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Abstract—When transmitting over multiple-input–mul-
tiple-output (MIMO) channels, there are additional degrees
of freedom with respect to single-input–single-output (SISO)
channels: the distribution of the available power over the transmit
dimensions. If channel state information (CSI) is available, the
optimum solution is well known and is based on diagonalizing the
channel matrix and then distributing the power over the channel
eigenmodes in a “water-filling” fashion. When CSI is not available
at the transmitter, but the channel statistics area priori known, an
optimal fixed power allocation can be precomputed.

This paper considers the case in which not even the channel
statistics are available, obtaining a robust solution under channel
uncertainty by formulating the problem within a game-theoretic
framework. The payoff function of the game is the mutual infor-
mation and the players are the transmitter and a malicious nature.
The problem turns out to be the characterization of the capacity
of a compound channel which is mathematically formulated as a
maximin problem. The uniform power allocation is obtained as a
robust solution (under a mild isotropy condition). The loss incurred
by the uniform distribution is assessed using the duality gap con-
cept from convex optimization theory. Interestingly, the robustness
of the uniform power allocation also holds for the more general case
of the multiple-access channel.

Index Terms—Capacity compound multiple-input–multiple-
output (MIMO) channel, channel uncertainty, game theory,
maximin, robust power allocation.

I. INTRODUCTION

M ULTIPLE-input–multiple-output (MIMO) channels
arise from the use of multiple dimensions for transmis-

sion and reception. Many different scenarios can be modeled
as MIMO systems such as wireless communication systems
with multiple antennas at both ends of the link (spatial diver-
sity), wireline communications when a bundle of twisted pair
copper wires in digital subscriber lines (DSL) is treated as a
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whole, systems with polarization diversity, or simply when
a time-dispersive or frequency-selective channel is properly
modeled (e.g., discrete multitone (DMT) and orthogonal
frequency-division multiplexing (OFDM)).

Recently, MIMO channels arising from the use of spa-
tial diversity at both the transmitter and the receiver have
attracted considerable attention [1], [2]. They have been
shown to present a significant increase in capacity over
single-input–single-output (SISO) systems because of the con-
stituent parallel subchannels (also termed channel eigenmodes)
existing within the MIMO channel.

When channel state information (CSI) is available, the op-
timal power allocation that achieves capacity is well known [3],
[4], [1]. In such a case, capacity is achieved by adapting the
transmitted signal to the specific channel realization. To be more
specific, the transmit directions need to align with the right sin-
gular vectors of the channel. In this way, assuming that a proper
rotation is performed at the receiver, the channel matrix is diag-
onalized and the set of constituent subchannels or eigenmodes
is obtained. In addition, the available transmit power has to be
optimally allocated over the eigenmodes in a “water-filling” or
“water-pouring” fashion [5], [6], [1], [7].

Obtaining a channel estimate at the transmitter requires either
a feedback channel or the application of the channel reciprocity
property to previous receive channel measurements when the
transmit and receive channels are sufficiently correlated such as
when the same carrier frequency is used for transmission and
reception (provided that the time variation of the channel is not
too fast). In many cases, the channel estimate may become sig-
nificantly inaccurate, mainly due to the time-varying nature of
the channel. In fact, in many practical communication systems,
the channel is assumed unknown at the transmitter. For those
situations, it becomes necessary to utilize transmission tech-
niques (and a transmit power allocation) independent of the ac-
tual channel realization.

When CSI at the transmitter (CSIT) is not available, but the
channel statistics area priori known, an optimal fixed power al-
location (independent of the actual channel realization) can be
precomputed. In [2], the capacity of a MIMO channel with no
CSIT was obtained assuming a uniform power allocation over
the transmit antennas. The choice of the uniform distribution
was based on the symmetry of the problem, i.e., the fact that
the fading between each transmit–receive pair of antennas was
identically distributed and uncorrelated with the fading between
any other pair of antennas (spatially uncorrelated channel). The
optimality of the uniform power allocation in terms of ergodic
capacity for the Gaussian distributed channel with independent
and identically distributed (i.i.d.) entries was proved by Telatar
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[1] based on the concavity of the logdet function and on the sym-
metry of the problem.1 (Note that if the channel matrix entries
are correlated, it is possible to improve upon the uniform power
allocation by using some statistical knowledge of the channel,
e.g., using a stochastic water-filling solution as proposed in [9].)
This result was extended to the multiuser case in [10], [11].
The uniform power distribution has also been shown optimum
for some particular cases of interest such as frequency-selective
SISO channels [12], [13] and the dual case of flat time-varying
SISO channels [14]. Interestingly, the uniform power alloca-
tion has also been found optimal in other completely different
scenarios such as in noncoherent multiple-antenna channels in
the high signal-to-noise ratio (SNR) regime (whenever there are
more receive than transmit antennas and for a sufficiently long
channel coherence time) [15].

This paper considers the case in which not even the channel
statistics are known at the transmitter, obtaining, therefore, a ro-
bust power allocation under channel uncertainty. We formulate
the problem within a game-theoretic framework [16], [17], in
which the payoff function of the game is the mutual information
and the players are the transmitter and a malicious nature (dif-
ferent types of games are considered, such as a strategic game, a
Stackelberg game, and a mixed-strategy strategic game). Mathe-
matically, this is formulated as a maximin problem that is known
to lead to robust solutions [18]. Well-known examples of robust
maximin and minimax formulations are universal source coding
and universal portfolio [4], [19]. The problem turns out to be the
characterization of the capacity of a compound vector Gaussian
channel [20], [21]. The uniform power allocation is obtained as
the solution of the game in terms of capacity (under the mild
condition that the set of channels is isotropically unconstrained,
meaning that the transmission “directions” are unconstrained).
The results are easily extended to ergodic and outage capacities.
The loss in terms of capacity of the robust power allocation with
respect to the optimal one (adapted to the specific channel real-
ization) is analyzed using the concept of duality gap arising in
convex optimization theory [22], [23].

The robustness of the uniform power allocation from a max-
imin viewpoint also holds for the more interesting and gen-
eral case of a multiple-access channel (MAC). In particular, the
worst case rate region corresponding to the uniform power dis-
tribution is shown to contain the worst case rate region of any
other possible power allocation strategy. In other words, the ca-
pacity region of the compound vector MAC is achieved when
each of the users is using a uniform power allocation.

The paper is structured as follows. Section II introduces the
signal model used throughout the paper. The game-theoretic for-
mulation of the problem of robustness is given in Section III.
Section IV contains the proof of the optimality of the uniform
power allocation in terms of instantaneous capacity along with
several illustrative examples and the extension to average and
outage statistics of the capacity. Section V deals with the anal-
ysis of the loss of performance of the uniform power allocation.
The MAC case is considered in Section VI. The final conclu-
sions of the paper are summarized in Section VII.

1The proof can be extended to non-Gaussian distributions symmetric with
respect to the origin [8].

The following notation is used. Boldface upper case letters
denote matrices, boldface lower case letters denote column
vectors, and light-face italics denote scalars. and
denote the set of matrices with real- and complex-valued
entries, respectively. The superscripts , , and de-
note transpose, complex conjugate, and Hermitian operations,
respectively. The superscript denotes optimal (do not
confuse with the complex conjugate operation). The Frobenius
norm of matrix is represented by and its trace by

. The th eigenvalue in decreasing order of matrixis
denoted by or (similarly, and
denote the maximum eigenvalue). denotes the identity
matrix (the dimension can be left unspecified whenever it
can be inferred from the context). Expressions and
denote the probability density function (pdf) of the (possibly
matrix-valued) random variable (the difference between a
random variable and a realization of the random variable can
always be inferred from the context and are therefore written
in the same way). The expectation with respect to is
written as or simply as .

II. SIGNAL MODEL

This paper considers the transmission of a vector signal
through a linear MIMO channel immersed in interference and
noise. To be more specific, the general vector model used
throughout the paper is

(1)

where is the transmitted vector,
is the physical channel matrix that performs a linear trans-
formation on , is the received signal vector,
and is the interference-plus-noise vector with
arbitrary covariance matrix . (It is assumed without loss
of generality that both and have zero mean.) As will be
argued in Section III, it suffices to consider thatis a proper
complex Gaussian random vector [24], i.e., .
The channel transition probability is then given by a
vector Gaussian distribution parameterized by the channel state

. Recall that the model of (1) has transmit and
receive (finite) dimensions. The transmitter is assumed to be
constrained in its average power (long-term power constraint
[14], [25])

(2)

or, equivalently

(3)

where is the covariance matrix of the transmitted
vector and is the maximum average transmitted power
per transmission. By uniform power allocation we mean

which also implies an independent signaling
over the transmit dimensions if a Gaussian code is used.
Another interesting constraint is the maximum eigenvalue
constraint (as has been used elsewhere [26])
which will be revisited in Section IV. Note that is an
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Fig. 1. Example of a MIMO channel arising in wireless communications when multiple antennas are used at both the transmitter and the receiver.

upper bound on the average transmitted power at each transmit
dimension .

