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Uniform Power Allocation in MIMO Channels:
A Game-Theoretic Approach
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Abstract—When transmitting over multiple-input-mul-  whole, systems with polarization diversity, or simply when
tiple-output (MIMO) channels, there are additional degrees g time-dispersive or frequency-selective channel is properly

of freedom with respect to single-input-single-output (SISO) modeled (e.g., discrete multitone (DMT) and orthogonal
channels: the distribution of the available power over the transmit S . .
frequency-division multiplexing (OFDM)).

dimensions. If channel state information (CSI) is available, the -
optimum solution is well known and is based on diagonalizing the ~ Recently, MIMO channels arising from the use of spa-

channel matrix and then distributing the power over the channel tial diversity at both the transmitter and the receiver have
eigenmodes in a “water-filling” fashion. When CSl is not available  attracted considerable attention [1], [2]. They have been
at the transmitter, but the channel statistics area priori known, an shown to present a significant increase in capacity over
optimal fixed power allocation can be precomputed. . . .

This paper considers the case in which not even the channel S|ngle-lnput—smgle—output (SISO) systems because _Of the con-
statistics are available, obtaining a robust solution under channel Stituent parallel subchannels (also termed channel eigenmodes)
uncertainty by formulating the problem within a game-theoretic ~ existing within the MIMO channel.
framework. The payoff function of the game is the mutual infor-  \When channel state information (CSI) is available, the op-
mation and the players are the transmitter and a malicious nature. timal power allocation that achieves capacity is well known [3]
The problem turns out to be the characterization of the capacity o . . ’
of a compound channel which is mathematically formulated as a [4], [1]'_ In Su_ch a case, capg_czlty IS aCh'eve_d b}/ adapting the
maximin problem. The uniform power allocation is obtained as a transmitted signal to the specific channel realization. To be more
robust solution (under a mild isotropy condition). The lossincurred ~ specific, the transmit directions need to align with the right sin-
by the uniform distribution is assessed using the duality gap con- gular vectors of the channel. In this way, assuming that a proper
cept from convex optimization theory. Interestingly, the robustness rotation is performed at the receiver, the channel matrix is diag-
of the uniform power allocation also holds for the more general case . . ' .
of the multiple-access channel. pnallzgd and the ng of constltugnt subchanpels or eigenmodes

is obtained. In addition, the available transmit power has to be
optimally allocated over the eigenmodes in a “water-filling” or
“water-pouring” fashion [5], [6], [1], [7].

Obtaining a channel estimate at the transmitter requires either
a feedback channel or the application of the channel reciprocity
. INTRODUCTION property to previous receive channel measurements when the

ULTIPLE-input-multiple-output  (MIMO)  channels transmit and receive channels are sufficiently correlated such as

arise from the use of multiple dimensions for transmigvhen the same carrier frequency is used for transmission and
sion and reception. Many different scenarios can be modek&§eption (provided that the time variation of the channel is not
as MIMO systems such as wireless communication systefR8 fast). In many cases, the channel estimate may become sig-
with multiple antennas at both ends of the link (spatial divefificantly inaccurate, mainly due to the time-varying nature of
sity), wireline communications when a bundle of twisted paﬂ”e channel. In fact, in many practical communication systems,

copper wires in digital subscriber lines (DSL) is treated astae channe_l is assumed unknown at th_g transmitter. For those
situations, it becomes necessary to utilize transmission tech-

. . . . niques (and a transmit power allocation) independent of the ac-
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[1] based on the concavity of the logdet function and on the sym-The following notation is used. Boldface upper case letters

metry of the problem. (Note that if the channel matrix entriesdenote matrices, boldface lower case letters denote column

are correlated, it is possible to improve upon the uniform poweectors, and light-face italics denote scal®&%x™ andC"™*™

allocation by using some statistical knowledge of the channdenote the set of x m matrices with real- and complex-valued

e.g., using a stochastic water-filling solution as proposed in [9Etries, respectively. The superscriptg, ()", and(-)H de-

This result was extended to the multiuser case in [10], [1Xjote transpose, complex conjugate, and Hermitian operations,

The uniform power distribution has also been shown optimurespectively. The superscrigt)* denotes optimal (do not

for some particular cases of interest such as frequency-selectivefuse with the complex conjugate operation). The Frobenius

SISO channels [12], [13] and the dual case of flat time-varyingorm of matrix X is represented by X|| and its trace by

SISO channels [14]. Interestingly, the uniform power allocaFr (X). Theith eigenvalue in decreasing order of mathXxis

tion has also been found optimal in other completely differedenoted by\; (X) or Ax,; (similarly, Amax (X) and Ax, max

scenarios such as in noncoherent multiple-antenna channeldénote the maximum eigenvalug). denotes the x n identity

the high signal-to-noise ratio (SNR) regime (whenever there aratrix (the dimensiom can be left unspecified whenever it

more receive than transmit antennas and for a sufficiently loegn be inferred from the context). Expressiprs(X) andpx

channel coherence time) [15]. denote the probability density function (pdf) of the (possibly
This paper considers the case in which not even the chanmatrix-valued) random variablX (the difference between a

statistics are known at the transmitter, obtaining, therefore, a random variable and a realization of the random variable can

bust power allocation under channel uncertainty. We formulagévays be inferred from the context and are therefore written

the problem within a game-theoretic framework [16], [17], ifn the same way). The expectation with respecpio(X) is

which the payoff function of the game is the mutual informatiomritten as&, . [] or simply as€ [-].

and the players are the transmitter and a malicious nature (dif-

ferent types of games are considered, such as a strategic game, a Il. SIGNAL MODEL

Stackelberg game, and a mixed-strategy strategic game). Math

matically, this is formulated as a maximin problem that is knownerhIS paper considers the transmission of a vector signal

to lead to robust solutions [18]. Well-known examples of robug?rpugh a linear MIMO Ch."’?””e' immersed in interference and
maximin and minimax formulations are universal source codiﬁg"se' To be more spemﬁc, the general vector model used
and universal portfolio [4], [19]. The problem turns out to be th roughout the paper is

characterization of the capacity of a compound vector Gaussian
channel [20], [21]. The uniform power allocation is obtained as
the solution of the game in terms of capacity (under the milgherez ¢ C"7*1 is the transmitted vectol, € C"rxnr
condition that the set of channels is isotropically unconstraingd, the physical channel matrix that performs a linear trans-
meaning that the transmission “directions” are unconstrainegjymation onz, y € C"#*! is the received signal vector,
The results are easily extended to ergodic and outage capacitiggin, ¢ C #*! is the interference-plus-noise vector with
The loss in terms of capacity of the robust power allocation wilitrary covariance matriR,,. (It is assumed without loss
respect to the optimal one (adapted to the specific channel reglyenerality that both: andn have zero mean.) As will be
ization) is analyzed using the concept of duality gap arising ftgued in Section 111, it suffices to consider thais a proper
convex optimization theory [22], [23]. complex Gaussian random vector [24], i#.~ CN (0, R,,).

The robustness of the uniform power allocation from a maxhe channel transition probability(y | z) is then given by a
imin viewpoint also holds for the more interesting and geRrector Gaussian distribution parameterized by the channel state
eral case of a multiple-access channel (MAC). In particular, thgf . R,). Recall that the model of (1) has- transmit andu
worst case rate region corresponding to the uniform power digceive (finite) dimensions. The transmitter is assumed to be

tribution iS.ShOWI’l to Contain' the worst case rate region of alMnstrained in its average power (|0ng_term power constraint
other possible power allocation strategy. In other words, the ¢az), [25))

pacity region of the compound vector MAC is achieved when

each of the users is using a uniform power allocation. g[“zH?] < Pr 2)
The paper is structured as follows. Section Il introduces the

signal model used throughout the paper. The game-theoretic fgf-equivalently

mulation of the problem of robustness is given in Section IlI.

Section IV contains the proof of the optimality of the uniform Tr(Q) < Pr ()

power allocation in terms of instantaneous capacity along with

several illustrative examples and the extension to average afifereQ =&[zz"] is the covariance matrix of the transmitted

outage statistics of the capacity. Section V deals with the angéctor andPr is the maximum average transmitted power

ysis of the loss of performance of the uniform power allocatioper transmission. By uniform power allocation we mean

The MAC case is considered in Section VI. The final conclug — Pr/np I, which also implies an independent signaling

sions of the paper are summarized in Section VII. over the transmit dimensions if a Gaussian code is used.

Another interesting constraint is the maximum eigenvalue

IThe proof can be extended to non-Gaussian distributions symmetric wﬁﬁ)nStraint/\max (Q) < @ (as has been used elseWh?re [26])
respect to the origin [8]. which will be revisited in Section IV. Note that,,.. (@) is an

y:Hcm+n (1)
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Fig. 1. Example of a MIMO channel arising in wireless communications when multiple antennas are used at both the transmitter and the receiver.

upper bound on the average transmitted power at each transmit = logdet (Im, + QHHH> @
dimensiong||z;]?] < Amax (Q).
For illustration purposes, let us see how the following partigvhere the determinant identitiet (I + AB) = det (I + BA)
ular cases fit into the general model of (1): i) a flat channel withas been used.
multiple antennas at both the transmitter and the receiver (seén wireless communications, the channel may undergo slow
Fig. 1) fits naturally into the model by lettingd .|, represent and/or fast fading due to shadowing and Doppler effects. Es-
the fading between thgth transmit antenna and tlith receive  sentially, matrixH is not fixed and changes in time. One pos-
one, i) a frequency-selective SISO channel in time domain caible way to deal with this is by considering the channel as
be accommodated by properly choosiHg as a convolution a random variable with a known pgfz(H) which naturally
matrix, and iii) a frequency-selective SISO channel in frequen@yads to the notions of ergodic capacity and outage capacity
domain (or multicarrier channel such as an OFDM channel) cr], [27] (c.f. Section IV-D). In this paper, we are interested
also be cast in the general vector model of (1) by choo&lg in a robust design obtained by including uncertainty about the
diagonal with itsith diagonal element denoting the gain of thehannel at both the transmitter and the receiver. There is a sig-
ith carrier (of course, the introduction of a cyclic prefix betweesificant variety of channel models that can be used to model
transmitted blocks is necessary to obtain such a model).  channel uncertainty (see [20] for a great overview of reliable
The mutual information between the transmitted and the reemmunication under channel uncertainty). If the fading is suf-
ceived signals for a given channel stdfe according to the ficiently slow (the channel coherence time is much higher than

signal model of (1) (for a give®) is [4], [1] the duration of a transmissidy) the system can be modeled as a
T(z;y|H)=H(y|H.)-H(y|=z H,) compound channel, where the channel state remains unchanged
during the course of a transmission and it is assumed to belong
< logdet (InR + I-IQHH) (4) to a set of possible channel states but otherwise unknown [21],

