Proof: This result is very intuitive since it is simply saying

that if a subchannel with a positive allocated energy is removed,
this energy can be reallocated over the rest of subchannel (i.e.,

is increased) and vice-versa.
The value of after the deletion of and is

where

Clearly, if and only if , which in turn
implies that or, equivalently,

and, therefore, . Thus,
if and only if andvice-versa.

Using the previous lemma, we can state that a channelwith
positive energy cannot be removed, becausewould increase
and then would still be positive which is a contradiction
with . On the other hand, if a channelwith
negative energy is deleted, thendecreases and, consequently,

still remains negative which means that
holds and will hold while channels with negative energy are

removed. In light of those results, a first version of this modified
waterfilling algorithm is summarized in Table I.

It is also possible to derive another version of the algorithm
based on [21, Ch. 4] by noting that the channel with highest quo-
tient is the first one to become negative when decreasing

. To be more exact, since , we can clearly
state that for it follows that if is negative so is

and, conversely, if is positive so is . Therefore, a second
version of the modified waterfilling algorithm is summarized in
Table II.

Note that both algorithms require loops or iterations in
the worst-case to obtain the exact solution. This is in contrast to
the existing iterative approaches for the modified waterfilling
solution [8], [10], [11] that converge to the optimum solution
as the number of iterations goes to infinity (they select a
value for and then compute , if it is greater than
then the constant is reduced, otherwise it is increased and so
forth).
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TABLE I
FIRST VERSION OF THEMODIFIED WATERFILLING ALGORITHM

TABLE II
SECOND VERSION OF THEMODIFIED WATERFILLING ALGORITHM

VII. SIMULATION RESULTS

In this section, we first consider a simple and illustrative ex-
ample that will allow us to gain insight into the problem and
then we deal with a realistic scenario (using a channel model
based on field measurements).

A. Illustrative Example

For this example, a simple MIMO (2,2) channel was ar-
tificially generated in order to obtain visual and qualitative
results on the two-stage process described in Section IV-D
(see Fig. 3). The two stages of the process are shown in Fig. 4.
The first stage, common for all criteria, is the flattening of the
MIMO channel, whereas the second stage consist on the power
distribution which depends on each particular criterion. From
Fig. 4, it can be observed that whereas the capacity-achieving
solution (or unconstrained beamforming) and the JMMSE
method allocate the transmitted power in an intelligent way
according to the gain at each frequency by not allocating
power to highly attenuated areas, the JZF criterion attempts to
perfectly equalize the spatially flattened channel by allocating
more power to highly attenuated areas and therefore enhancing
the noise. Although the JZF criterion may in general perform
similarly to the JMMSE, it fails when strong nulls exists; in
other words, it lacks robustness.

B. Realistic Simulations

We now consider a realistic scenario based on channel models
obtained from field measurements. Since the interest of this

paper is on beamforming for spatially correlated MIMO chan-
nels, we first analyze the goodness of beamforming for different
degrees of spatial correlation and then evaluate and compare the
proposed JZF and JMMSE beamforming methods.

Regarding the scenario for the simulations, realistic MIMO
(4,4) channels were generated for a typical situation of a
communication between a mobile unit (MU) and a base station
(BS). The MU is generally immerse in a rich scattering environ-
ment due to the presence of multiple objects (buildings, cars,
etc.), having therefore an almost uncorrelated fading among the
antennas for a half-wavelength separation. On the other hand,
the BS is assumed to be on top of a building, receiving the
signal transmitted by the MU from a mean direction of arrival
(DoA) and within a specific AS, which depends basically
on the height of the antenna elements of the BS. The fading
correlation at the BS is considered a function of the AS, the
antenna spacing and the mean DoA according to [37], where
a uniform-shaped angular distribution was assumed to derive
closed-form expressions. The mean DoA was drawn from a
uniform distribution on [ 60 60 ] (assuming a three-sectorial
cell deployment) and a half-wavelength separation of the
antennas was assumed. Given the envelope correlation matrices
at both ends of the link [37], the spatially correlated MIMO
channel is generated as explained in [38]. No interfering signals
were considered in the simulations. The temporal dispersion
of the channel was generated following a vehicular power
delay profile as specified by ETSI [39]. The matrix channel
generated was normalized so that and is
assumed perfectly known. The transmission block is assumed
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Fig. 4. Illustration of the two-stage process with the simple MIMO (2,2)
channel: 1) flattening of the MIMO channel (equal for all methods), and
2) power allocation forSNR = 6 dB (different for each method).

sufficiently short so that the channel remains constant and also
sufficiently long so that the standard information-theoretic as-

Fig. 5. Outage capacity of a MIMO (4,4) vehicular-A channel
(SNR = 16 dB) with different fading correlation and degree of knowledge of
the channel at the transmitter.

sumption of infinitely long code block length is a useful ideal-
ization. The transmitted signal-to-noise ratio (SNR) is defined
as (assuming a Nyquist bandlimited system, i.e., a bandwidth
of , and noise with a flat power spectral density at)

where is the trans-
mitted symbol energy.