For illustration purposes, let us see how the following partic-
ular cases fit into the general model of (1): i) a flat channel with
multiple antennas at both the transmitter and the receiver (see
Fig. 1) fits naturally into the model by letting represent
the fading between theth transmit antenna and theth receive
one, ii) a frequency-selective SISO channel in time domain can
be accommodated by properly choosing as a convolution
matrix, and iii) a frequency-selective SISO channel in frequency
domain (or multicarrier channel such as an OFDM channel) can
also be cast in the general vector model of (1) by choosing
diagonal with its th diagonal element denoting the gain of the
th carrier (of course, the introduction of a cyclic prefix between

transmitted blocks is necessary to obtain such a model).
The mutual information between the transmitted and the re-

ceived signals for a given channel state according to the
signal model of (1) (for a given ) is [4], [1]

(4)

where is the whitened channel state. The upper
bound is achieved when (i.e., a Gaussian code)
[4], [1]. (The base of the logarithm will be left unspecified
throughout the paper unless otherwise stated.) The channel
capacity (assuming known) over all verifying the power
constraint of (3) is

(5)

and the capacity-achieving solution is given by a transmit co-
variance matrix that diagonalizes the channel matrixand
distributes the available transmit power among the eigenmodes
in a water-filling fashion [3], [4], [1], [6]. We define the mutual
information between and explicitly as a function of and

as in [1]

(6)

(7)

where the determinant identity
has been used.

In wireless communications, the channel may undergo slow
and/or fast fading due to shadowing and Doppler effects. Es-
sentially, matrix is not fixed and changes in time. One pos-
sible way to deal with this is by considering the channel as
a random variable with a known pdf which naturally
leads to the notions of ergodic capacity and outage capacity
[1], [27] (c.f. Section IV-D). In this paper, we are interested
in a robust design obtained by including uncertainty about the
channel at both the transmitter and the receiver. There is a sig-
nificant variety of channel models that can be used to model
channel uncertainty (see [20] for a great overview of reliable
communication under channel uncertainty). If the fading is suf-
ficiently slow (the channel coherence time is much higher than
the duration of a transmission2), the system can be modeled as a
compound channel, where the channel state remains unchanged
during the course of a transmission and it is assumed to belong
to a set of possible channel states but otherwise unknown [21],
[28], [20], [27] (the capacity of the compound vector Gaussian
channel was obtained in [29]). For fast fading, however, the
compound channel is no longer appropriate and other models,
such as a compound finite-state channel (FSC) [20] or an ar-
bitrarily varying channel (AVC) [21], [28], [20] may be neces-
sary. In the AVC, the channel state can arbitrarily change from
symbol to symbol during the course of a transmission (see [30]
for results on the vector Gaussian AVC). Recall that, in sit-
uations where the unknown channel remains unchanged over
multiple transmissions, the utilization of a training sequence to
estimate the channel at the receiver is particularly attractive. The
reader is referred to [20] for a detailed discussion on the appli-
cability of each model.

We consider that the fading is slow enough so that the com-
pound channel model is valid (see [29], for example, where

2By “transmission” we mean the transmission of a codeword of block length
n, i.e., “n uses of the channel.”
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Fig. 2. Communication interpreted as a two-player game.

the compound channel was used to model a wireless MIMO
system). In other words, we assume that the transmission dura-
tion is sufficiently long so that the information-theoretic coding
arguments are valid and sufficiently short so that the channel
remains effectively unchanged during a transmission (c.f. [2],
[25]). This type of channel is usually referred to as block-fading
channel [27], [25].

III. GAME-THEORETICFORMULATION

In this section, the problem of obtaining a robust transmit
power allocation when the transmitter does not even know the
channel statistics is formulated within the framework of game
theory [16], [17]. The idea of robustness implies being able to
function in all possible scenarios and, in particular, the worst
case scenario. This concept fits naturally into the context of
game theory.

We will consider a game in which the payoff function (by
which the result of the game is measured) is the mutual infor-
mation and the players are: the transmitter that selects the best
signaling scheme and a malicious nature that chooses the
worst communication conditions or channel transition proba-
bility . It is interesting to note that the formulation of
the communication process explicitly as a game was first pro-
posed more than 40 years ago by Blachman [31] using a mutual
information payoff. We constrain our search to Gaussian-dis-
tributed signal and noise since it is well known that they consti-
tute a robust solution (a saddle point) to a mutual information
game for the memoryless vector channel [32], [33].3 In this case,

is a vector Gaussian distribution parameterized with
the channel state as described in Section II. In the se-
quel, by “channel” we will simply refer to the whitened channel
state and not to the channel transition probability .
The two-player game is illustrated in Fig. 2.

With the previous considerations, the unknowns of the game
are the transmit covariance matrixand the whitened channel

(which implicitly includes the noise covariance matrix
and the original channel ). The payoff function of the game
is then the mutual information given by in (6) or (7).
The game would be meaningless and trivial unless we placed re-

3For complex-valued signals, the saddle-point property holds for proper com-
plex Gaussian distributions [24].

strictions on the players. Therefore, we suppose that the channel
must belong to a set of possible channelsand, similarly,
must belong to a set of possible covariance matrices. It

is important to bear in mind that, for simplicity of notation,
we write instead of with no
loss of generality (one can always defineas the set of ma-
trices that can be parameterized as for some

). The set considered in this paper is
defined by the average transmit power constraint of (3)

(8)

We remark that the results of the paper still hold if the eigenvalue
constraint is utilized instead to define . Re-
garding the set , since we are interested in finding a robust
for all possible channels, we would like not to impose any con-
straint on the allowable set of channels. However, this would be
a poor choice because the trivial solution would be ob-
tained. To avoid this effect, we are forced to introduce some ar-
tificial constraints (unlike the constraint used to definewhich
is very natural). But this may have the side effect that the so-
lution to the game formulation may depend on the particular
constraints chosen. Fortunately, as proved in Section IV, the so-
lution to the game formulation is independent of the particular
channel constraints under the mild condition that the constraints
guarantee an isotropy property in(c.f. Section IV).

As has been previously argued, to take into account the effect
of channel uncertainty, we consider that the channel is known to
belong to a set of possible channelsbut otherwise unknown.
The worst case channel for a givenis given by the minimizing
solution to . The transmitter will maximize
the worst case mutual information over the set, yielding the
following maximin formulation of the problem:4

(9)

At this point, it is interesting to recall that a compound
channel is precisely a channel that is known to belong to a set
of possible channels (unchanged during the course of a trans-
mission) but otherwise unknown [21], [28], [20]. As discussed

4For the particular setsQ andH considered in this paper, the formulation
sup-inf reduces to max-min. For the sake of generality, however, we stick to the
sup-inf notation throughout the paper.
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Fig. 3. Two-player zero-sum strategic game in which player 1 (the transmitter) and player 2 (nature) move simultaneously. The optimal power allocation is found
as a saddle point (Nash equilibrium). (Note that for illustration purposes the setsQ andH have been considered finite.)

in Section II, this type of channel may be useful to model
communication under channel uncertainty for sufficiently slow
fading. The capacity of the compound channel (the capacity
that can be guaranteed for the set of possible channels)
was extensively treated in [21] where an expression similar
to (9) was shown to be the capacity of the compound discrete
memoryless channel. In [29], the vector Gaussian channel was
specifically considered and (9) was indeed shown to be the
capacity of the compound vector Gaussian channel when the
actual channel state is unknown at both the transmitter and the
receiver (under the mild assumption thatis bounded). Note
that knowledge of the channel state at the receiver does not
increase the compound channel capacity [21],5 although the
receiver may be simpler to implement with this knowledge.
Clearly, the capacity of the compound channel cannot exceed
the capacity of any channel in the family. In principle, it may
not even be equal to the infimum of the capacities of the
individual channels in the family (this is because codes and
their decoding sets must be found, not just to give small error
probability in the worst channel, but uniformly across the class
of channels, which is a more stringent condition) [29], [20].

Alternatively, we can consider the compound channel when
the transmitter knows the channel state (as in the previous case,
it is indifferent whether the receiver knows the channel state or
not [21]). In this case, in principle, a different coding–decoding
strategy can be used for each channel realization and the ca-
pacity of such a compound channel is given by the following
minimax formulation:

(10)

5The intuitive explanation of this effect is that, since the channel state remains
fixed for the transmission of the whole codeword, for sufficiently long codes, it
can be estimated at the receiver by transmitting, for example, a training sequence
with length proportional to

p
n at no cost of rate asn ! 1 [21]. In fact, the

channel state is not at all required by universal decoders [20].

i.e., the infimum of the capacities of the family of channels.
From a game-theoretic perspective, the problem can be

viewed as a two-player zero-sum (players with diametrically
opposed preferences) game, also known as strictly competitive
game (the transmitter is the maximizing player and nature is
the minimizing player) [16] (see Fig. 2). In the following, we
cast the problem in three different types of games: a strategic
game both with pure strategies and with mixed strategies and
a Stackelberg game.