A p12g . [28], [20], [27] (the capacity of the compound vector Gaussian
whereH = R, /" H. is the whitened channel state. The upp&hannel was obtained in [29]). For fast fading, however, the
bound is achieved when~ CN (0, Q) (i.e., a Gaussian code) compound channel is no longer appropriate and other models,
[4], [1]. (The base of the logarithm will be left unspecifiedsych as a compound finite-state channel (FSC) [20] or an ar-
throughout the paper unless otherwise stated.) The charngglar”y varying channel (AVC) [21], [28], [20] may be neces-
capacity (assumingf known) over allQ verifying the power gary. In the AVC, the channel state can arbitrarily change from

constraint of (3) is symbol to symbol during the course of a transmission (see [30]
C(H)= max logdet (InR n HQHH) (5) for results on the vector Gaussian AVC). Recall that, in sit-
Q: Tr (Q)<Pr, uations where the unknown channel remains unchanged over

) Q:QTIZ(,) L _multiple transmissions, the utilization of a training sequence to
and the capacity-achieving solution is given by a transmit C@gtimate the channel at the receiver is particularly attractive. The
variance matrixQ that diagonalizes the channel matikand eaqer is referred to [20] for a detailed discussion on the appli-
distributes the available transmit power among the elgenmoq%i”ty of each model.
in a water-filling fashion [3], [4], [1], [6]. We define the mutual - \we consider that the fading is slow enough so that the com-
information betweem: andy explicitly as a function of and pound channel model is valid (see [29], for example, where

H asin [1]
2By “transmission” we mean the transmission of a codeword of block length
H y g
v (Q H) = log det (InR + HQH ) (6) n, i.e., “n uses of the channel.”
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Fig. 2. Communication interpreted as a two-player game.

the compound channel was used to model a wireless MIMSIrictions on the players. Therefore, we suppose that the channel
system). In other words, we assume that the transmission dulamust belong to a set of possible chanri®lsnd, similarly,

tion is sufficiently long so that the information-theoretic coding) must belong to a set of possible covariance matri@est
arguments are valid and sufficiently short so that the channglimportant to bear in mind that, for simplicity of notation,
remains effectively unchanged during a transmission (c.f. [2}e write H € H instead of(H., R,,) € H. x R,, with no
[25]). This type of channel is usually referred to as block-fadinigss of generality (one can always defilkeas the set of ma-

channel [27], [25]. tricesH that can be parameterized Hs= R,jl/QHC for some
(H., R,) € H. X R,). The setQ considered in this paper is
lll. GAME-THEORETIC FORMULATION defined by the average transmit power constraint of (3)
In this section, the problem of obtaining a robust transmit o A {Q: T (Q) < Pr, Q = o7 > 0}. ®)

power allocation when the transmitter does not even know the
channel statistics is formulated within the framework of gam@/e remark that the results of the paper still hold if the eigenvalue
theory [16], [17]. The idea of robustness implies being able f@NstraintAn.. (Q) < « is utilized instead to defin@. Re-
function in all possible scenarios and, in particular, the worggrding the sett, since we are interested in finding a robgst
case scenario. This concept fits naturally into the context @ all possible channels, we would like not to impose any con-
game theory. straint on the allowable set of channels. However, this would be
We will consider a game in which the payoff function (by2 POOr choice because the trivial solutiin= 0 would be ob-
which the result of the game is measured) is the mutual infdained. To avoid this effect, we are forced to introduce some ar-
mation and the players are: the transmitter that selects the gigial constraints (unlike the constraint used to def@evhich
signaling scheme (z) and a malicious nature that chooses thié very natural). But this may have the side effect that the so-
worst communication conditions or channel transition prob#ition to the game formulation may depend on the particular
bility p (y | z). It is interesting to note that the formulation ofconstraints chosen. Fortunately, as proved in Section IV, the so-
the communication process explicitly as a game was first pr{y.tion to the game formulation is independent of the particular
posed more than 40 years ago by Blachman [31] using a mutGaannel constraints under the mild condition that the constraints
information payoff. We constrain our search to Gaussian-diduarantee an isotropy property#(c.f. Section IV).
tributed signal and noise since it is well known that they consti- AS has been previously argued, to take into account the effect
tute a robust solution (a saddle point) to a mutual informatid¥ channel uncertainty, we consider that the channel is known to
game for the memoryless vector channel [32], [8Bithis case, belong to a set of possible channg{but otherwise unknown.
p(y | z) is a vector Gaussian distribution parameterized withhe worst case channel for a givgxis given by the minimizing
the channel stateH ., R,,) as described in Section Il. In the seSolution toinfgey ¥ (Q, H). The transmitter will maximize
quel, by “channel” we will simply refer to the whitened channelie worst case mutual information over the gktyielding the
stateH and not to the channel transition probabilityy | ). following maximin formulation of the problerh:
The two-player game is illustrated in Fig. 2. sup inf U (Q, H). 9)
With the previous considerations, the unknowns of the game QeoHeN
are the transmit covariance matgkand the whitened channel At this point, it is interesting to recall that a compound

H (which implicitly includes the noise covariance matl,  channel is precisely a channel that is known to belong to a set
and the original channdll.). The payoff function of the game of possible channels (unchanged during the course of a trans-
is then the mutual information given by (Q, H) in (6) or (7). mission) but otherwise unknown [21], [28], [20]. As discussed
The game would be meaningless and trivial unless we placed re-
4For the particular set® and’H considered in this paper, the formulation
3For complex-valued signals, the saddle-point property holds for proper cosup-inf reduces to max-min. For the sake of generality, however, we stick to the
plex Gaussian distributions [24]. sup-inf notation throughout the paper.
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Q1 Y(Q.H) Y(Q,.H") ¥(Q,.H,)
) A
Player 1 * x .
"Transmitter" Q| ¥QH) e 20 ) << W(QH,)
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) Vi
QN Y(Q,.H) Y(Q, .H") ves ¥(Q,,.H,)

Payoff: ¥(Q H)

Fig. 3. Two-player zero-sum strategic game in which player 1 (the transmitter) and player 2 (nature) move simultaneously. The optimal poaeisaimozdi
as a saddle point (Nash equilibrium). (Note that for illustration purposes th@satsiZ have been considered finite.)

in Section I, this type of channel may be useful to modele., the infimum of the capacities of the family of chanrls
communication under channel uncertainty for sufficiently slow From a game-theoretic perspective, the problem can be
fading. The capacity of the compound channel (the capacitiewed as a two-player zero-sum (players with diametrically
that can be guaranteed for the set of possible chartgls opposed preferences) game, also known as strictly competitive
was extensively treated in [21] where an expression similgame (the transmitter is the maximizing player and nature is
to (9) was shown to be the capacity of the compound discrétee minimizing player) [16] (see Fig. 2). In the following, we
memoryless channel. In [29], the vector Gaussian channel veast the problem in three different types of games: a strategic
specifically considered and (9) was indeed shown to be tgame both with pure strategies and with mixed strategies and
capacity of the compound vector Gaussian channel when th&tackelberg game.

actual channel state is unknown at both the transmitter and thé& he simplest formulation (from a game-theoretic standpoint)
receiver (under the mild assumption tfdtis bounded). Note is that of a strategic game, in which the players select their
that knowledge of the channel state at the receiver does stategies without knowing the other players’ choices, i.e., they
increase the compound channel capacity 2Hlthough the “move” simultaneously (see Fig. 3). In such cases, there may
receiver may be simpler to implement with this knowledgexist a set of equilibrium points called Nash equilibria char-
Clearly, the capacity of the compound channel cannot exceacterized for being robust or locally optimal in the sense that
the capacity of any channel in the family. In principle, it mayo player wants to deviate from such points. In our case (a
not even be equal to the infimum of the capacities of thevo-player zero-sum game), a Nash equilibrium is also termed
individual channels in the family (this is because codes asdddle poinfQ*, H*) and it is a simultaneously optimal point
their decoding sets must be found, not just to give small errfar both players (see Fig. 3)

probability in the worst channel, but uniformly across the class V(Q, H) <V (Q*, H") < W (Q*, H) (11)

of channels, which is a more stringent condition) [29], [20]. T ' - ’

Alternatively, we can consider the compound channel whéfhere¥ (Q”, H") is called the value of the game (whenever
the transmitter knows the channel state (as in the previous cds@XISts) and is equal to the maximin and minimax solutions of
it is indifferent whether the receiver knows the channel state ¢ and (10) [16], i.e.,
not [21]). In this case, in principle, a different coding—decodingpy (Q*, H*) = sup inf U (Q, H)
strategy can be used for each channel realization and the ca- QeQ HEH
pacity of such a compound channel is given by the followin
minimax formulation:

= inf v(Q, H).
At o V(@ H)
(12)

ﬁote that one of the major techniques for designing systems that
are robust with respect to modeling uncertainties is the minimax

I-}rcig-( sup ¥ (Q, H) (10) approach, in which the goal is the optimization of the worst

QeQ case performance [34], [18]. Interesting examples of minimax

5The intuitive explanation of this effect is that, since the channel state remal@sign in information theory are the problem of source coding
fixed for the transmission of the whole codeword, for sufficiently long codes, §r data compression when the data distribution is completely
can be estimated at the receiverbytransmitting,forexample,atrainingsequenc?( dth bl f folioi h hi
with length proportional ta/n at no cost of rate a8 — oo [21]. In fact, the unknown and the problem of portfolio investment when nothing

channel state is not at all required by universal decoders [20]. is known about the stock market [4], [19]. Both problems can be
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Player 1
"Transmitter"

Player 2
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saddle-point

Payoff: ¥(Q,H(Q))

Fig. 4. Two-player zero-sum extensive game in which player 1 (the transmitter) moves first and then player 2 (nature) moves aware of player &'s move, i.