Most of the simulation results are presented in terms of
outage capacity. For communications without delay constraints
in which the transmission duration is so long as to reveal the
long-term ergodic properties of the fading process (assuming
the channel an ergodic process in time), the ergodic capacity
is a useful measure of the average achievable bit rate. The
ergodicity assumption, however, is not necessarily satisfied
in practical communication system with stringent delay con-
straints operating on fading channels because no significant
channel variability may occur during the whole transmission. In
these circumstances, the outage capacity defined as the capacity
that cannot be supported for only a small outage probability

is the appropriate measure [2], [1]. With no CSIT, an
outage means that the transmitter is transmitting at a rate higher
than capacity and, therefore, information cannot be reliably
transmitted. With CSIT, however, the situation is different since
the transmitter knows what is the maximum rate that can be
supported by the specific channel realization and, therefore,
it can adapt by transmitting at a lower rate (this may or may
not be acceptable depending on the specific application). Since
the capacity is a function of the random channel realization, it
is a random quantity that can be described by its cumulative
distribution function (CDF).

Range of Optimality of Beamforming:In Fig. 5, the outage
capacity curves corresponding to MIMO (4,4) channels
with different degrees of spatial correlation (ranging from
completely uncorrelated fading to fully correlated) with (w/)
and without (w/o) CSIT are plotted. The highest capacity
corresponds to the completely uncorrelated case (because the
gain of the channel eigenmodes is high), whereas the fully
correlated case has the lowest capacity (because it only has one
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Fig. 6. Outage capacity of a MIMO (4,4) vehicular-A channel as a function of
the number of parallel subchannels used (from one to four).

nonvanishing channel eigenmode). The rest of the cases (partial
spatial correlation) lay within them and present increasing
capacity with AS as expected. For low angle spread (on the
order of 4 ), the capacity is close to the fully correlated case.
For high angle spread (on the order of 30), the capacity is
close to the uncorrelated case. CSIT becomes less important
with decreasing spatial correlation.

In Fig. 6, we show the effect of using a reduced number of
spatial subchannels instead of using them all (four in this case).
For the completely uncorrelated case, the decrease in capacity
with respect to the use of all four subchannels at 10% outage
when using three subchannels is about 0.5 bps/Hz (2.9%),
whereas when using two subchannels the difference increases
significantly to 4 bps/Hz (a loss of 26%). Therefore, at least
three out of the four subchannels should be used. For a partially
spatially correlated channel, however, the importance of using
all available spatial subchannels diminishes significantly. For

, it is only necessary to use two subchannels, whereas
for (not depicted), using a single subchannel is enough
since the four CDF curves collapse into one. The reason why
the number of significant parallel subchannels decreases is
directly related to the pdf of the channel eigenvalues [24]. It is
well-known that a uniform power distribution performs close
to the waterfilling distribution provided that the appropriate
subchannels are used (basically avoiding zero-gain subchannels
on which the allocated power would be wasted). For the un-
correlated case, a uniform power distribution over one, two, or
three subchannels is almost optimal5 whereas for the partially
correlated channel with , it is almost optimal only
over one or two subchannels.

In Fig. 7, the capacity at an outage probability of 5% is plotted
as a function of the angle spread when using all constituent sub-
channels and when beamforming is applied (if instead we plot
the ergodic capacity, similar results are obtained in the sense that
the shape of the curves remains the same but with less conserva-

5By “almost optimal,” we really mean that if we plot a CDF curve of the
achievable rates corresponding to the waterfilling and uniform distribution, they
coincide and cannot be distinguished.

Fig. 7. Outage capacity (at a probability of outage of 5%) of a MIMO (4,4)
vehicular-A channel withSNR = 16 dB as a function of the AS.

Fig. 8. Outage capacity of a MIMO (4,4) vehicular-B channel corresponding
to different transmit–receive methods forSNR = 16 dB.

tive capacity values). From this picture, the range of optimality
of beamforming can be seen: for an angle spread on the order
of 4 –8 , the loss in capacity of the beamforming scheme is
negligible.6

Evaluation and Comparison of the JZF and JMMSE
Methods: We now present a numerical evaluation and com-
parison of the proposed beamforming methods along with two
simple benchmark schemes in terms of outage capacity and
bit-error rate (BER). The two benchmark schemes use simple
narrowband (i.e., flat in frequency) beamvectors for their
simplicity and low complexity. The first one consists on using
just the best pair of transmit–receive antennas, i.e.,
and , where and

6Note that the curve for partial correlation in Fig. 7 is not monotonic on the
AS. This is due to the model of the ray distribution (uniform-shaped angular
distribution) used to compute the fading correlation [37]. For other distribution
models, slightly different curves are obtained but the underlying trend is always
the same.