The simplest formulation (from a game-theoretic standpoint)
is that of a strategic game, in which the players select their
strategies without knowing the other players’ choices, i.e., they
“move” simultaneously (see Fig. 3). In such cases, there may
exist a set of equilibrium points called Nash equilibria char-
acterized for being robust or locally optimal in the sense that
no player wants to deviate from such points. In our case (a
two-player zero-sum game), a Nash equilibrium is also termed
saddle point and it is a simultaneously optimal point
for both players (see Fig. 3)

(11)

where is called the value of the game (whenever
it exists) and is equal to the maximin and minimax solutions of
(9) and (10) [16], i.e.,

(12)
Note that one of the major techniques for designing systems that
are robust with respect to modeling uncertainties is the minimax
approach, in which the goal is the optimization of the worst
case performance [34], [18]. Interesting examples of minimax
design in information theory are the problem of source coding
or data compression when the data distribution is completely
unknown and the problem of portfolio investment when nothing
is known about the stock market [4], [19]. Both problems can be
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Fig. 4. Two-player zero-sum extensive game in which player 1 (the transmitter) moves first and then player 2 (nature) moves aware of player 1’s move, i.e.,
Stackelberg game. The optimal power allocation is found as a saddle point (subgame perfect equilibrium which is also a Nash equilibrium). (Note that for illustration
purposes the setsQ andH have been considered finite.)

formulated as a game in which two players compete: the source-
encoding scheme versus the data distribution and the portfolio
investor versus the market.

In our case, the function may or may not have any
saddle point depending on the particular set(c.f. Section IV).
However, so far, we have only considered pure strategies, i.e.,
strategies given by a single fixed (deterministic) pair .
The game can be extended to include mixed strategies, i.e., the
possibility of choosing a randomization over a set of pure strate-
gies (the randomizations of the different players is independent)
[16]. In this case, the payoff is the average of over the
mixed strategies and the saddle point is simi-
larly defined as

(13)
It is well known that a strategic game always has a mixed
strategy Nash equilibrium under the assumption that each set
of pure strategies is closed, bounded, and convex [16]. In fact,
for our specific problem, even if we allow more general sets
(which need not be closed, bounded, and convex) such as the
set defined by (which is nonconvex and
unbounded), it can be shown that the problem always has an in-
finite set of Nash equilibria (c.f. Section IV). One can interpret
mixed strategies in different ways. In this problem, perhaps, the
most relevant interpretation is to consider the mixed strategy
Nash equilibrium as a steady state of an environment in which
players act repeatedly, learning other players’ mixed strategies
(see [16] for other interpretations).

Alternatively, instead of modeling our problem as a strategic
game (which, in general, does not have a pure strategy Nash
equilibrium), we can formulate it in a more general way as an

extensive game6 in which the selected strategy of a user may
depend on the previously selected strategy of another user7 (as
opposed to the previous strategic interpretation in which both
players move simultaneously) [16], [17]. For the specific case
of a two-player zero-sum game, in the parlance of game theory,
such an extensive game is called Stackelberg game [16], [17].
Consider the case in which the transmitter moves first and then
nature moves aware of the transmitter’s move (see Fig. 4). In
such a case, the maximin solution of (9) is always a pure strategy
Nash equilibrium. In fact, such a solution is a subgame perfect
equilibrium (called in this case Stackelberg equilibrium) which
is a more refined definition of equilibrium8 [16], [17]. In this
case, a saddle point is characterized by

(14)
Similarly, we can also consider the opposite formulation of the
Stackelberg game in which nature moves first and then the trans-
mitter moves aware of nature’s move with the saddle point given
by

(15)
Note that the saddle points of (14) and (15) are always satisfied
by the solutions to problems (9) and (10), respectively.

A significant part of the literature that has modeled com-
munication as a game has dealt with the characterization of
the saddle points satisfying (11), i.e., implicitly adopting a

6An extensive game is an explicit description of the sequential structure of
the decision problems encountered by the players in a strategic situation [16].

7By extensive game we always refer to those with perfect information (im-
perfect information can also be considered) [16].

8The solution concept of Nash equilibrium is unsatisfactory in extensive
games since it ignores the sequential structure of the decision problem; as a
consequence, more refined definitions of equilibrium have been proposed [16].
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formulation of the problem as a strategic game. Reference [31]
is one of the earliest papers dealing with such a problem using
a mutual information payoff. (Note that other payoff functions
have also been considered, such as the mean-square error in
[35] to deal with communication over a channel with an intel-
ligent jammer.) A two-player zero-sum game was explicitly
adopted in [32] obtaining the Gaussian distribution as a saddle
point. In [36], -dimensional strategies were considered in a
game-theoretic formulation of communication over channels
with block memory, where it was found that memoryless
jamming and memoryless coding constitute a saddle point. In
[37], a two-player zero-sum game was explicitly formulated for
communication in the presence of jamming using a power con-
straint for both players. In [33], communication under the worst
additive noise under a covariance constraint was analyzed (the
Gaussian distribution was obtained as a saddle-point solution)
with emphasis on covariances satisfying correlation constraints
at different lags. The vector Gaussian AVC was considered in
[30] obtaining a saddle point given by a water-filling solution
for the jammer and for the coder. In [38] , the maximin and
minimax problems of (9) and (10) in a multiantenna wireless
scenario were solved for a specific set of channelsdefined
by , i.e., the two Stackelberg games previously
formulated were implicitly considered.

The rest of the paper focuses mainly on finding a robust
power allocation when the channel is unknown, i.e., in solving
the maximin problem of (9). Such a solution has many inter-
pretations. Under some conditions (obtained in Section IV),
it constitutes a saddle point of the strategic game formula-
tion of (11) with the inherent properties of robustness. In any
case, if mixed strategies are allowed in the strategic game,
the solution to (9) always forms a saddle point defined by
(13) (c.f. Section IV). Finally, even if we restrict the game to
pure strategies, the solution to (9) always constitutes a saddle
point as defined in (14) corresponding to a Stackelberg game.
(The opposite minimax problem formulation of (10) is briefly
considered in Section IV as well.)

IV. ROBUST POWER ALLOCATION

The main purpose of this section is to solve the maximin for-
mulation of (9) and to characterize the conditions under which
the solution forms a saddle point in the strategic formulation of
the game (with pure strategies and mixed strategies).

As pointed out in Section III, we have to define some artificial
constraint on the channel to avoid the trivial solution. Noting
from (6) and (7) that the payoff function depends on

through (the left singular vectors of are irrelevant),
it is convenient to define as

(16)

To define the set we consider any kind of spectral (eigen-
value) constraint given by

(17)

where denotes an arbitrary eigenvalue constraint (in Sec-
tion IV-A some specific eigenvalue constraints are considered).
(Clearly, the set cannot contain the all-zero vector that
would correspond to .) In defining the set as in

(17), we are deliberately leaving the eigenvectors of(equiv-
alently, the right singular vectors of ) totally unconstrained.
This is so that no preference is given to any signaling direction,9

i.e., to guarantee the isotropy of (any direction is possible).

Definition 1: A set of matrices is isotropically uncon-
strained if the right singular vectors of the elements of the set
are unconstrained, i.e., if for each then for
any unitary matrix .

Clearly, the set (defined according to (16) and (17)) is
isotropically unconstrained. We remark that the results in this
paper are valid regardless of the particular eigenvalue constraint
chosen to define the set .

We first obtain two lemmas and then proceed to obtain the
uniform power allocation as the maximin solution of (9), i.e.,
as the capacity-achieving solution of the compound vector
Gaussian channel. Note that this could be proved in a shorter
way by contradiction, i.e., by showing that, for any given
power allocation, we can always find some channel that yields
a lower capacity than the minimum capacity corresponding
to the uniform power allocation (indeed, this is the technique
used in Section VI for the MAC). Nevertheless, we obtain a
more complete proof by characterizing the “shape” of the worst
channel for any given power allocation and then we give some
examples in order to gain insight into the problem.

Lemma 1: Given two positive semidefinite Hermitian
matrices and , the following holds:

(18)

where and denote the eigenvalues in decreasing order
of and , respectively. Equality in (18) is

achieved for , where and contain the eigen-
vectors corresponding to the eigenvalues in decreasing order of

and , respectively, and is the “backward identity” permu-
tation matrix [39] defined as

...
...

.. .
...

. . .

Proof: See Appendix A.

Lemma 2: The global optimal solution to the following
convex optimization problem:

with

s.t.

(19)

is given by the uniform solution

(20)

9For a flat multiantenna system, the term “direction” means literally spatial
direction.
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Proof: From an intuitive viewpoint, we can see that
without the constraint , the solution would be a
water-filling, which would imply . With the addi-
tional constraint, however, the solution will try to water-fill
but always verifying the constraint , resulting in

.
This result can be straightforwardly proved in a formal way

using majorization theory [40]. First, rewrite the objective func-
tion as where .
Since whenever , function is
Schur-convex [40, Proposition 3.H.2] . Now, from the definition
of Schur-convexity [40, Definition 3.A.1] and using the fact that
the uniform solution is majorized by any other solution [40, p.
7], it follows that the minimum of is attained by the uni-
form solution of (20). This result can be alternatively proved
using convex optimization theory [22], [23].