Stackelberg game. The optimal power allocation is found as a saddle point (subgame perfect equilibrium which is also a Nash equilibrium) oiNiuetifaicin
purposes the set@ andH have been considered finite.)

formulated as a game in which two players compete: the souregtensive ganfein which the selected strategy of a user may
encoding scheme versus the data distribution and the portfaliepend on the previously selected strategy of another (agr
investor versus the market. opposed to the previous strategic interpretation in which both

In our case, the functiol (Q, H) may or may not have any Players move simultaneously) [16], [17]. For the specific case
saddle point depending on the particular’e(c.f. Section Iv). ©Of @ two-player zero-sum game, in the parlance of game theory,
However, so far, we have only considered pure strategies, i®8!Ch an extensive game is called Stackelberg game [16], [17].
strategies given by a single fixed (deterministic) (@, H). Consider the case in which the transmitter moves first and then
The game can be extended to include mixed strategies, i.e., Bgéure moves aware of the transmitter's move (see Fig. 4). In
possibility of choosing a randomization over a set of pure straf@ch a case, the maximin solution of (9) is always a pure strategy
gies (the randomizations of the different players is independehgsh equilibrium. In fact, such a solution is a subgame perfect
[16]. In this case, the payoff is the averagelofQ, H) over the _eqU|I|br|um (called in this case Stackelberg equilibrium) which

larly defined as case, a saddle poin@*, H* (Q)) is characterized by

U(Q H (Q)<V(Q,H (Q)) <V Q" HQ.
14)
Epop U(Q, H) < Epe e U(Q. H) < E,. ), U (Q H). | . (
rary V(@ H) < &, V(Q H) < €y T (@, )(13) Similarly, we can also consider the opposite formulation of the
e%Iackelberg game in which nature moves first and then the trans-

It is well known that a strategic game always has a mixed. ; ) N
{ter moves aware of nature’s move with the saddle point given

strategy Nash equilibrium under the assumption that each
of pure strategies is closed, bounded, and convex [16]. In fa Y
for our specific problem, even if we allow more general sets? (Q (H*), H*) <V (Q*(H*), H*) <V (Q* (H), H).
(which need not be closed, bounded, and convex) such as the (15)
set defined byA,...(H” H) > /3 (which is nonconvex and Note that the saddle points of (14) and (15) are always satisfied
unbounded), it can be shown that the problem always has anhiy-the solutions to problems (9) and (10), respectively.
finite set of Nash equilibria (c.f. Section IV). One can interpret A significant part of the literature that has modeled com-
mixed strategies in different ways. In this problem, perhaps, thgunication as a game has dealt with the characterization of
most relevant interpretation is to consider the mixed strateffje saddle points satisfying (11), i.e., implicitly adopting a
Nash equilibrium as a steady state of an environment in WhichSA . . - i .

. . . n extensive game is an explicit description of the sequential structure of
players act repeatedly, learning other players’ mixed strategifSdecision problems encountered by the players in a strategic situation [16].

(see [16] for other interpretations). By extensive game we always refer to those with perfect information (im-

Alternatively, instead of modeling our problem as a strategf€ et information can also be considered) [16]. _ _ _
8The solution concept of Nash equilibrium is unsatisfactory in extensive

ga”?{? (Wh'Ch' in general, doesl n_Ot have a pure strategy N%ﬁp\es since it ignores the sequential structure of the decision problem; as a
equilibrium), we can formulate it in a more general way as aansequence, more refined definitions of equilibrium have been proposed [16].
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formulation of the problem as a strategic game. Reference [31]), we are deliberately leaving the eigenvectorRgf (equiv-

is one of the earliest papers dealing with such a problem usialgntly, the right singular vectors &) totally unconstrained.

a mutual information payoff. (Note that other payoff function3his is so that no preference is given to any signaling direétion,
have also been considered, such as the mean-square erroen to guarantee the isotropy Bfg (any direction is possible).
[35] to deal with communication over a channel with an intel-

lal%intt ejgr::ﬂg;]) (;At\)tglivr?ihpliﬁir(szaelzg-ssi;r:n d%?ﬂrz)it?;isa:);plslgg Féained if the right singular vectors of the elements of the set
P 9 are unconstrained, i.e., if for eadh € H thenHU € H for

point. In [36], m-dimensional strategies were considered in a : .
i . ) oo qny unitary matrixJ.
game-theoretic formulation of communication over channels
with block memory, where it was found that memoryless Clearly, the setH (defined according to (16) and (17)) is
jamming and memoryless coding constitute a saddle point.igotropically unconstrained. We remark that the results in this
[37], atwo-player zero-sum game was explicitly formulated fquaper are valid regardless of the particular eigenvalue constraint
communication in the presence of jamming using a power cathosen to define the sétz,, .
straint for both players. In [33], communication under the worst We first obtain two lemmas and then proceed to obtain the
additive noise under a covariance constraint was analyzed (thréform power allocation as the maximin solution of (9), i.e.,
Gaussian distribution was obtained as a saddle-point soluti@s) the capacity-achieving solution of the compound vector
with emphasis on covariances satisfying correlation constrai@sussian channel. Note that this could be proved in a shorter
at different lags. The vector Gaussian AVC was consideredway by contradiction, i.e., by showing that, for any given
[30] obtaining a saddle point given by a water-filling solutiorpower allocation, we can always find some channel that yields
for the jammer and for the coder. In [38] , the maximin and lower capacity than the minimum capacity corresponding
minimax problems of (9) and (10) in a multiantenna wirelegs the uniform power allocation (indeed, this is the technique
scenario were solved for a specific set of chanri¢ldefined used in Section VI for the MAC). Nevertheless, we obtain a
by Tr(HHH) > [, i.e., the two Stackelberg games previouslynore complete proof by characterizing the “shape” of the worst
formulated were implicitly considered. channel for any given power allocation and then we give some
The rest of the paper focuses mainly on finding a robuskamples in order to gain insight into the problem.
power allocation when the channel is unknown, i.e., in solving
the maximin problem of (9). Such a solution has many inter-
pretations. Under some conditions (obtained in Section I\Bj N
it constitutes a saddle point of the strategic game formula- . 4
tion of (11) with the inherent properties of robustness. In any log det (I + AB) = Zlog (14240 ABn—it1)  (18)
case, if mixed strategies are allowed in the strategic ganithere)

the solution tp 9) alwl_e\ys forms a saddle p_oint defined %L > Xi.1) of A and B, respectively. Equality in (18) is
(13) (c.f. Segnon V). Flnglly, even if we restrict _the game 19 hieved foll 4 = U J, wherell , andU 5 contain the eigen-
pure strategies, the solution to (9) always constitutes a sadgle.q s corresponding to the eigenvalues in decreasing order of

point as defined in (14) corresponding to a Stackelberg 9ameandB, respectively, and is the “backward identity” permu-
(The opposite minimax problem formulation of (10) is brieﬂ)ﬁation matrix [39] defined as

considered in Section IV as well.)

Definition 1: A set of matricesH is isotropically uncon-

Lemma 1: Given two positive semidefinite x n Hermitian
atricesA and B, the following holds:

=1
4,; andAp_; denote the eigenvalues in decreasing order

o o --- 0 1

IV. ROBUST POWER ALLOCATION 0 Lo

The main purpose of this section is to solve the maximin for- J=: ' '

mulation of (9) and to characterize the conditions under which 0 1 o0

the solution forms a saddle point in the strategic formulation of 1 0 -+ 0 0
the game (with pure strategies and mixed strategies). Proof: See Appendix A. 0

As pointed out in Section Ill, we have to define some atrtificial _ ) ) )
constraint on the channel to avoid the trivial solution. Noting Lémma 2: The global opt.lmal solution to the following
from (6) and (7) that the payoff functioli (Q, H) depends on CONVEX optimization problem:

H throuthHH (the left singular vectors dff are irrelevant), . " ) .
it is convenient to definé{ as min - f(z) = - 2; log (1+wiai), — With0 < a; < i

2 {H: RHéHHHeRH}. (16)

To define the seR; we consider any kind of spectral (eigen-S-t- Zl’i <P
value) constraint given by i=1

Rir 2 {Ry: (i (Bn)) € Lr, ) an  nzom= _ 9
. : S is given by the uniform solution
whereLp,, denotes an arbitrary eigenvalue constraint (in Sec- ) _
tion IV-A some specific eigenvalue constraints are considered). zi = P/n, I<i<n. (20)

(Clearly, the setCr,, cannot contain the all-zero vector that oo 4 flat multiantenna system, the term “direction” means literally spatial
would correspond td = 0.) In defining the sefRy as in direction.
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Proof: From an intuitive viewpoint, we can see that We use the relation (6) and (7) and the fact that the eigenvec-
without the constraintz; > z;,;, the solution would be a tors of Ry = H™ H are unconstrained (see (17)) to simplify
water-filling, which would implyz; < z;.;. With the addi- the inner minimization of (21) for a give®
tional constraint, however, the solution will try to water-fill

but always verifying the constraint; > 1, resulting in RHIE%H logdet (I'+ QRy)
Zq :.xi—"-l- ) ) nr
ThIS re_su_lt can be strmghtforv_vardly pr_oved in a_for_mal way - inf ZIOg(l +AQi ARy mp—it1)
using majorization theory [40]. First, rewrite the objective func- Pryitelry =
tionasf(z) = > - gi (z;) whereg; (z) = —log (1 + za). e
Sinceg; (a) > giy, (b) whenevera > b, function f(x) is =N oe (1 Y .
B - v . - ’ - g +)‘L)‘ i —1 A i
Schur-convex [40, Proposition 3.H.2] . Now, from the definition ; ( Qi Vi i1 ((A@i})

of Schgr-convexn_y [4.0’ Def|n|_t|0n 3.A.1]and using th_e fact tha\5\/here Lemma 1 has been used (the minimizing eigenvectors are
the uniform solution is majorized by any other solution [40,