PALOMAR AND LAGUNAS: JOINT TRANSMIT-RECEIVE SPACE–TIME EQUALIZATION IN SPATIALLY CORRELATED MIMO CHANNELS 741

Fig. 9. Outage capacity (at a probability of outage of 5%) of a MIMO (4,4)
vehicular-B channel corresponding to different transmit–receive methods as a
function of the SNR.

are all-zero vectors with a one in theth and th position,
respectively. To be more precise, the transmit–receive antenna
combination providing the highest gain is selected according to

The second benchmark method designs the transmit beamvector
to maximize the energy of the equivalent received channel,

, subject to the power constraint. The solution to
that criterion is given by

This benchmark, further simplified by assuming , is
one of the methods proposed for downlink transmit beam-
forming in the third generation of digital mobile radio systems
Universal Mobile Telecommunication System (UMTS) by
the standardization organization Third-Generation Partnership
Project (3GPP) [40, Sec. 4.7]. At the receiver, the narrowband
beamvector is designed to maximize the SINR as in [41].

Outage capacity curves when using the JZF and JMMSE
methods [using ] are plotted in Fig. 8 for

dB and . We can observe that the JZF
and JMMSE beamforming methods exhibit a capacity virtually
identical to that of the unconstrained beamforming case. In
Fig. 9, the capacity at a probability of outage of 5% is depicted
for all methods as a function of the SNR (as happened with
Fig. 7, if the ergodic capacity is plotted, similar results are
obtained). Again, it is observed that both the JZF and JMMSE
methods perform remarkably well compared with the uncon-
strained beamforming case. Finally, in Fig. 10, BER results
are given for an uncoded system with a quaternary phase-shift
keying (QPSK) constellation using an implementation based
on finite-impulse response (FIR) filters with 64 taps at the Tx
and 128 taps at the Rx. The JMMSE method is clearly more
robust and performs better than the JZF.

Fig. 10. BER curves of uncoded QPSK for a MIMO(4,4) vehicular-B channel
with AS = 8 using FIR filters of 64 taps at the Tx and 128 at the Rx.

VIII. C ONCLUSION

In this paper, we have analyzed communication schemes
through wireless MIMO channels with channel knowledge
at both sides of the link. We have first shown that, from an
information-theoretic point of view, beamforming becomes
asymptotically optimum as the spatial correlation of the
channel fading increases (typically in outdoor scenarios with
BSs placed in high positions). Based on this result, we have
then derived practical transmit–receive beamforming schemes
according to different design criteria such as ZF and MMSE
allowing any desired partial response. Conceptually, these
simplified processing schemes have been shown to decompose
into two different stages: the first one corresponds to a spatial
flattening of the MIMO channel, i.e., choosing the eigenmode
with the highest gain at each frequency; the second stage
depends on the particular design criterion and performs the
power distribution at the transmitter and defines the equalizer
at the receiver. An extension of the beamforming approach to
the case of using multiple spatial subchannels or eigenmodes
(multiple beamforming) has also been obtained in a compact
and simple way. We have proposed an exact and practical
implementation of the modified waterfilling solution obtained
in the MMSE design. The proposed joint ZF and joint MMSE
methods have been evaluated and compared with numerical
simulations based on realistic scenarios, showing the increased
robustness of the joint MMSE approach compared with the
joint ZF method as in the classical receive-only equalization.

APPENDIX A
OPTIMALITY OF THE DIAGONAL STRUCTURE

We need the following lemma easily obtained from majoriza-
tion theory [35].

Lemma 2: [35, 9.H.1.h] If and are positive
semidefinite Hermitian matrices, then



742 IEEE JOURNAL ON SELECTED AREAS IN COMMUNICATIONS, VOL. 21, NO. 5, JUNE 2003

where and are the eigenvalues of and , respec-
tively, in decreasing order.

Focusing on a particular frequency and dropping the fre-
quency dependence for the sake of notation, we have from
Lemma 2 (defining )

where is the th eigenvalue of in decreasing order.
For any given matrix , the lower bound can always be
achieved by post-multiplying by a proper unitary ma-
trix [note that any rotation of does not affect the power

]. To be more specific, given , the lower bound is
achieved by , where and

.
In other words, for to be optimal, it must be that

is a diagonal matrix. If the eigenvalues of
are all different, it follows (see [34] for details) that we can

write w.l.o.g. or, equivalently

(40)

where is a unitary matrix whose first columns are the
eigenvectors of corresponding to the largest eigenvalues
and has zero elements except (possibly) along its main di-
agonal. In case that some of thelargest eigenvalues of are
equal, the optimal is not unique since allows for arbitrary
subrotations. Similarly, in case that some eigenvalues ofare
equal, the optimal is not unique since allows for arbitrary
subrotations [e.g., if then any unitary matrix can
be used in (40)]. In any case, although the set of optimal’s
may have a more general decomposition, (40) always describes
an optimal .

APPENDIX B
OPTIMUM ORDERING OF THECHANNEL EIGENVALUES

In this appendix, we first show that assuming in de-
creasing order w.l.o.g., the errorin (37) is minimized by the
ordering and then we show that the
terms can be achieved with a lower power when
are in increasing order.

Lemma 3: [35, 6.A.3] The summation is maximized
(minimized) when the sequences {} and { } are in the same
(opposite) ordering, i.e., for then .

The first part of the proof follows by a direct application
of Lemma 3 to . The second part is
similarly proved by defining (from which
are in decreasing order) and then writing the utilized power as

. Again, by a direct application of Lemma
3, it is clear that if are in increasing order, the samecan
be achieved with less power.
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