Before proceeding to the main result, recall that the capacity
of the compound vector Gaussian memoryless channel when the
channel state is unknown was obtained in [29]10 as

(21)

under the mild assumption that is bounded (if not, we can
simply bound by adding the constraint for
a sufficiently large value of, which can be done without loss of
generality based on physical interpretations of the channel).
The achievability was proved in [29] by showing the existence
of a code (along with the decoding sets). Therefore, in theory,
one can always find a code to achieve rates arbitrarily close to
capacity and then use a universal decoder that decodes the re-
ceived word according to the decoding set it belongs to (note
that no knowledge of the channel state is required).

Theorem 1: The capacity of the compound vector Gaussian
memoryless channel with power constraint, transmit di-
mensions, and receive dimensions (without knowledge of
the channel state) is

(22)

where the class of channelsis an isotropically unconstrained
set defined by (16) and (17) (unconstrained right-singular
vectors). The capacity-achieving solution of (22) is given by a
Gaussian code with a uniform power allocation

(23)

which implies an independent signaling over the transmit
dimensions.

Proof: Before proceeding further, we give an intuitive ex-
planation of why the uniform power allocation is optimal in
(21). Due to the symmetry of the problem, if the transmitter does
not use a uniform power distribution, the channel will do an “in-
verse water-filling,” i.e., it will redistribute its singular values so
that the highest ones align with the lowest eigenvalues of(see
Lemma 1). Therefore, maximizing the lowest eigenvalues of
seems to be appropriate to avoid such a behavior. Indeed, this is
achieved by the uniform power allocation.

10The extension to the complex-valued case is straightforward using the re-
sults of [24].

We use the relation (6) and (7) and the fact that the eigenvec-
tors of are unconstrained (see (17)) to simplify
the inner minimization of (21) for a given

where Lemma 1 has been used (the minimizing eigenvectors are
chosen according to ) and de-
note the minimizing eigenvalues of as a function of ,
which depend on the particular constraint used to define the set

(in the next subsection, some specific examples of
are considered).

The outer maximization of (21) can be now written as

s.t.

with solution given by . To show this, we
just have to apply Lemma 2

and then the obvious relation

to finally obtain

Thus, the maximizing solution is given by ,
i.e., a uniform power allocation .

Note that the worst case capacity expression (22) obtained in
Theorem 1 can be simplified as

(24)
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Theorem 1 is basically saying that when the channel state is
unknown but known to belong to a set of possible channels,
the optimum solution in the sense of providing the best worst
case performance is given by the uniform power allocation of
(23). In other words, it is the solution to the problem formula-
tion as a Stackelberg game in which the transmitter moves first
as depicted in Fig. 4. Note that if we had used instead the eigen-
value constraint to define the set , it would have
immediately followed , i.e., a uniform solution as
well.

The uniform power allocation and the corresponding mini-
mizing channel always constitute a saddle point of the Stack-
elberg game as defined in (14). Depending on the specific
definition of the set of channels , they will also form a
saddle point of the strategic game as given in (11). The fol-
lowing corollary gives the exact conditions.

Corollary 1: The uniform power allocation

obtained in Theorem 1 and the corresponding minimizing
channel form a saddle point of the strategic game given by (11)
if and only if the minimizing channel satisfies
(in particular, this implies ).

Proof: Since the right inequality of (11) is satisfied by any
solution to (9), it suffices to find the conditions under which the
left inequality is satisfied, i.e.,
where is the minimizing channel of
Theorem 1 corresponding to the uniform power allocation.
Recalling that is maximized when the eigenvectors
of align with the right singular vectors of and when the
eigenvalues of water-fill the eigenvalues of [1], it
must be that is a diagonal matrix and has equal eigen-
values. Thus, it must be that or, equivalently,

for some .

In the next subsection, specific definitions ofare consid-
ered and Corollary 1 will be invoked to show in which cases
the uniform power allocation constitutes a saddle point of the
strategic game.

In [33], the existence of a saddle point as defined in (11)
was proved for any set of channelssuch that and

where is closed, bounded, and convex. With the
additional constraint that be isotropically unconstrained, the
existence result of [33] can be combined with Theorem 1 and
Corollary 1 to conclude that in such a case, the uniform solu-
tion for both the transmitter and the noise always constitute a
saddle point of the strategic game as given in (11). We state this
in the following corollary for further reference.

Corollary 2: Consider the set of channels defined such
that and where is closed,
bounded, convex, and isotropically unconstrained (i.e., uncon-
strained eigenvectors). It then follows that the uniform power
allocation and the noise always
form a saddle point of the strategic game given by (11).

Many papers have obtained a uniform solution for both the
transmitter and the noise (or jammer) as mutual information

saddle points for the set of noise covariances with power con-
straint given by , e.g., [31], [36], [37] (also [30]11

for the particular case in which the background noise is re-
moved). Corollary 2 generalizes such a result to an arbitrary
set of noise covariances (provided it is closed, bounded,
convex, and isotropically unconstrained). Note that a constraint
on the channel eigenvalues can be alternatively ex-
pressed (whenever ) as a constraint of the form

and as considered in Corollary 2 since we can write
.

As mentioned in Section III, even when the strategic game
does not have a saddle point or Nash equilibrium, if mixed
strategies are allowed the game has then an infinite set of saddle
points or Nash equilibria as defined in (13) (see Appendix B).
In particular, as proved in Appendix B, the mixed-strategy Nash
equilibria are given by a pure strategy for the transmitter

(uniform power allocation) and a mixed strategy for
nature that, for example, puts equal probability on each element
of the set

where contains in the main diagonal the optimum (worst
case) singular values corresponding to (as
in Theorem 1), and are two arbitrary unitary matrices,
and is the set of the different permutation matrices of size

(see Appendix B for a proof).

A. Examples of Channel Constraints

In this subsection, to gain further insight into the problem,
we analyze in detail some particular constraints to define the
set of channels . In principle, for each of the different con-
straints, it is possible to directly solve the corresponding max-
imin problem of (9). Using the result obtained in Theorem 1,
however, we already know (provided that the setis isotrop-
ically unconstrained) that the optimal solution is the uniform
power allocation and that the worst case
channel is given by the minimizing solution to (24). It is im-
portant to remark that, to find the worst case channel, it is not
necessary to solve the minimization for an arbitrary set
to obtain ; it suffices to consider directly the
uniform solution as in (24) and obtain

, which is a great simplification.
1) General Individual Channel Eigenvalue Constraint

: Consider a general and individual constraint
on each channel eigenvalue , where it is assumed
that and that all eigenvalues have a corre-
sponding without loss of generality (if not, one can always
set or as appropriate). The minimizing
channel of (24) is easily obtained by minimizing each of the
terms of the right-hand side (RHS) of (24) as

(25)

This solution is, in general, nonuniform and, by Corollary 1, is
not a saddle point of the strategic game as given in (11). Note
that Corollary 2 cannot be invoked to prove the existence of a

11Although [30] deals with the vector Gaussian AVC, the final problem for-
mulation is also given by maximin and minimax mathematical problems.



1716 IEEE TRANSACTIONS ON INFORMATION THEORY, VOL. 49, NO. 7, JULY 2003

saddle point (for ) since the constraints expressed in
terms of noise eigenvalues

in general define a nonconvex and unbounded region for the
set .

Consider now a constraint just on the maximum channel
eigenvalue . This specific constraint has a special
interest since the maximum eigenvalue of is an
upper bound on the elements of and, in particular, on the
received power corresponding to theth transmit dimension

, where is the th column of the channel
matrix . The minimizing channel is given by

.
(26)

It is also of interest to consider a constraint just on the
minimum channel eigenvalue . The minimizing
channel is now

(27)

For this particular case, the minimizing channel is uniform and
then, by Corollary 1, the uniform power allocation forms a
saddle point of the strategic game as given in (11). Alternatively,
Corollary 2 could have been invoked to show the existence of
a saddle point (for ) since the constraints expressed
in terms of noise eigenvalues form a closed,
bounded, convex, and isotropically unconstrained set.

2) Channel Trace Constraint :
The channel trace constraint is probably the most reasonable
constraint from a physical standpoint since it represents the total
channel energy . In [38], this channel con-
straint was considered obtaining the same results.

Since the function is Schur-con-
cave ( is Schur-convex) [40, Proposition 3.H.2] and any
eigenvalue distribution is majorized by
[40, p. 7] (see the proof of Lemma 2 for a similar reasoning), it
follows that its minimum value is achieved by

.
(28)

This solution is clearly nonuniform and, by Corollary 1, does
not constitute a saddle point of the strategic game as given in
(11). Note that Corollary 2 cannot be invoked either to prove
the existence of a saddle point (for ) since the constraint
expressed in terms of noise eigenvalues defines a
nonconvex and unbounded region for the set.