R i _ *
. . : . " 'chosen according g, = UgJ) and{\}; , ({Ag,:})} de-
7, it fOHOV\./S that the minimum off () is attained b_y the uni- ote the minimizing eliz:]HenvaluQesE‘H ai a}ﬁ‘ﬂhc(t‘i[or?o{})g ih
for.m solution oft_(ZQ). t'!'hlstrr]esult ggn b2e3 alternatively prove hich depend on the particular constraint used to define the set
using convex optimization theory [22], [23] Lr, (in the next subsection, some specific example£ gf,
Before proceeding to the main result, recall that the capaciye considered).
of the compound vector Gaussian memoryless channel when th&he outer maximization of (21) can be now written as

channel state is unknown was obtained in [22ls nr
log (14 Mg, A} _ AQ.i
C(H) = sup inf logdet (I, + HQH")  (21) sy 2108 (14 20,60k s (D)
QeoHeN =t
under the mild assumption thét is bounded (if not, we can s.t. Z Ag,i < Pr
simply boundH by adding the constraimmax(HHH) < cfor i
a sufficiently large value of, which can be done without loss of Xo.i > Ag.it1 >0 1<i<nr-—1

generality based on physical interpretations of the chaHnel ) ) .
The achievability was proved in [29] by showing the existenciith solution given byAy, ; = Pr/ng Vi. To show this, we
of a code (along with the decoding sets). Therefore, in theolySt have to apply Lemma 2

one can always find a code to achieve rates arbitrarily close

capacity and then use a universal decoder that decodes theXelog (1 + Aq.iAk,, ny—it1 ({Pr/nr}))

ceived word according to the decoding set it belongs to (note!
that no knowledge of the channel state is required).

nr
) . < log (1+ Pr/nrXy. .o Pr/n
Theorem 1: The capacity of the compound vector Gaussian - ; g /0T AR it ({Pr/ 7})

memoryless channel with power constraliit, nr transmit di-
mensions, and.i receive dimensions (without knowledge o
the channel state) is

‘and then the obvious relation
nr

inf Z log (14 Aq,iARy, np—it1)

[ - H {ARH ,7}€'CRH i=1
C(H) = jnf logdet (Lon + Pr/ncHE™)  (22) -
where the class of channéisis an isotropically unconstrained < Z log (1+ A, iAk, np—iv1 {Pr/nr}))
set defined by (16) and (17) (unconstrained right-singular i=1 ’ ’

vectors). The capacity-achieving solution of (22) is given by @ finally obtain
Gaussian code with a uniform power allocation

nr
Q" = Pp/nrl,, (23) Zlog (1 + /\Q;i)‘%H,nT—i+1 ({)‘Qz}))
which implies an independent signaling over the transrrfi?1

nr

dimensions. < Zlog (1 n PT/"LT)\;%,,,7TL,,,_1+1 ({PT/RT})) .

Proof: Before proceeding further, we give an intuitive ex- P
planation of why the uniform power allocation is optimal in L o )
(21). Due to the symmetry of the problem, if the transmitter dodd'uS: the maximizing solution IS given B, = Pr/nr Vi,
not use a uniform power distribution, the channel will do an “n-€-» & uniform power allocatio@” = Pr/ny L. 0
verse Water-filling," i.e., it will redistribute its Singular values so Note that the worst case Capacity expression (22) obtained in
that the highest ones align with the lowest eigenvalu€ (fee  Theorem 1 can be simplified as
Lemma 1). Therefore, maximizing the lowest eigenvalue@ of
seems to be appropriate to avoid such a behavior. Indeed, thigﬁg{ log det (InR + PT/nTHHH)
achieved by the uniform power allocation.

ny
10The extension to the complex-valued case is straightforward using the re- = inf Z log (14 Pr/nrAg,,:). (24)
sults of [24]. {Ary.i}ELRY pr}
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Theorem 1 is basically saying that when the channel stateseddle points for the set of noise covariances with power con-
unknown but known to belong to a set of possible chanhgls straint given bylr (R,,) < P,, e.g., [31], [36], [37] (also [30}
the optimum solution in the sense of providing the best workir the particular case in which the background noise is re-
case performance is given by the uniform power allocation ofoved). Corollary 2 generalizes such a result to an arbitrary
(23). In other words, it is the solution to the problem formulaset of noise covarianceR,, (provided it is closed, bounded,
tion as a Stackelberg game in which the transmitter moves ficgthvex, and isotropically unconstrained). Note that a constraint
as depicted in Fig. 4. Note that if we had used instead the eigen- the channel eigenvaluds\r,, ;} can be alternatively ex-
value constrainhg max < « to define the se@, it would have pressed (wheneverr = ng) as a constraint of the ford . =
immediately followed\7, , = « V¢, i.e., a uniform solution as I andR,, € R,, as considered in Corollary 2 since we can write
well. / )\Z (Rn) = )‘nT—H—l (RH)_I.

The uniform power allocation and the corresponding mini- As mentioned in Section Ill, even when the strategic game
mizing channel always constitute a saddle point of the Stadkees not have a saddle point or Nash equilibrium, if mixed
elberg game as defined in (14). Depending on the specifitrategies are allowed the game has then an infinite set of saddle
definition of the set of channeld(, they will also form a points or Nash equilibria as defined in (13) (see Appendix B).
saddle point of the strategic game as given in (11). The fdh particular, as proved in Appendix B, the mixed-strategy Nash
lowing corollary gives the exact conditions. equilibria are given by a pure strategy for the transmiér=
Pr/nrI, .. (uniform power allocation) and a mixed strategy for
nature that, for example, puts equal probability on each element
of the set

Corollary 1: The uniform power allocation

Q" =Pr/nrl,,

{H —UysyPVE. Pc H}

obtained in Theorem 1 and the corresponding minimizing

channel form a saddle point of the strategic game given by (MihereX;; contains in the main diagonal the optimum (worst

if and only if the minimizing channel SatiSfi@%H’i = [ Vi case) singular values corresponding@b = Pr/nrl,. (as

(in particular, this implies:g > nr). in Theorem 1)/ z andV  are two arbitrary unitary matrices,
Proof: Since the rightinequality of (11) is satisfied by anyandII is the set of the.7! different permutation matrices of size

solution to (9), it suffices to find the conditions under which th@ . x n, (see Appendix B for a proof).

leftinequality is satisfied, i.e¥ (Q, H*) < V (Pr/nrI, H")

where H* 2 H* (Pr/nrI) is the minimizing channel of A. Examples of Channel Constraints

Theorem 1 corresponding to the uniform power allocation. In this subsection, to gain further insight into the problem,

Recalling that¥ (@, H) is maximized when the eigenvectorsye analyze in detail some particular constraints to define the

of @ align with the right singular vectors dif and when the set of channel${. In principle, for each of the different con-

eigenvalues ofQ water-fill the eigenvalues ol H [1], it straints, it is possible to directly solve the corresponding max-

must be tha#*" H* is a diagonal matrix and has equal eigerimin problem of (9). Using the result obtained in Theorem 1,

values. Thus, it must be th@*” H* = 31 or, equivalently, however, we already know (provided that the gis isotrop-

ARy,i = B Vifor somep. L ically unconstrained) that the optimal solution is the uniform

N
In the next subsection, specific definitionsfare consid- power allocation@™ = Pr/nrl., and that the worst case

ered and Corollary 1 will be invoked to show in which cased'annel is givenkb)r/] the rr}!ni(;niﬁing solution toh(24). Ilt ?s.im-
the uniform power allocation constitutes a saddle point of gRortant to remark that, to find the worst case channe, it s not
strategic game. necessary to solve the m|n|.m|zat.|on for an arbnrary{s)gj,,;}

In [33], the existence of a saddle point as defined in (1%? pbtam{)‘ﬁr{_,i ({Aq.ih)}: it suﬁ|ce§ to can|der directly the
was proved for any set of channétssuch thatH, — I and Yniform solutionAg ; = Pr/ny Vi as in (24) and obtain
R, € R, whereR,, is closed, bounded, and convex. With thé/\RHé({PT/lnT}gj}’ .\(’th'Clh 'cs:r? grealtt S|r_an|f|ce|1t|on.C .
additional constraint th& ,, be isotropically unconstrained, the 1 e>nera. Ig i _(ija annel Eljgjgn(;/_a_lée | onstra|_nt
existence result of [33] can be combined with Theorem 1 andra.i 2 B} Consider a general and individual constraint

Corollary 1 to conclude that in such a case, the uniform solf"! each channel eigenval§i2g,,; > f;}, where itis assumed

tion for both the transmitter and the noise always constitute' tﬂi_ = [3&1 > 0 and that all e_|ge_nva|ues have a corre-
ndingg@; without loss of generality (if not, one can always

saddle point of the strategic game as given in (11). We state iR y L

in the following corollary for further reference. setffi = i1 or i = 0 as appropriate). The minimizing
channel of (24) is easily obtained by minimizing each of the

Corollary 2: Consider the set of channel$ defined such terms of the right-hand side (RHS) of (24) as

thatH. = I (ny = ng) andR,, € R,, whereR,, is closed, . )

bounded, convex, and isotropically unconstrained (i.e., uncon- Ry,i = Pi L<i<nr. (25)

allocation@” = Pr/nrlI and the noisek, = o071 always ot a saddle point of the strategic game as given in (11). Note

form a saddle point of the strategic game given by (11).  that Corollary 2 cannot be invoked to prove the existence of a

Many papers have Obtameq a uniform solution ff)r both t.hellAIthough [30] deals with the vector Gaussian AVC, the final problem for-
transmitter and the noise (or jammer) as mutual informatiaiulation is also given by maximin and minimax mathematical problems.
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saddle point (forH. = I) since the constraints expressed in For this particular constraint, we can directly invoke Corol-

terms of noise eigenvalues lary 2 to show that the worst case noise is given by
Anii = Agh np—iv1 < Brp—iga Ay i =0"[ng, 1<i<ng (29)

in general define a nonconvex and unbounded region for thed that the uniform power allocation constitutes a saddle point
setR,,. of the strategic game as given in (11).