3) Maximum Noise Eigenvalue Constraint :
This constraint is identical to the minimum channel eigenvalue
constraint with solution given by (27).

4) Noise Trace Constraint : This
is the constraint considered in most publications since it is a very
natural constraint when the noise is interpreted as a jammer con-
strained in its average transmit power (as is the intended trans-
mitter). See, for example, [31], [36], [37] and also [30] for the
particular case in which the background noise is removed.

For this particular constraint, we can directly invoke Corol-
lary 2 to show that the worst case noise is given by

(29)

and that the uniform power allocation constitutes a saddle point
of the strategic game as given in (11).

5) Banded Noise Covariance Constraint:In [33, Sec. III],
a banded noise covariance constraint (a noise with correlation
constraints at different lags) was analyzed in detail. Such a con-
straint is not isotropically unconstrained and, consequently, the
results of this paper do not apply. Therefore, we cannot conclude
that the uniform power allocation is the maximin solution to the
mutual information game. In fact, the saddle-point solution was
obtained in [33, Sec. III] to be given by the maximum-entropy
extension for the noise and by a water-filling solution for the
transmitter which in general is nonuniform.

B. On the Specific Choice of the Channel Constraints

As has been shown in Theorem 1, the uniform power allo-
cation is the solution to the maximin problem of (9). In other
words, it is a robust solution under channel uncertainty.

Other aspects and observations of the solution, such as
whether it is better to have many antennas or just a few in
a multiantenna system, depend on the particular choice of
constraints that define the set of channelswhich have to be
tailored to each specific application. To illustrate this effect, we
now consider some heuristic choices as examples.

Inspired by a communication system with multiple transmit
and receive antennas with a unit-energy channel in the sense of
expected value (which implies

), we can similarly consider a worst case problem formu-
lation with the trace constraint defined as

where is a scaling factor that, for example, guarantees that the
constraint is satisfied with a certain probability (if the constraint
is not satisfied, an outage event is declared). In this case, using
the results of Section IV-A2, the worst case capacity is given by

from which we can conclude that, while adding transmit
antennas does not increase the worst case capacity when the
channel state is unknown, adding receive antennas is always
beneficial.

Inspired by a set of parallel subchannels, each with unit gain,
we can instead define the trace constraint as (assuming

)

In this case, the worst case capacity is given by

from which we can conclude that the worst case performance
is independent of the number of transmit and receive antennas
when the channel state is unknown. However, for this scenario
corresponding to a set of parallel subchannels, it may be more
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Fig. 5. Capacity of the uniform and a nonuniform (according to the distribution��� = [0:6; 0:2; 0:1; 0:1] P ) power allocations versus the SNR for two
arbitrary channels and for the worst channel of the set defined byTr HHH HHH = n n andRRR = � III .

appropriate to consider the minimum channel eigenvalue con-
straint (assuming )

obtaining a worst case capacity (using the result in Sec-
tion IV-A1) given by

from which it is always beneficial to add transmit and also re-
ceive antennas.

A Numerical Example:In Fig. 5, the capacity of the uni-
form power allocation is compared to that of a nonuniform al-
location (simply chosen according to the distribution

) as a function of the SNR defined as
, where the noise covariance matrix was fixed to
and the set of channels was constrained using

the channel trace constraint

for

(equivalently, is defined by ). The
capacities corresponding to two arbitrary channels and to the
worst channel adapted to each power distribution are plotted.
As expected, the capacity of the uniform distribution is always
the best for the worst case channel (note that, in general, for an
arbitrary channel, this may or may not be the case).

C. Opposite Problem Formulation: Nature Moves First

For completeness, we now briefly consider the opposite
problem formulation, i.e., the minimax problem of (10). A
solution to (10) will always be a saddle point as defined in (15)
corresponding to the Stackelberg game in which nature moves
first and then the transmitter moves aware of natures’s move.
In some cases, it will also form a saddle point of the strategic
game as defined in (11).

It is well known that is maximized when the eigen-
vectors of align with the right singular vectors of and when
the eigenvalues of water-fill the eigenvalues of
[1]. The minimax problem of (10) reduces then to

s.t. (30)

where

is the water-filling solution, , and is the
water level chosen to satisfy the power constraint of (8) with
equality. Clearly, we can relabel the ’s so that they are
in decreasing order without loss of generality and, as a conse-
quence of the water-filling solution, the ’s will also be in
decreasing order.
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For the cases considered in Section IV-A in which a saddle
point was obtained (minimum channel eigenvalue constraint,
maximum noise eigenvalue constraint, noise trace constraint,
banded noise covariance constraint), we already know that the
same solution is obtained when nature moves first simply by the
definition of the saddle point in (11).

For the case of a general individual channel eigenvalue con-
straint , the worst case channel is simply obtained
as in (25) (although, in this case, the eigenvalues ofwater-fill
those of ).

The channel trace constraint was considered in [38], where it
was found that for low values of the SNR defined as
(the noise covariance matrix was assumed fixed and given by

) the worst channel is given by

and for high values of the SNR, the worst channel is similarly
given except that a dominant eigenvalue arises.

D. Extension to Ergodic and Outage Capacities

In addition to analyzing robustness in terms of instantaneous
mutual information as given by (6) (which implies a fixed
channel state ), it is also interesting to consider other statistics
of the mutual information such as average and outage values.
This implies a random channel state drawn according to some
pdf . For communication systems in which the trans-
mission duration is so long as to reveal the long-term ergodic
properties of the fading process (assumed to be an ergodic
process in time), the ergodic capacity is a useful measure of
the achievable bit rate [1], [27]. The mutual information for a
given transmit covariance matrix is

The ergodicity assumption, however, is not necessarily satis-
fied in practical communication systems operating on fading
channels because no significant channel variability may occur
during the whole transmission for applications with stringent
delay constraints. In these circumstances, the outage capacity
defined as the capacity that cannot be supported for only a small
outage probability (also known as-achievable rate [14], [25])
is an appropriate measure [12], [27], [1]. The mutual informa-
tion with outage probability for a given transmit covariance
matrix is

If the channel pdf were known, then an optimal fixed power
allocation (independent of the actual channel realization) could
be precomputed to maximize either or over
the set of satisfying the power constraint to obtain the ergodic
capacity or outage capacity , respectively.

The maximin formulation is as in (9), but now the payoff
function is given either by or instead of
(6) and the minimization is over the set of possible channel
pdfs in which the channel singular vectors are
unconstrained (isotropic property), e.g., .
Without going into details, we justify why the uniform power
allocation is also obtained as a robust solution in terms of

ergodic and outage capacities. Simply note thatcan always
be chosen as a function of the utilizedto put positive proba-
bility only on channel states with the singular vectors chosen
to perform an “inverse water-filling” on (c.f. Theorem 1)
against which the best solution for the transmitter is a uniform
power allocation. Therefore, it is an optimal solution for every
choice of and, hence, for other capacity statistics such as the
average and the outage values.

It is interesting to point out that if does a randomization
over a set of channel states inas defined in the previous sub-
sections (this need not be in a general case), the ergodic capacity
problem then results in a mixed-strategy formulation of a game
in which the pure strategies are defined byand, therefore, the
previously obtained results on mixed strategy Nash equilibria
apply (c.f. Appendix B).

It is important tobear inmind that theoptimalityof theuniform
power allocation in terms of ergodic and outage capacities is
in the worst case sense, i.e., when is known to belong
to a set but otherwise unknown. Therefore, it cannot be
concluded from the obtained results that the uniform power
allocation is optimum in terms of outage capacity for the case, for
example, of a random with i.i.d. entries which
is a well-known open problem as discussed in [1] (where
it was conjectured that the uniform power allocation could
be the optimal solution, but only over a certain number of
transmit dimensions). It is interesting, however, to remark that,
by definition, the worst case instantaneous capacity for a set
of channels as previously considered happens to be the
zero-outage capacity (also termed delay-limited capacity [27],
[14], [25]) for any that puts nonzero probability on each
member of . Unfortunately, this result is not very useful for
the case of a random channel with i.i.d. entries,
since it has a zero worst case capacity [25].12

Note that if one considers that nature can only control the
channel eigenvalues but not the eigenvectors, then the optimality
of the uniform power allocation need not hold.

V. COST OFROBUSTNESS

Robustness is a desirable property that comes with a price.
For a given channel state , one can explicitly compute the
loss in performance of the robust uniform power distribution
with respect to the optimum allocation (obtained with a perfect
instantaneous knowledge of the channel state). However, it is
also interesting to know the worst case loss of performance for
a given class of channels. In this section, the cost of robust-
ness for a family of channels is analyzed using the concept
of duality gap arising in convex optimization theory [22], [23]
following the approach proposed in [41]. We first review the no-
tion of primal and dual objectives in convex optimization.

A general convex optimization problem (with no equality
constraints) is of the form

s.t. (31)

12The worst case capacity studied in this paper is equivalent to the
delay-limited capacity considered in [25] under a short-term power constraint
(in [25], however, perfect CSI was assumed).
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where is the optimization variable, is called the
primal objective (or objective function), and
are convex functions. The Lagrangian associated with the pre-
vious problem is defined as

(32)

where is the Lagrange multiplier or dual variable associated
with the th inequality constraint . The dual variables
always take on nonnegative values.

The dual objective is defined as

(33)

and is a lower bound on the optimal . For any feasible
, we have

(34)

and, in particular

(35)

where the maximization is over all nonnegative’s and the
minimization is over the original constraint set. The difference
between the primal objective and the dual objective
is called the duality gap

(36)

A central result in convex analysis [22] is that for convex op-
timization problems, under some technical conditions (called
constraint qualifications), the duality gap reduces to zero at the
optimal or, equivalently, equality in (35) holds.
We say then that strong duality holds. From (35), it is clear
that the loss of any given with respect to the optimal is
upper-bounded by the gap function

(37)

where equality holds for someif strong duality holds.
Let us now consider the specific problem at hand. Assuming

for the moment a fixed channel state given by , the max-
imization of the mutual information can be expressed in convex
form as (we use in this section logarithms in baseand natural
logarithms denoted by and , respectively)

s.t.

(38)

(note that Slater’s condition is satisfied and, therefore, strong
duality holds) and the Lagrangian is

(39)

The dual objective is obtained by setting ,
which gives the water-filling solution

(40)

If we now evaluate at any and with the Lagrange
multipliers chosen so that the water-filling condition (40) is sat-
isfied, then the duality gap is

(41)

(Note that a better choice of the Lagrange multipliers to obtain
a smaller gap could be made, however, this choice produces
a simple closed-form expression.) Using the smallest possible
value for (such that all the Lagrange multipliersand ’s
are nonnegative)

(42)

and assuming that the power constraint is satisfied with equality
, we can write the duality gap as

(43)
Finally, evaluating the gap for a uniform power allocation

, we obtain

(44)

where we have made explicit the dependence of the gap on the
channel eigenvalues which are assumed in decreasing
order. For a channel with equal eigenvalues , the uni-
form power allocation is optimum and the gap becomes zero as
expected. Note that for (with positive ’s) the gap
also tends to zero, i.e., for high SNR, the uniform distribution
tends to be optimal (this observation was empirically made in
[42] and further analyzed in [41]).

Now we can use the closed-form expression in (44) to easily
obtain an upper bound on the worst case loss of performance for
the class of channels. For example, if we consider a maximum
channel eigenvalue constraint , the gap is

(45)

Note that for a channel trace constraint , the
same gap is obtained. If instead we consider a minimum channel
eigenvalue constraint , the gap is

(46)

In any case, the gap in (44) is always upper-bounded as

(47)
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Fig. 6. Relative bit-rate loss and duality gap of the uniform power allocation, along with two upper bounds, versus the SNR for a channel realization (��� =

(56%,�44%, 10 %, 5� 10 %) ) corresponding to the class of channels defined byTr HHH HHH = n n andRRR = � III .

which, in turn, is upper-bounded by bits per transmission
or, equivalently, by 1.4427 bits/transmission/dimension as was
found in [41].

Example: As an illustrative example, we consider a channel
trace constraint given by for

(the noise covariance matrix was fixed to ) and
plot in Fig. 6 the actual relative bit-rate loss and duality gap as
given in (44) for a channel realization, along with the gap upper
bounds of (45) (both the asymptotic and the nonasymptotic ver-
sions), as a function of the SNR defined as .

VI. EXTENSION TO THEMULTIPLE-ACCESSCHANNEL

In this section, we extend the previous results on the single-
user case and prove the optimality of the uniform power alloca-
tion in terms of robustness for the MAC. In particular, we show
that all rates inside the capacity region of the compound vector
MAC are achieved when each user uses a uniform power al-
location. Note that, for the specific case of Gaussian-distributed
channel matrices with i.i.d. entries, the optimality of the uniform
power allocation in the sense of ergodic capacity was proved
in [10], [11] (the proof is the natural extension of that of the
single-user case given in [1] based on the concavity of the logdet
function).

As in the single-user case of Section IV, we constrain our
search to Gaussian-distributed signals and noise, since they
constitute a robust solution (a saddle point) to the mutual
information game for the memoryless vector MAC (this follows
by applying the results of [32], [33] to each of the constraints
that define the capacity region).

Consider a scenario with users, each one transmitting
over dimensions with a (possibly different) power constraint

and with channel . The signal model is the
natural extension of (1) given by

(48)

where the noise is assumed to be white without loss of gen-
erality,13 i.e., . As in the single-user case of
Section IV, we impose some constraints on the set of possible
channels to avoid the trivial
solution (note that the class of channels seen by each user
may be different). We assume that each setis isotropically
unconstrained, i.e., with unconstrained right singular vectors
(see Definition 1 in Section IV).

13If the noise is not white, the receiver can always prewhiten the received
signal and then the signal model in (48) with white noise applies. (It is also
possible to explicitly consider a colored noise as was done in Section IV.)
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Fig. 7. Communication interpreted as a two-player game for the multiple-access channel.

In the multiple-access channel, we do not deal any more with
a single capacity measure but with a capacity region. In par-
ticular, the achievable rate region for a given realization of the
set of channels and with a fixed set of covariance ma-
trices (Gaussian codes are assumed since they maximize
each of the boundaries that define the region) is as in (49) at the
bottom of the page [4], [43]. Assuming that the transmit covari-
ance matrices are constrained in their average transmit power,
the capacity region is [43], [44]

(50)

Note that the convex closure operation usually needed [4] is
unnecessary in this case because the region is already closed
and convex as shown in [43], [44].

From the perspective of robustness under channel uncertainty,
we are interested in the worst case capacity region, i.e., in the
set of rates that can be achieved regardless of the set of channel
states chosen from the set of possible channels .
This can be formulated as a game (see Fig. 7), where one player
is the transmitter and the other player, who controls the whole
set of channels , is nature. The worst case capacity re-
gion is, in fact, the notion of capacity region of the compound
MAC [43], [20] (see also [28, p. 288]). Mathematically, the

worst case region of the set of achievable rates for a fixed set
of transmit covariance matrices is expressed as the fol-
lowing intersection:

(51)

which is closed and convex because it is the intersection of
closed and convex sets. Assuming that the transmit covariance
matrices are constrained in their average transmit power, the
worst case capacity region (capacity region of the compound
vector Gaussian MAC) is [43]14

(52)

which also happens to be closed and convex as shown in The-
orem 2. In [45], an expression similar to (52) was obtained as
the delay-limited MAC capacity region (although the case of
perfect CSIT was considered therein). The worst case capacity
region is formally characterized in the following theorem.

14As argued in [43], achievability follows easily using randomized codes and
the converse is established since reliable communication has to be guaranteed
no matter what channel state is in effect. Similarly to the single-user case, the
capacity region remains the same if the receiver is uninformed of the channel
state [28, p. 293].

(49)
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Theorem 2: The capacity region of the compound vector
Gaussian memoryless MAC composed ofusers with power
constraints , number of transmit dimensions , and

receive dimensions (without knowledge of the channel
state) is as in (53) at the bottom of the page, where the class of
channels is an isotropically unconstrained set (unconstrained
right singular vectors). All set of rates within the region of (53)
are achieved when each user utilizes a Gaussian code with a
uniform power allocation

(54)

which implies an independent signaling over the transmit di-
mensions for each user.

Proof: The rate region given by (51) is the intersection of
a set of regions each of which is, in turn, defined by the intersec-
tion of nontrivial inequalities as in (49). We can, there-
fore, rewrite the rate region of (51) as the region defined by the
more restrictive of each one of the inequalities over the
set of possible channels (as was done in [43]) in (55), also at the
bottom of the page. Note that the capacity region of the com-
pound vector Gaussian MAC as given by (52) and (55) is the
natural counterpart of the capacity of the single-user compound
vector Gaussian channel of (21). Similarly, (53) is the natural
counterpart of (22).

We have to show now that the inequalities defining the rate
region in (55) corresponding to nonuniform power distributions
are always more restrictive than for the uniform power distribu-
tion, i.e.,

(56)

This has the important consequence that the worst case rate re-
gion of the uniform power allocation contains the worst case rate
region corresponding to any other power allocation strategy, i.e.,

Therefore, the expression of the worst case capacity region in
(52) reduces to

which, together with (55), gives the desired result of (53). Now
that (52) has been rewritten as (53), it is clear that it is a closed
and convex region.