Consider now a constraint just on the maximum channel5) Banded Noise Covariance Constraini [33, Sec. Ill],
eigenvalue\r,, max > . This specific constraint has a speciaf banded noise covariance constraint (a noise with correlation
interest since the maximum eigenvalueRf = H” H is an constraints at different lags) was analyzed in detail. Such a con-
upper bound on the elements By and, in particular, on the straint is not isotropically unconstrained and, consequently, the
received power corresponding to thih transmit dimension results of this paper do not apply. Therefore, we cannot conclude

[Rul;; = ||h,i||2, whereh; is theith column of the channel that the uniform power allocation is the maximin solution to the
matrix H. The minimizing channel is given by mutual information game. In fact, the saddle-point solution was
obtained in [33, Sec. lll] to be given by the maximum-entropy
ARy, max = P extension for the noise and by a water-filling solution for the
i (26) . ne ! oy a wat 9
)\ﬁmi =0, 2 <4< ngp. transmitter which in general is nonuniform.

It is also of interest to consider a constraint just on thB. On the Specific Choice of the Channel Constraints
minimum channel eigenvalukg,, min > B. The minimizing

: As has been shown in Theorem 1, the uniform power allo-
channel is now

cation is the solution to the maximin problem of (9). In other
=0 1<i<ngp. (27) Words, itis a robust solution under channel uncertainty.

’ Other aspects and observations of the solution, such as
For this particular case, the minimizing channel is uniform anghether it is better to have many antennas or just a few in
then, by Corollary 1, the uniform power allocation forms @ multiantenna system, depend on the particular choice of
saddle point of the strategic game as given in (11). Alternativelpnstraints that define the set of chanriklsvhich have to be
Corollary 2 could have been invoked to show the existence wilored to each specific application. To illustrate this effect, we
a saddle point (foH. = I) since the constraints expressethow consider some heuristic choices as examples.
in terms of noise eigenvalues, m.x < A~' form a closed,  Inspired by a communication system with multiple transmit
bounded, convex, and isotropically unconstrainedset and receive antennas with a unit-energy channel in the sense of

2) Channel Trace Constraifiir (Rg) = Y, Ary,i > 0: expected valué[|H;_;|?] = 1 (which implies&[Tr(H” H)] =
The channel trace constraint is probably the most reasonablen ), we can similarly consider a worst case problem formu-
constraint from a physical standpoint since it represents the tdtgtlon with the trace constraint defined as
channel energMHH; = Tr(Rpg). In [38], this channel con- .
straint was considered obtaining the same results. Tr(H"H) > anpng

i 1 — n - . i - - . .
Since the functiorf (z) = 5;_, log (1 + zia) is Schur-con- a6 is & scaling factor that, for example, guarantees that the

cave FJ: (z)di§ S'(E)hu_r—cqnvex)' [4.0’ Eroposition 3.H.2] and aN¥%onstraint is satisfied with a certain probability (if the constraint
eigenvalue distribution is majorized Ky _; Ary, i, 0, ..., 0) is not satisfied, an outage event is declared). In this case, using

[40, p. 7] (See the_: proof of Lemma 2 f_or a similar reasoning), the results of Section IV-A2, the worst case capacity is given by
follows that its minimum value is achieved by

{ Ay max = B 8) log(1 + aPrng)

Ny i =0, 2<i<nr. from which we can conclude that, while adding transmit
’ antennas does not increase the worst case capacity when the
This solution is clearly nonuniform and, by Corollary 1, doeshannel state is unknown, adding receive antennas is always
not constitute a saddle point of the strategic game as givenbisneficial.
(11). Note that Corollary 2 cannot be invoked either to prove Inspired by a set of parallel subchannels, each with unit gain,
the existence of a saddle point (. = I) since the constraint we can instead define the trace constraint as (assumingt
expressed in terms of noise eigenvaldés\, ;> § definesa np)
nonconvex and unbounded region for the Bet

3) Maximum Noise Eigenvalue Constrai, ma., < o Te(H"H) > ang.
This constraint is identical to the minimum channel eigenvalue o
constraint with solution given by (27). In this case, the worst case capacity is given by

4) Noise Trace Constraiffr (R,) = >, An,i < o2 This
is the constraint considered in most publications since itis a very
natural constraint when the noise is interpreted as a jammer cbm which we can conclude that the worst case performance
strained in its average transmit power (as is the intended traissindependent of the number of transmit and receive antennas
mitter). See, for example, [31], [36], [37] and also [30] for thevhen the channel state is unknown. However, for this scenario
particular case in which the background noise is removed. corresponding to a set of parallel subchannels, it may be more

log (14 aPr)
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Capacity with uniform and non-uniform power allocation ( Tr( HCHHc )= n.ng )
30 T T T T T

—— uniform power allocation
-— - nonuniform power allocation

25_ .............. .............. .............. ...... [P ............

arbitrary channels:

N
o

—_
[$,]
T

Capacity (bits / transmission)

—_
o
T

worst case channel

0 . ; ; ; ; ;
-5 0 5 10 15 20 25 30
SNR (dB)

Fig. 5. Capacity of the uniform and a nonuniform (according to the distribtign= [0.6, 0.2, 0.1, 0.1]* Pr) power allocations versus the SNR for two
arbitrary channels and for the worst channel of the set define’ﬂrt{ﬂch) = nrng andR,, = o21.

appropriate to consider the minimum channel eigenvalue cdd- Opposite Problem Formulation: Nature Moves First

straint (assuming; < nr) For completeness, we now briefly consider the opposite

Amin(HTH) > o problem formulation, i.e., the minimax problem of (10). A
i = solution to (10) will always be a saddle point as defined in (15)

obtaining a worst case capacity (using the result in segarresponding to the Stackelberg game in which nature moves

tion IV-A1) given by first and then thg trz_‘;msmitter moves aware pf natures’s move.
In some cases, it will also form a saddle point of the strategic
nrlog (1l + aPr/ny) — oPr game as defined in (11).
np—oo

Itis well known thatl (@, H) is maximized when the eigen-
from which it is always beneficial to add transmit and also rexectors oiQ align with the right singular vectors & and when
ceive antennas. the eigenvalues d water-fill the eigenvalues Ry = H'H

A Numerical Example:In Fig. 5, the capacity of the uni- [1]. The minimax problem of (10) reduces then to
form power allocation is compared to that of a nonuniform al-

nr
location (simply chosen according to the distributidg = min Zlog (L4+ 25, AR, i}) ARu,i)
[0.6, 0.2, 0.1, 0.1]7 Pr) as a function of the SNR defined as Orpy o
Tr (Q) /;7,%, where the noise covariance matrix was flxe_d to st {\r,.i} € LR, (30)
R, = o1 and the set of channelg. was constrained using
the channel trace constraint where
TI‘(H?HC) = Nrng, fornr =ngp =4 /\2(21 ({)‘RHJ}) = (V - /\}_R}{,i)—i_

(equivalently,H is defined byTr(H” H) = nyng/o?). The is the water-filling solution(z)" 2 max (0, z), andv is the
capacities corresponding to two arbitrary channels and to tivater level chosen to satisfy the power constraint of (8) with
worst channel adapted to each power distribution are plottegjuality. Clearly, we can relabel thez,, ;’s so that they are

As expected, the capacity of the uniform distribution is alwaya decreasing order without loss of generality and, as a conse-
the best for the worst case channel (note that, in general, forqurence of the water-filling solution, thg, ,’s will also be in
arbitrary channel, this may or may not be the case). decreasing order.
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For the cases considered in Section IV-A in which a saddégodic and outage capacities. Simply note fhatcan always
point was obtained (minimum channel eigenvalue constraibie chosen as a function of the utiliz€dto put positive proba-
maximum noise eigenvalue constraint, noise trace constrainitity only on channel stateH with the singular vectors chosen
banded noise covariance constraint), we already know that tbeperform an “inverse water-filling” o (c.f. Theorem 1)
same solution is obtained when nature moves first simply by thgainst which the best solution for the transmitter is a uniform
definition of the saddle point in (11). power allocation. Therefore, it is an optimal solution for every

For the case of a general individual channel eigenvalue cariioice ofH and, hence, for other capacity statistics such as the
straint{ Ar,,,; > 0}, the worst case channel is simply obtainedverage and the outage values.
as in (25) (although, in this case, the eigenvalue@ ofater-fill It is interesting to point out that jfy does a randomization
those ofRp). over a set of channel statesihas defined in the previous sub-

The channel trace constraint was considered in [38], whereséctions (this need not be in a general case), the ergodic capacity
was found that for low values of the SNR defined3s3/02  problem then results in a mixed-strategy formulation of a game
(the noise covariance matrix was assumed fixed and given inywhich the pure strategies are defined#ynd, therefore, the

R,, = o21) the worst channel is given by previously obtained results on mixed strategy Nash equilibria

%. ;= [(3/min(nr, ng) Vi app!y .(C'f' Appendix B).' . . .