We now focus on proving the inequalities of (56). We first
consider a single user in the setand show that with a uniform
power distribution, the boundary can never decrease. Then, we
apply the same idea for the rest of the users in. Consider the
minimization of the boundary with respect to the channelof
the th user in ; for any given set of channels , we
have

where

is the interference-plus-noise covariance matrix seen by theth
user and the inequality comes from invoking Lemmas 1 and 2
as was done when proving Theorem 1 in the single-user case.
The previous reasoning can be sequentially applied to each of
the users in the set to finally obtain

(53)

(55)
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Fig. 8. Worst case capacity region corresponding to the channel eigenvalues��� HHH HHH = [9:80; 9:24; 4:59] and��� HHH HHH = [9:19; 5:45; 1:29] when
using a uniform and nonuniform (according to��� = [0:64; 0:34; 0:02] and��� = [0:52; 0:40; 0:08] ) power allocation. The latter is obtained as the
intersection of the three capacity regions plotted by thin lines.

Therefore, a nonuniform power allocation always has a
lower (or at most equal) worst case boundary for all inequalities
defining the capacity region in (56). This concludes the proof.

It is important to remark that all points inside the worst case
capacity region are achieved by the same structure of transmit
covariance matrices , i.e., by a uniform power allocation

. This is a significant difference with respect to the
case with CSIT obtained from (50) in which each point of the
region requires, in general, a different structure for the transmit
covariance matrices [44].

It is possible to further simplify the expression for each of
the boundaries of the worst case capacity region (53) obtained
in Theorem 2, provided that the left singular vectors of the class
of channels are unconstrained as well (this means unconstrained
receive as well as transmit directions). In other words, only the
singular values of the channels are constrained and, therefore,

if and only if (we similarly

define ). We first state a lemma and then
proceed to simplify the boundaries of the worst case capacity
region in (53).

Lemma 3: Let be a set of Hermitian matrices.
Then, the following inequality is verified:

(57)

where denotes theth ordered eigenvalue in decreasing
order and equality is achieved when all the’s have the same
eigenvectors with eigenvalues in the same order.

Proof: This result is a generalization of the particular case
considered in [40, Theorem 9.G.3.a] and is proved in

Appendix C.

Since the left singular vectors of the channels are un-
constrained, we can invoke Lemma 3 to obtain

(58)

This implies that the worst case is obtained by choosing the
same left singular vectors for each (the right singular vectors
are irrelevant) such that the eigenvalues of are ordered
in the same way for all .

Example: In Fig. 8, the worst case capacity region of a
two-user system is plotted for a class of matrix channels
with eigenvalues constrained to be exactly
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and

The three inequalities defining the capacity region corre-
sponding to the uniform power allocation are simultaneously
minimized by the same worst case set of channels according to
(58). We also plot the worst case capacity region corresponding
to a nonuniform power allocation, in particular for

and

In this case, however, the three inequalities are not simulta-
neously minimized by the same choice of and . To
obtain the capacity region, therefore, we have to obtain the
three capacity regions in which each one of the three inequal-
ities is minimized15 (plotted in thin lines) and then compute
the intersection. This is due to the fact that, in general, there
are no channels and that simultaneously minimize all
inequalities, unlike in the uniform case.

VII. CONCLUSION

When transmitting a vector signal through a MIMO channel,
the power allocation over the transmit dimensions has to be
properly chosen. When the instantaneous channel realization is
known, the solution is well known and is based on diagonal-
izing the channel and performing water-filling over the channel
eigenmodes. When the channel realization is unknown at the
transmitter, but the channel statistics area priori known, the op-
timal power allocation can, in principle, be precomputed. In this
sense, the uniform power allocation has been previously shown
in the literature to be optimum in terms of ergodic capacity for
some particular cases.

This paper has considered the case in which not even the
channel distribution is known at the transmitter. We have for-
mulated the problem within the framework of game theory in
which the payoff function of the game is the mutual informa-
tion and the players are the transmitter and a malicious nature.
Mathematically, this has been expressed as a maximin problem,
obtaining a robust power allocation under channel uncertainty.
This problem characterizes the capacity of the compound vector
Gaussian channel. The uniform power allocation has been ob-
tained as a robust solution of the game in terms of capacity
for the class of isotropically unconstrained channels (uncon-
strained “directions”). The loss of capacity when using the uni-
form power allocation has been analytically bounded, showing
that for high SNR the loss is small.

For the more interesting and general case of the MAC, the
uniform power allocation for each of the users also constitutes
a robust solution. To be more specific, the worst case rate re-
gion corresponding to the uniform power distribution is shown

15The worst case capacity region corresponding to the nonuniform power
allocation in Fig. 8 has been computed by choosing the channels with
left singular vectors as dictated by Lemma 3 and by arbitrarily choosing
the right singular vectors to diagonalize the transmit covariance matrices
and then optimizing over the permutations only. The ultimate worst case
capacity region by properly optimizing the right singular vectors may be
even smaller.

to contain the worst case rate region of any other possible power
allocation strategy. In other words, the capacity region of the
compound vector Gaussian MAC is achieved when each of the
users is using a uniform power allocation.

APPENDIX A
PROOF OFLEMMA 1

Consider the eigendecompositions

and

where and (we
assume eigenvalues in decreasing order). It follows that

where . If has zero eigenvalues, we can
write

nonsingular

and then

where denotes theth eigenvalue in decreasing order. In
the first inequality, we have used the inequality [40, Theorem
9.G.3.a]

with equality verified for diagonal, i.e., when is
a permutation matrix. In the second inequality, we have used the
Poincaré Separation Theorem [46, p. 209]

with equality verified when (note that ) selects
the smallest diagonal elements of . Since the logarithm is
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a monotonic increasing function, taking the logarithm on both
sides completes the proof. Equality is achieved forbeing a
permutation matrix that sorts the diagonal elements of in
increasing order, i.e., . Note, however, that if has zero
eigenvalues, then can be freely chosen as long asremains
unitary.

APPENDIX B
MIXED STRATEGY NASH EQUILIBRIA

In this appendix, we characterize the solutions to the mixed-
strategy saddle point given by (13).

By the saddle-point property of (13), it must be that

However, by the concavity of the logdet function [39], it holds
that

Therefore, it must be the case that

which, by the strict concavity of the logdet function [39] and
(6), implies that

Thus, we can conclude that for
(note that if the set of used ’s have a common

null space, by the nature of the saddle point in (13), all the used
’s will be orthogonal to that subspace). In other words, the

optimal mixed strategy reduces to a pure strategy . We
can now invoke Theorem 1: if were not the uniform power
allocation, the set of optimal ’s would align their largest sin-
gular values with the smallest eigenvalues of, and the best
solution would then be given by the uniform power allocation

.
The problem now is to find a mixed strategy so that the

saddle-point conditions are satisfied

Recall that the mixed strategy must satisfy

for [16]. Function
only depends on through its singular values

and it is minimized by some optimal set . Therefore, any
that puts positive probability on channels’s with singular

values given by and arbitrary right and left singular vec-
tors satisfies the right inequality of the saddle point. We just
have to find the appropriate such that the left inequality of
the saddle point is also satisfied. An example of such an optimal
mixed strategy is one that puts equal probability on each el-
ement of the set

where contains in the main diagonal the optimum singular
values , and are two arbitrary unitary matrices,
and is the set of the different permutation matrices of size

. To check that the left inequality of the saddle point is
verified just note that

where and denotes a diagonal matrix
with the diagonal elements of . The first inequality comes
from the concavity of the logdet function, the second from
Hadamard’s inequality [39], [4], and the third from the fact that
the diagonal elements of equal

It then follows that .
Thus, we have characterized the uniform power allocation

as a mixed strategy saddle point of the strategic game.

APPENDIX C
PROOF OFLEMMA 3

In this proof, we make use of the theory of majorization. For
definitions and further details, the interested reader is referred
to [40].

Using the following consequence of Poincaré separation
theorem [46, p. 211]:

where is an Hermitian matrix, with ,
and denotes theth eigenvalue in decreasing order, we
obtain
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In addition, for , we have

Therefore, we have proved that the sum of the eigenvalues ma-
jorizes the eigenvalues of the sum (see [40] for definitions)

We can now proceed as in [40, Theorem 9.G.3.a] for .
Using [40, Theorem 5.A.2.c], we have

or, equivalently

In particular, for

ACKNOWLEDGMENT

The authors would like to thank Wei Yu, Wonjong Rhee,
Young-Han Kim, and Jonathan Levin for reviewing the paper
and for their helpful comments. They also wish to thank the
anonymous reviewers for their comments which helped to im-
prove the paper.

REFERENCES

[1] I. E. Telatar, “Capacity of multi-antenna Gaussian channels,”Europ.
Trans. Telecommun. (ETT), vol. 10, no. 6, pp. 585–595, Nov.–Dec. 1999.
(See also a previous version of the paper in AT&T Bell Labs Internal
Tech. Memo, June 1995).

[2] G. Foschini and M. Gans, “On limits of wireless communications in a
fading environment when using multiple antennas,”Wireless Personal
Commun., vol. 6, pp. 311–335, 1998.