Rusi ’ ’ Itisimportantto bearin mind that the optimality of the uniform
and for high values of the SNR, the worst channel is similarlgower allocation in terms of ergodic and outage capacities is
given except that a dominant eigenvalue arises. in the worst case sense, i.e., wheg is known to belong

_ _ - to a setPy but otherwise unknown. Therefore, it cannot be
D. Extension to Ergodic and Outage Capacities concluded from the obtained results that the uniform power

In addition to analyzing robustness in terms of instantaneo@iocation is optimumin terms of outage capacity for the case, for
mutual information as given by (6) (which implies a fixecexample, of a randon#l with i.i.d. CA (0, 1) entries which
channel statdl), it is also interesting to consider other statistict & Well-known open problem as discussed in [1] (where
of the mutual information such as average and outage valusvas conjectured that the uniform power allocation could
This implies a random channel state drawn according to soff the optimal solution, but only over a certain number of
pdf pg(H). For communication systems in which the trangransmit dimensions). It is interesting, however, to remark that,
mission duration is so long as to reveal the long-term ergodiy definition, the worst case instantaneous capacity for a set
properties of the fading process (assumed to be an ergogficchannels’ as previously considered happens to be the
process in time), the ergodic capacity is a useful measureZ§fo-outage capacity (also termed delay-limited capacity [27],
the achievable bit rate [1], [27]. The mutual information for &4], [25]) for any py that puts nonzero probability on each

given transmit covariance matr@ is member ofH. Unfortunately, this result is not very useful for
u the case of a random chanrél with i.i.d. CA (0, 1) entries,
I8 (Q) = &py log det (I-l-HQH ) : since it has a zero worst case capacity [25].

Note that if one considers that nature can only control the

The _ergodlc!ty assumpuo_n, r_lowever, IS not nec_essarlly S"‘_‘t&%anneleigenvalues but not the eigenvectors, then the optimality
fied in practical communication systems operating on fad"}ﬁthe uniform power allocation need not hold
channels because no significant channel variability may occur '

during the whole transmission for applications with stringent
delay constraints. In these circumstances, the outage capacity
defined as the capacity that cannot be supported for only a smalRobustness is a desirable property that comes with a price.
outage probability (also known as-achievable rate [14], [25]) For a given channel statl, one can explicitly compute the
is an appropriate measure [12], [27], [1]. The mutual informdess in performance of the robust uniform power distribution
tion with outage probability for a given transmit covariance with respect to the optimum allocation (obtained with a perfect
matrix Q is instantaneous knowledge of the channel state). However, it is

ot . also interesting to know the worst case loss of performance for
72"(Q) :S%P{R: Pr{k’g det (InR +HQH ) S R} S 6}- a given class of channef§. In this section, the cost of robust-

i ) ness for a family of channel¥ is analyzed using the concept

If the channel pdf were known, then an optimal fixed POWEkt q4jity gap arising in convex optimization theory [22], [23]
allocation (independent pf .the aptual channel reatlllzat|on) CO‘fHIowing the approach proposed in [41]. We first review the no-
be precomputed to maximize eithiet™ (Q) or I2*" (Q) OVer  iqn of primal and dual objectives in convex optimization.
the set of satisfying the power constraint to obtain the ergodic , general convex optimization problem (with no equality

capacityC'® or outage capacitg°"t, respectively. constraints) is of the form
The maximin formulation is as in (9), but now the payoff

V. COST OFROBUSTNESS

function is given either byZ*'s (Q) or Z°"* (Q) instead of min  fo(z)
(6) and the minimization is over the set of possible channel z
pdfs pg € Pg in which the channel singular vectors are st fi(z) <0, 1<i<m (31)

unconstrained (isotropic property), e. (H"H)] > .
( pic property), €.§[Aumax( )26 12The worst case capacity studied in this paper is equivalent to the

W'thou_t go_mg Into deta_|ls, we justify why the l{n'fo_rm powerdelay-limited capacity considered in [25] under a short-term power constraint
allocation is also obtained as a robust solution in terms @f [25], however, perfect CSI was assumed).
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wherez € R"*! is the optimization variablefy(z) is called the The dual objectivey (A, i) is obtained by settinggTL = 0,

primal objective (or objective function), and(z), ..., fm(2) which gives the water-filling solution
are convex functions. The Lagrangian associated with the pre- 1 1 1
i i i x; = —. 40
vious problem is defined as i vi + e - =) 2 (40)
L(z, X) = fo(z) + Z Aifi(z) (32) Ifwe now evaluaté (z, (), p)) atanyz and with the Lagrange
i=1 multipliers chosen so that the water-filling condition (40) is sat-

whereJ; is the Lagrange multiplier or dual variable associatedfied, then the duality gap is

with theith inequality constrainf; () < 0. The dual variables n

always take on nonnegative values. T (z, \) = 1 Z Ti ARy LAP. (41)
The dual objective is defined as ' In2 1+ 2 Ary

9(A) = iEfL (z, A) (33) (Note that a better choice of the Lagrange multipliers to obtain
and is a lower bound on the optim#j(z). For any feasible a smaller gap could be made, however, this choice produces

=1

(z, X), we have a simple closed-form expression.) Using the smallest possible
m value for A (such that all the Lagrange multipliedsand u;’s
fo(®) > fo(x) + > \ifi(x) are nonnegative)
=1
m A= % max (1/\R—H/\Z> (42)
> inf (fo(z) +Y Aifz(z)) ne o AL B AR
i i=1 and assuming that the power constraint is satisfied with equality
=g()) (34) >, z; = P, we can write the duality gap as
and, in particular 1 < ARy, i AR i
. F —_— T; H>J _ H,t )
inf fo(@) > supg () @) @ gt (I“?"(ij ARH,]) o ARH,i,)
x A 1=

(43)

where the maximization is over all nonnegati¥gs and the Einall luating th ¢ i I .
minimization is over the original constraint set. The differenc%'na y, evaluating the gap for a uniform power a ocatign=
/n, we obtain

between the primal objectivi(z) and the dual objective ()

is called the duality gap ™ (Ag,,)
I'(z, A\) = —g(X)>0. 36 n
.(x/ ) fO(m) g( ) - ( ) 1 P/n )\RH max P/n )\RH 7
A central result in convex analysis [22] is that for convex op- = 2 T+ P/nA ’ T1r P/nA — (44)
timization problems, under some technical conditions (called " ° i=2 1 ARy max " ARA,i

constraint qualifications), the duality gap reduces to zero at tigere we have made explicit the dependence of the gap on the
optimalT (z*, A*) = 0 or, equivalently, equality in (35) holds. channel eigenvalugis\r,, ; } which are assumed in decreasing
We say then that strong duality holds. From (35), it is cleader. For a channel with equal eigenvalugs, ; = «, the uni-

that the loss of any givem with respect to the optimat* is  form power allocation is optimum and the gap becomes zero as

upper-bounded by the gap function expected. Note that fdP — oo (with positiveAr,,.;'s) the gap
Jo(x) — fo(z*) <T'(z, A), VA (37) also tends to zero, i.e., for high SNR, the uniform distribution
where equality holds for somkif strong duality holds. tends to be optimal (this observation was empirically made in

Let us now consider the specific problem at hand. Assumif§?2] and further analyzed in [41]). o _
for the moment a fixed channel state given{By: , ;}, the max- Now we can use the closed-form expression in (44) to easily

imization of the mutual information can be expressed in conv@®tain an upper bound on the worst case loss of performance for
form as (we use in this section logarithms in basend natural the class of channels. For example, if we consider a maximum

logarithms denoted bipg, andln, respectively) channel eigenvalue constraikg, , max > 3, the gap is
min )= — log, (1 + z; A i e = H> . . (45
fo( ) ; g2 ( RH-, ) 1n2 1 + P/TL ARhHmaX ARH,max_’OO 1n2 ( )
st Z < p Note that for a channel trace constrajn}; Az, i > [, the
" - i same gap is obtained. If instead we consider a minimum channel

eigenvalue constraimtz,, min > 5, the gap is

x; >0, 1<i<n (38) . PluA Ping
(note that Slater's condition is satisfied and, therefore, stromg™ = n= [ ARy max — /nf
In2 \14+P/nAr, max L1+P/np

duality holds) and the Lagrangian is
n n—1 1

L(.’L ()\./ [l,)) = —Zlog2 (1 +x; /\RH,’L') )\RH:‘HOO H m (46)

i=1

In any case, the gap in (44) is always upper-bounded as

7 1= n
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Relative loss of universality and upper bounds for a class of channels ( Tr( I-Q:HHc )=n,ng )
100 T T T T T T

9Ok o\ ST e, TR SR ST 4

: : . | -©— gap upper-bound 2 :
80 b= ot ot et e e e e .............. .............. . + gap upper_bound 1 ........... ............ —
: : .| =% duality gap :

Relative bit rate loss (%)

-5 0 5 10 15 20 25 30
SNR (dB)

Fig. 6. Relative bit-rate loss and duality gap of the uniform power allocation, along with two upper bounds, versus the SNR for a channel raalization (
(56%,~44%, 10°2%, 5 x 10~*%)") corresponding to the class of channels define@byH! H.) = nyny andR,, = o21.

which, inturn, is upper-bounded by 1n 2 bits per transmission  As in the single-user case of Section IV, we constrain our
or, equivalently, by 1.4427 bits/transmission/dimension as wasarch to Gaussian-distributed signals and noise, since they
found in [41]. constitute a robust solution (a saddle point) to the mutual

Examole: As an illustrative example. we consider a chann irln‘ormation game for the memoryless vector MAC (this follows
pie: AAS an H bie, %y applying the results of [32], [33] to each of the constraints

trace constraint given bYr(H_. H.) = nyng forny = ng = that define the capacity region)

4 (the noise covariance matrix was fixed &), = o2 I) and '

- . . ; Consider a scenario witli' users, each one transmitting
plot in Fig. 6 the actual relative bit-rate loss and duality gap as . : . . : )
. . L . overny dimensions with a (possibly different) power constraint
given in (44) for a channel realization, along with the gap upp

bounds of (45) (both the asymptotic and the nonasymptotic verﬂQk) < P and with channeH ;.. The signal model is the

sions), as a function of the SNR definedBY Q) /o2. natural extension of (1) given by
K

VI. EXTENSION TO THEMULTIPLE-ACCESSCHANNEL y= Z Hz, +n (48)
k=1

In this section, we extend the previous results on the sing|grere the noise is assumed to be white without loss of gen-
user case and prove the optimality of the uniform power allocgrajity1s j.e., n ~ CA (0, I). As in the single-user case of

tion in terms of robustness for the MAC. In particular, we shoWection IV, we impose some constraints on the set of possible
that all rates inside the capacity region of the compound veCHannels{H,} € H 2 2, x --- x Hx to avoid the trivial
MAC are achieved when each user uses a uniform power gjution (note that the class of channels seen by each user
location. Note that, for the specific case of Gaussian-distributﬁghy be different). We assume that each7sgtis isotropically
channel matrices with i.i.d. entries, the optimality of the uniforminconstrained, i.e., with unconstrained right singular vectors
power allocation in the sense of ergodic capacity was provggke Definition 1 in Section V).
in [10], [11] (the proof is the natural extension of that of the 19 the noise is not white. i _ | hiten th ed

. . . . € noise IS not wnite, the receiver can always prewniten the receive
smglg-user case givenin [1] based on the concavity of the IOg@%BaI and then the signal model in (48) with white noise applies. (It is also
functlon). possible to explicitly consider a colored noise as was done in Section 1V.)
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Player 1/2 Player 2/1
"Transmitter" "Nature"

oy W ;

a L n

i i i npXn, i i
B : P y
A o

o X | H, |

i R S }
S i

Fig. 7. Communication interpreted as a two-player game for the multiple-access channel.

In the multiple-access channel, we do not deal any more witlorst case region of the set of achievable rates for a fixed set
a single capacity measure but with a capacity region. In paf transmit covariance matric§€),} is expressed as the fol-
ticular, the achievable rate region for a given realization of thewing intersection:
set of channel§H,} and with a fixed set of covariance ma-
trices{Q,} (Gaussian codes are assumed since they maximize RUQ:Y, H)= [] RUQ. {H:})  (51)
each of the boundaries that define the region) is as in (49) at the {Hi}eH

bottom of the page [4], [43]. Assuming that the transmit covari-, . , . o . .
page [4], [43] g fPICh is closed and convex because it is the intersection of

ance matrices are constrained in their average transmit pova <od and s A " that the t " :
the capacity region is [43], [44] closed and convex sets. Assuming that the transmit covariance

matrices are constrained in their average transmit power, the
C({H.\) = R C{H.)). 5o) Worst case capacity region (capacity region of the compound
({H1}) U (@}, {H1}) (30) vector Gaussian MAC) is [43]

Tr(Qlc)EPk;
Q. =Q; =0
- cmy= U RUQ.M (52)
Note that the convex closure operation usually needed [4] is Tr (Qy) < Px,
unnecessary in this case because the region is already closed Q=Qi >0

and convex as show_n in [43], [44]. .V\{hiCh also happens to be closed and convex as shown in The-
From the perspective of robustness under channel uncertain Y2 In [45], an expression similar to (52) was obtained as
we are interested in the worst case capacity region, i.e., in s ) X P

set of rates that can be achieved regardless of the set of chanrﬁ%@;l%/;:?'\t,\?ss ?ﬁr?sigggjggerree?rllc))n‘l'(r?gr;\?:r%? ggsecsssagrty

. er
states chosen from the set of possible chanfiflg} € H. periect ; ; .
This can be formulated as a game (see Fig. 7), where one plar)%:]rlon is formally characterized in the following theorem.

is the transmitter and the other player, who controls the whole4As argued in [43], achievability follows easily using randomized codes and

set of channels{Hk} is nature. The worst case capacity rethe converse is established since reliable communication has to be guaranteed
o matter what channel state is in effect. Similarly to the single-user case, the

. . . . . . n
gion is, in fact, the notion of capacity region of the _compounggpacity region remains the same if the receiver is uninformed of the channel
MAC [43], [20] (see also [28, p. 288]). Mathematically, thestate [28, p. 293].

RU{Q,}Y, {H)) = {(Rl, s R):0 <) Ry < logdet (InR + ZHkaHf) VSC{l,...,K} } . (49)

kesS keS
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Theorem 2:The capacity region of the compound vectomherefore, the expression of the worst case capacity region in
Gaussian memoryless MAC composediofusers with power (52) reduces to
constraints{ P}, number of transmit dimensionén,}, and
ng receive dimensions (without knowledge of the channel C(H) =R {Pe/niln,}, H)

state) is as in (53) at the bottom of the page, where the CIaSchh together with (55), gives the desired result of (53). Now

chﬁ?nelé‘-(“s an |?otrop'|:|?lIytunfcor:strawlﬁd Stﬁt (unconst]rcalg at (52) has been rewritten as (53), it is clear that it is a closed
right singular vectors) set of rates within the region of (53 2 nd convex region.

are achieved when each user utilizes a Gaussian code wi e now focus on proving the inequalities of (56). We first

uniform power allocation consider a single user in the seaind show that with a uniform
power distribution, the boundary can never decrease. Then, we
apply the same idea for the rest of the user§.ilConsider the

minimization of the boundary with respect to the charfgbf

which implies an independent signaling over the transmit dhe jth user inS: for any given set of channeld .}, ,, we
mensions for each user. have

Proof. The rate region given by (51) is the intersection of
a set of regions each of which is, in turn, defined by the intersec- ) H
tion of 2Kg— 1 nontrivial inequalities as in (49). Wgcan, thereﬂtrelfﬁ, log det (I"R + Z HiQ Hy )
fore, rewrite the rate region of (51) as the region defined by the
more restrictive of each one of th& — 1 inequalities overthe = inf logdet (Rn, + HleHH)
set of possible channels (as was done in [43]) in (55), also at the Hi€™
bottom of the page. Note that the capacity region of the com-_ inf logdet (
pound vector Gaussian MAC as given by (52) and (55) is the HicH,

QZ:Pk/nkIn;‘.v 1§]{,SK (54)

keS

L, + QH{'R, H) +logdet (R,,)

natural counterpart of the capacity of the single-user compound Ho1
vector Gaussian channel of (21). Similarly, (53) is the natural H}g%, logdet (I, + Pi/ni Hi R, Hl) + logdet (Ry,)
counterpart of (22).

We have to show now that the inequalities defining the rate
region in (55) corresponding to nonuniform power distributions= " inf logdet | I, + P/nH HE + Z H.Q.HY
are always more restrictive than for the uniform power distribu- Hi€ res
tion, i.e., k#1

where

inf logdet <InR + Z HkaHkH>

{Hp}eH

keS
€ Rnl é I'n,R+ ZHkaHkI'{
keS
S {Hln}leogdet <InR+ZPk/TLkaH]Ij> y k#l
1€
' kes is the interference-plus-noise covariance matrix seen bitlthe
vVSC{l,..., K} user and the inequality comes from invoking Lemmas 1 and 2

as was done when proving Theorem 1 in the single-user case.
The previous reasoning can be sequentially applied to each of

the users in the st to finally obtain
This has the important consequence that the worst case rate re-

VQu:Tr(Q) < P Qu=Qp >0, 1<k<K. (56)

gion of the uniform power allocation contains the worst case rate -
region corresponding to any other power allocation strategy, i. gH,m logdet | I, + Z H, Q. Hj
keS
g = < inf logdet InR—I—ZPk/nkaHf .
VQu: Tr(Q)) < Pr, @, =Q 20, I1<k<K. {(Hijen keS
C(H) = {(Rl, 10< > Ry < mf  log det (I,m + > Po/nicH HY ) VSC{l,...,K} } (53)
kES kes

R{Q,.}, H):{(Rl./ o RE):0< Y Ry < < a I%f log det (InR+ZHkaHH)7VSg{1, ...J(}}. (55)

keS keS
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Worst case capacity region for two users

45 ) .
uniform power allocation

w
[6,]
T

(bits/transmission)
N
[4,] w
T T

RZ
N
T

nonuniform power allocation

e
(8]
T

0.5

0 ! ! ! ] ! )
0 1 2 3 4 5 6

R, (bits/transmission)

Fig. 8. Worst case capacity region corresponding to the channel eigendaBBsH ") = [9.80, 9.24, 4.59]" andA (H.H}') = [9.19, 5.45, 1.29]" when
using a uniform and nonuniform (accordingXe, = [0.64, 0.34, 0.02]” andAg, = [0.52, 0.40, 0.08]”) power allocation. The latter is obtained as the
intersection of the three capacity regions plotted by thin lines.

Therefore, a nonuniform power allocation always has vahere); (-) denotes theth ordered eigenvalue in decreasing
lower (or at most equal) worst case boundary for all inequalitiesder and equality is achieved when all tRgs have the same
defining the capacity region in (56). This concludes the proofeigenvectors with eigenvalues in the same order.