[3] L. H. Brandenburg and A. D. Wyner, “Capacity of the Gaussian channel
with memory: The multivariate case,”Bell Syst. Tech. J., vol. 53, no. 5,
pp. 745–778, May–June 1974.

[4] T. M. Cover and J. A. Thomas,Elements of Information Theory. New
York: Wiley, 1991.

[5] N. Al-Dhahir and J. M. Cioffi, “Block transmission over dispersive chan-
nels: Transmit filter optimization and realization, and MMSE-DFE re-
ceiver performance,”IEEE Trans. Inform. Theory, vol. 42, pp. 137–160,
Jan. 1996.

[6] G. G. Raleigh and J. M. Cioffi, “Spatio-temporal coding for wireless
communication,”IEEE Trans. Commun., vol. 46, pp. 357–366, Mar.
1998.

[7] A. Scaglione, S. Barbarossa, and G. B. Giannakis, “Filterbank trans-
ceivers optimizing information rate in block transmissions over disper-
sive channels,”IEEE Trans. Inform. Theory, vol. 45, pp. 1019–1032,
Apr. 1999.

[8] D. P. Palomar, “A unified framework for communications through
MIMO channels,” Ph.D. dissertation, Tech. Univ. Catalonia (UPC),
Barcelona, Spain, May 2003.

[9] D. Shiu and J. M. Kahn, “Power allocation strategies for wireless sys-
tems with multiple transmit antennas,” Internal report of the University
of California, Berkley and Lucent Technologies, July 1998.

[10] I. E. Telatar, “Multi-user multi-antenna Gaussian noise fading channels,”
private communication, 2001.

[11] W. Rhee and J. M. Cioffi, “Ergodic capacity of multi-antenna Gaussian
multiple access channels,” inProc. 35th Asilomar Conf. Signals, Systems
and Computers, Pacific Grove, CA, Nov. 4–7, 2001.

[12] L. H. Ozarow, S. Shamai (Shitz), and A. D. Wyner, “Information
theoretic considerations for cellular mobile radio,”IEEE Trans. Veh.
Technol., vol. 43, pp. 359–378, May 1994.

[13] G. Caire and S. Shamai (Shitz), “On the capacity of some channels with
channel state information,”IEEE Trans. Inform. Theory, vol. 45, pp.
2007–2019, Sept. 1999.

[14] G. Caire, G. Taricco, and E. Biglieri, “Optimum power control over
fading channels,”IEEE Trans. Inform. Theory, vol. 45, pp. 1468–1489,
July 1999.

[15] L. Zheng and D. N. C. Tse, “Communication on the Grassmann
manifold: A geometric approach to the noncoherent multiple-antenna
channel,”IEEE Trans. Inform. Theory, vol. 48, pp. 359–383, Feb. 2002.

[16] M. Osborne and A. Rubinstein,A Course in Game Theory. Cambridge,
MA: MIT Press, 1994.

[17] D. Fudenberg and J. Tirole,Game Theory. Cambridge, MA: MIT
Press, 1992.

[18] S. A. Kassam and V. Poor, “Robust techniques for signal processing: A
survey,”Proc. IEEE, vol. 73, pp. 433–481, Mar. 1985.

[19] T. Cover, “Universal portfolios,”Math. Finance, vol. 1, no. 1, pp. 1–29,
Jan. 1991.

[20] A. Lapidoth and P. Narayan, “Reliable communication under channel
uncertainty,”IEEE Trans. Inform. Theory, vol. 44, pp. 2148–2177, Oct.
1998.

[21] J. Wolfowitz,Coding Theorems of Information Theory, 3rd ed. Berlin,
Germany: Springer-Verlag, 1978.

[22] D. G. Luenberger,Optimization by Vector Space Methods. New York:
Wiley, 1969.

[23] S. Boyd and L. Vandenberghe. (2000) Introduction to Convex Opti-
mization with Engineering Applications. Stanford Univ., Stanford, CA,
Course notes. [Online]. Available: http://www.stanford.edu/class/ee364.

[24] F. D. Neeser and J. L. Massey, “Proper complex random processes with
applications to information theory,”IEEE Trans. Inform. Theory, vol.
39, pp. 1293–1302, July 1993.

[25] E. Biglieri, G. Caire, and G. Taricco, “Limiting performance of block-
fading channels with multiple antennas,”IEEE Trans. Inform. Theory,
vol. 47, pp. 1273–1289, May 2001.

[26] G. Ganesan and P. Stoica, “Space-time diversity,” inSignal Processing
Advances in Communication, G. Giannakis, Y. Hua, P. Stoica, and L.
Tong, Eds. Upper Saddle River, NJ: Prentice-Hall, 2000, pp. 79–127.

[27] E. Biglieri, J. Proakis, and S. Shamai (Shitz), “Fading channels: In-
formation-theoretic and communications aspects,”IEEE Trans. Inform.
Theory, vol. 44, pp. 2619–2691, Oct. 1998.

[28] I. Csiszár and J. Körner,Information Theory: Coding Theorems for Dis-
crete Memoryless Systems. New York: Academic, 1981.

[29] W. L. Root and P. P. Varaiya, “Capacity of classes of Gaussian channels,”
SIAM J. Appl. Math., vol. 16, no. 6, pp. 1350–1393, Nov. 1968.

[30] B. Hughes and P. Narayan, “The capacity of a vector Gaussian arbitrarily
varying channel,”IEEE Trans. Inform. Theory, vol. 34, pp. 995–1003,
Sept. 1988.

[31] N. M. Blachman, “Communication as a game,” inProc. IRE WESCON
Conf., Aug. 1957, pp. 61–66.

[32] J. M. Borden, D. M. Mason, and R. J. McEliece, “Some information
theoretic saddlepoints,”SIAM J. Control and Optimiz., vol. 23, no. 1,
pp. 129–143, Jan. 1985.



PALOMAR et al.: UNIFORM POWER ALLOCATION IN MIMO CHANNELS 1727

[33] S. N. Diggavi and T. M. Cover, “The worst additive noise under a covari-
ance constraint,”IEEE Trans. Inform. Theory, vol. 47, pp. 3072–3081,
Nov. 2001.

[34] S. Verdú and V. Poor, “On minimax robustness: A general approach
and applications,”IEEE Trans. Inform. Theory, vol. IT-30, pp. 328–340,
Mar. 1984.

[35] T. Basar, “The Gaussian test channel with an intelligent jammer,”IEEE
Trans. Inform. Theory, vol. IT-29, pp. 152–157, Jan. 1983.

[36] W. E. Stark and R. J. McEliece, “On the capacity of channels with block
memory,” IEEE Trans. Inform. Theory, vol. 34, pp. 1273–1289, Mar.
1988.

[37] K. Yanagi, “Optimal mutual information for coders and jammers in mis-
matched communication channels,”SIAM J. Control and Optimiz., vol.
31, no. 1, pp. 41–51, Jan. 1993.

[38] N. Chiurtu, B. Rimoldi, and E. Telatar, “On the capacity of multi-antenna
Gaussian channels,” inProc. IEEE Int. Symp. Information Theory (ISIT
2001), Washington, DC, June 24–29, 2001, p. 53.

[39] R. A. Horn and C. R. Johnson,Matrix Analysis. New York: Cambridge
Univ. Press, 1985.

[40] A. W. Marshall and I. Olkin,Inequalities: Theory of Majorization and
Its Applications. New York: Academic, 1979.

[41] W. Yu and J. M. Cioffi, “On constant-power water-filling,” inProc. IEEE
Int. Conf. Communications (ICC 2001), vol. 6, Helsinki, Finland, June
11–14, 2001, pp. 1665–1669.

[42] P. S. Chow, “Bandwidth optimized digital transmission techniques for
spectrally shaped channels with impulse noise,” Ph.D. dissertation, Stan-
ford Univ., Stanford, CA, May 1993.

[43] S. Verdú, “The capacity region of the symbol-asynchronous Gaussian
multiple-access channel,”IEEE Trans. Inform. Theory, vol. 35, pp.
733–751, July 1989.

[44] W. Yu, W. Rhee, S. Boyd, and J. M. Cioffi, “Iterative water-filling for
Gaussian vector multiple access channels,” inIEEE Trans. Inform.
Theory. (See also “Iterative water-filling for Gaussian vector multiple
access channels” inProc. IEEE Int. Symp. Information Theory,
Washington, DC, June 24–29, 2001, p. 322), submitted for publication.

[45] S. V. Hanly and D. N. C. Tse, “Multiaccess fading channels—Part II:
Delay-limited capacities,”IEEE Trans. Inform. Theory, vol. 44, pp.
2816–2831, Nov. 1998.

[46] J. R. Magnus and H. Neudecker,Matrix Differential Calculus with Ap-
plications in Statistics and Econometrics. New York: Wiley, 1999.


	Index: 
	CCC: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	ccc: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	cce: 0-7803-5957-7/00/$10.00 © 2000 IEEE
	index: 
	INDEX: 
	ind: 