O Proof: This resultis a generalization of the particular case
It is important to remark that all points inside the worst casé = 2 considered in [40, Theorem 9.G.3.a] and is proved in
capacity region are achieved by the same structure of transigitpendix C. O

covariance matrice§Q,.}, i.e., by a uniform power allocation

{Px/niI,, }. Thisis a significant difference with respect to theC oﬁlsr'sfaeir;tzg IS\ZSéggl#]?/:)\lgci(;ﬁ;;tgiggigﬁgk} are un-
case with CSIT obtained from (50) in which each point of thé '

region requires, in general, a different structure for the transmit
covariance matrices [44]. inf logdet <InR +Z Py./niH,, HkH)
It is possible to further simplify the expression for each off{+}€% keS

the boundaries of the worst case capacity region (53) obtained -

in Theorem 2, provided that the left singular vectors of the class. inf Z log (1+ Z Pe/ni); (Hka)> . (58)

of channels are unconstrained as well (this means unconstrained »: (Hx H{)}eLn ;= s

receive as well as transmit directions). In other words, only the

singular values of the channels are constrained and, therefangis implies that the worst case is obtained by choosing the
H). € Hy if and only if {\;(HxH}')} € Ly, (we similarly same left singular vectors for eah, (the right singular vectors
definely 2 Ly, X% L, ). We first state alemma and thenare irrelevant) such that the eigenvaluesthfH,' are ordered
proceed to simplify the boundaries of the worst case capacitythe same way for alt.

region in (53). Example: In Fig. 8, the worst case capacity region of a

Lemma 3: Let { R} be a set off n x n Hermitian matrices. two-user system is plotted for a class3ok 3 matrix channels
Then, the following inequality is verified: with eigenvalues constrained to be exactly

dot (R +---+ Ry) 2 H Qi (Ba) +---+ i (Ry) (57) A (H.HT') = [9.80, 9.24, 4.59)"
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and to contain the worst case rate region of any other possible power
A (Hng) =[9.19, 5.45, 1.29]". allocation strategy. In other words, the capacity region of the
compound vector Gaussian MAC is achieved when each of the

users is using a uniform power allocation.
The three inequalities defining the capacity region corre-

sponding to the uniform power allocation are simultaneously
minimized by the same worst case set of channels according to
(58). We also plot the worst case capacity region corresponding ) ) N
to a nonuniform power allocation, in particular for Consider the eigendecompositions
Ao, = [0.64, 0.34, 0,027 A=U,D,U" and B=UpDpUp
1 . ’ . ? .

and whereD, = diag({)\A,i}) andDp = diag({)\B,i}) (We
A [0.52, 0.40, 0.08]" assume eigenvalues in decreasing order). It follows that
Q. = V.04, V.40, U. .

det (I + AB) = det (I + DAﬁHDBﬁ)

APPENDIX A
PROOF OFLEMMA 1

In this case, however, the three inequalities are not simulta-
neously minimized by the same choice Hf, and H>. To whereU = UXU 4. If A hasn — k zero eigenvalues, we can
obtain the capacity region, therefore, we have to obtain tQgite

three capacity regions in which each one of the three inequal- D,; 0
ities is minimizeds (plotted in thin lines) and then compute Da = { N }
the intersection. This is due to the fact that, in general, there 0 0
are no channel#l; and H, that simultaneously minimize all U= [(}-1 [jQ] , U, c C"**
inequalities, unlike in the uniform case.

D, , € C*** (nonsingulay

and then
VIl. CONCLUSION det (I + DAIJ'HDBff)

When transmitting a vector signal through a MIMO channel, - H

the power allocation over the transmit dimensions has to be  _ ;. <I+ {DA,I 0] lU1 ] Dulih © ]>
! ST = B U1 2

properly chosen. When the instantaneous channel realization is H
known, the solution is well known and is based on diagonal- 2
izing the channel and performing water-filling over the channel Dy, O fjf
eigenmodes. When the channel realization is unknown at the det | I [ ]
transmitter, but the channel statistics aqgriori known, the op-
timal power allocation can, in principle, be precomputed. In this
sense, the uniform power allocation has been previously shown

in the Iltergture to be optimum in terms of ergodic capacity for — det (D4, det (DA 4 U DBUl)
some particular cases.

This paper has considered the case in which not even the k k
channel distribution is known at the transmitter. We have for- > (H )\A_i> (H ()\21k_4+1 ey (f,fDBﬁl)))
] i=1

mulated the problem within the framework of game theory in
which the payoff function of the game is the mutual informa- .
tion and the players are the transmitter and a malicious nature. H

det (I + DA,1f]fDBﬁ1)

Mathematically, this has been expressed as a maximin problem, F A4 ki1 ABnki)

obtaining a robust power allocation under channel uncertainty.
This problem characterizes the capacity of the compound vector -
Gaussian channel. The uniform power allocation has been ob- — H + A i+t Ap,i)
tained as a robust solution of the game in terms of capacity =1
for the class of isotropically unconstrained channels (uncowhereA; (-) denotes théth eigenvalue in decreasing order. In
strained “directions”). The loss of capacity when using the urfiRe first inequality, we have used the inequality [40, Theorem
form power allocation has been analytically bounded, showifgG.-3-a]
that for high SNR the loss is small. n
For the more interesting and general case of the MAC, the det(A+B) > [ (M Ai (B))
uniform power allocation for each of the users also constitutes i=1
a robust solution. To be more specific, the worst case rate

{fith lity verified forl7} DU, di | hed/
gion corresponding to the uniform power distribution is sho equality verified forlU; DU, diagonal, i.e., wheW, is

Wy permutation matrix. In the second inequality, we have used the

15The worst case capacity region corresponding to the nonuniform povdBDlncare Separation Theorem [46, p. 209]
allocation in Fig. 8 has been computed by choosing the channels with ~H -
left singular vectors as dictated by Lemma 3 and by arbitrarily choosing Ap ; > A; (Ul DBUl) > AB,itn—ks 1<i<k
the right singular vectors to diagonalize the transmit covariance matrices
and then optimizing over the permutations only. The ultimate worst case.
capacity region by properly optimizing the right singular vectors may b\@"th equality verified WherUl (note thaﬂ Ul Ik) selects
even smaller. the k smallest diagonal elements Bfg. Since the logarithm is
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a monotonic increasing function, taking the logarithm on bothhereX;; contains in the main diagonal the optimum singular
sides completes the proof. Equality is achievedlfobeing a values{o%; ,;}, Upn andV y are two arbitrary unitary matrices,
permutation matrix that sorts the diagonal element®gfin  andIlis the set of thev! different permutation matrices of size
increasing order, i.elJ = J. Note, however, that il has zero ng x ny. To check that the left inequality of the saddle point is
eigenvalues, theli; can be freely chosen as longldsemains verified just note that
unitary. O
&3,V (Q, H)
APPENDIX B 1 e - .
MIXED STRATEGY NASH EQUILIBRIA = > log det (I+ Yy g PVyQVyP )

. . . . . " P
In this appendix, we characterize the solutions to the mixed- e

strategy saddle point given by (13). I 1 o
By the saddle-point property of (13), it must be that < logdet ( I+ X3 B ! Z (PQP )

Pcll
Epyy Epy V(Q. H) > &, U(E,: Q, H).

N *Hqvx 7:. L ~ApH
However, by the concavity of the logdet function [39], it holds < log det (I +Zy Tpdiag (nT! 1;[ (PQP )))
that

< logdet (I+ P SHH g
&V (Q, H) S V(E,,Q, H). < logde ( + Pr/nr ¥y H)

=&, U (P, I. H
Therefore, it must be the case that Pu (Pr/nr 1, H)

£, 0(Q, H)=V(E,. Q, H), VH:py(H)>0 whereQ 2 VQV ., anddiag (X) denotes a diagonal matrix
. ° . ° _ . with the diagonal elements oX. The first inequality comes
which, by the strict concavity of the logdet function [39] androm the concavity of the logdet function, the second from

(6), implies that Hadamard's inequality [39], [4], and the third from the fact that
HQ,H" — HQ,H" the diagonal elements of; 3" p.; (PQPH) equal
VleQZvH:p*Q(Ql)>O7 pa(Q2)>07 p*H(H)>0 1

> 1
—Tr(Q) = —1Tr(Q) < Pr/nr.

Thus, we can conclude th@t =@, forv Q,, @,: pj, (@) >0, T T

Po (@2) > 0 (note that if the set of useH’_s h.ave acommon |t then follows thatf,,&,: ¥ (Q, H) < &,. ¥ (Pr/nrl, H).

null space, by the nature of the saddle pointin (13), all the usgflys, we have characterized the uniform power alloca@itr=

@'s will be orthogonal to that subspace). In other words, the,, /.. I as a mixed strategy saddle point of the strategic game.
optimal mixed strategyy, reduces to a pure stratey". We

can now invoke Theorem 1: @ were nqt the u_niform power APPENDIX C

allocation, the _set of optimdll’s vyould align their largest sin- PROOF OFLEMMA 3

gular values with the smallest eigenvaluedsf, and the best ) o
solution would then be given by the uniform power allocation N this proof, we make use of the theory of majorization. For
Q" = Pr/nrl. definitions and further details, the interested reader is referred

The problem now is to find a mixed strategy;, so that the to [49]- ) ] . )
saddle-point conditions are satisfied Using the following consequence of Poincaré separation

theorem [46, p. 211]:
Epary V(Q, H) <&y V(Pr/nrl, H) <&, V(Pr/nrl, H). .
Recall that the mixed strategy, must satisfy max Tr (X "AX ) => Xi(4)
i=1

XAX=I,
V (Pr/nrl, Hy) =V (Pr/nrl, Hs)
whereA is ann x n Hermitian matrix,X € C™** with k& < n,

for VH,, Hy: py (H1) > 0, py (H2) > 0 [16]. Function g ), (-) denotes theth eigenvalue in decreasing order, we
U (Pr/nrI, H)only depends ol through its singular values gpiain

and it is minimized by some optimal sgt}; ,}. Therefore, any

pa that puts positive probability on channds with singular k

values given by{o%; ;} and arbitrary right and left singular vec- Z Ai Z R;| = max Tr x" Z R; | X
tors satisfies the right inequality of the saddle point. We just i=1 J XTX=L J

have to find the appropriateg such that the left inequality of
the saddle point is also satisfied. An example of such an optimal
mixed strategyy, is one that puts equal probability on each el-
ement of the set k
{H=Uuz;PV: Pe} =22 (R,

i=1 j

IN

j Cax T (XHRJ-X)
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In addition, fork = n, we have

Sa(Tr)=n(Tn)
:ZTr(R])

SHRL
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(4]
(3]

(6]

(71

Therefore, we have proved that the sum of the eigenvalues mal®!

jorizes the eigenvalues of the sum (see [40] for definitions)

)\1<ZRj>,.... <ZR>

J

STMER) LY (R

We can now proceed as in [40, Theorem 9.G.3.a)lfes 2.
Using [40, Theorem 5.A.2.c], we have

10g)\1<ZRj>, log/\n<ZRj>

<Y | log Z A1
J

or, equivalently

ngA <ZRJ) > glogZ)\i (R;)

<:>10gH/\ <;RJ> > logll_JI;EJ:/\

In particular, fork = 1

(R;), ..., logZ)\n (R;)

det (R + -+ Ry) ZH -+ X (Ry). O
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