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Abstract—This paper addresses the joint design of transmit a whole [1], when multiple antennas are used at both sides of a
and receive beamforming or linear processing (commonly wireless link [2], or simply when a frequency-selective channel
termed linear precoding at the transmitter and equalization at s hroperly modeled by using, for example, transmit and receive
the receiver) for multicarrier multiple-input multiple-output filterbanks 31, | ficul ! MIMO ch ’ | . f
(MIMO) channels under a variety of design criteria. Instead of iiterbanks [3]. . n particular, channels quSIng rom
considering each design criterion in a separate way, we generalize the use of multiple antennas at both the transmitter and at the
the existing results by developing a unified framework based receiver have recently attracted significant interest because
on considering two families of objective functions that embrace they provide an important increase in capacity over single-input

most reasonable criteria to design a communication system: single-output (SISO) channels under some uncorrelation
Schur-concave and Schur-convex functions. Once the optimal o
conditions [4], [5].

structure of the transmit-receive processing is known, the design .
problem simplifies and can be formulated within the powerful In terms of spectral efficiency, a MIMO system should be
framework of convex optimization theory, in which a great designed to approach the capacity of the channel [6], [2],
number of interesting design criteria can be easily accommodated [7]. In light of this observation, a frequency-selective MIMO

and efficiently solved, even though closed-form expressions may ~hannel can be dealt with by taking a multicarrier approach,

not exist. From this perspective, we analyze a variety of design hich i 1k itv-lossl| truct d all
criteria, and in particular, we derive optimal beamvectors in the which 1s a well-known capacity-lossless structure and allows

sense of having minimum average bit error rate (BER). Additional US t0 treat each carrier as a flat MIMO channel [2], [8]. A ca-
constraints on the peak-to-average ratio (PAR) or on the signal pacity-achieving design dictates that the channel matrix at each
dynamic range are easily included in the design. We propose two carrier must be diagonalized, and thenwater-filling power
multilevel water-filling practical solutions that perform very close  g5cation must be used on the spatial subchannels (or channel
to the optimal in terms of average BER with a low implementation . . . .
complexity. If cooperation among the processing operating at dif- eigenmodes) O_f all carr-|ers (61, [2], [7,]' Note that this requires
ferent carriers is allowed, the performance improves significantly. channel state information (CSI) available at both ends of the
Interestingly, with carrier cooperation, it turns out that the exact  link, which we assume in the rest of the paper. In theory, this
optimal solution in terms of average BER can be obtained in solution has the implication that an ideal Gaussian code should
closed form. be used on each spatial eigenmode and carrier according to its
Index Terms—Array signal processing, beamforming, joint allocated power [6]. In practice, however, each Gaussian code
transmit-receive equalization, linear precoding, MIMO channels, js substituted by a simple (and suboptimal) signal constellation

space-time filtering, water-filling. and a practical (and suboptimal) coding scheme (if any). The
complexity of such a solution is still significative since each
|. INTRODUCTION channel eigenmode requires a different combination of signal

. constellation and code, depending on the allocated power. To
M ULTIPLE-INPUT multiple-output (MIMO) channels rﬁduce the complexity, the system can be constrained to use

| arse in many q|ﬁerent scenarios such as W_henabunq% same constellation and code in all channel eigenmodes
of twisted pairs in digital subscriber lines (DSLs) is treated "’tﬁossibly optimizing the utilized bandwidth to transmit only

over those eigenmodes with a sufficiently high gain), i.e., an
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and [3], the sum of the mean square error (MSE) of all chanrieturns out that the optimal solution in the sense of minimum
substreams (the trace of the MSE matrix) was used as the obj@oerage BER can be obtained in closed form.

tive to minimize under an average power constraint. This crite-The paper is structured as follows. In Section Il, a brief pre-
rion was generalized by using a weighted sum (weighted tradieinary description of convex optimization problems and of
in [14]. In [3], a maximum signal to interference-plus-noise ratimajorization theory is given. The signal model is introduced
(SINR) criterion with a zero-forcing (ZF) constraint was alsin Section Ill. The main result of the paper (the optimal struc-
considered. For these criteria, the original complicated desityme for Schur-concave and Schur-convex objective functions)
problem is greatly simplified because the channel turns out toisegiven in Section IV. Section V is devoted to the systematic
diagonalized by the transmit-receive processing. In [15], the d#esign of beamforming under the framework of convex opti-
terminant of the MSE matrix was minimized, and the diagonatization theory. In Section VI, additional constrains to control
structure was found to be optimal as well. In [16], the resultse PAR are considered. Simulation results are given in Sec-
were extended to the case of a peak power constraint (maximtiom VII. The final conclusions of the paper are summarized in
eigenvalue constraint) with similar results. Section VIII.

We remark that the channel-diagonalizing property is of para- The following notation is used. Boldface upper-case letters
mount importance in order to be able to solve the problem. Thenote matrices, boldface lower-case letters denote column vec-
main interest of the diagonalizing structure is that it allows tars, and italics denote scalars. The supersctipfs (-)*, and
scalarizationof the problem (meaning that all matrix equationg-)? denote transpose, complex conjugate, and Hermitian op-
are substituted with scalar ones) with the consequent great serations, respectivelyX]; ; (also[X];;) and[X]. ; denote the
plification. In light of the optimality of the channel-diagonal-(:th, jth) element andth column of matrixX, respectively. By
izing structure in all the aforementioned examples (including > B, we mean thatA — B is positive semidefinite. The
the capacity-achieving solution), one may wonder whether ttrace, determinant, and Frobenius norm of a matrix are denoted
same holds for other criteria. Examples of other reasonable &y Tr(-), ||, and|| - || », respectively. By diaf X } ), we denote
teria to design a communication system are the minimizatianblock-diagonal matrix with diagonal blocks given by the set
of the maximum bit error rate (BER) of the substreams, tH&X,}. The gradient of a function with respecttas written as
minimization of the average BER, or the maximization of the;xf(x), We define(z)* 2 max (0, x).
minimum SINR of the substreams. In these cases, it is not clear
whether one can assume a diagonal structure, as was obtained
in the previous cases.

In this paper, we consider different design criteria based onln Section V, a variety of objective functions are considered
optimizing the MSEs, the SINRs, and also the BERs directlynder the powerful framework of convex optimization theory
Instead of considering each design criterion in a separate weh@]-[21]. For this purpose, we first give an overview in Sec-
we develop a unifying framework and generalize the existirfipn 1I-A of the potential and advantages of this framework.
results by considering two families of objective functions thdtoughly speaking, one can say that once a problem has been
embrace most reasonable criteria to design a communicatfpressed in convex form, it has been solved. However, before
system: Schur-concave and Schur-convex functions that arsing able to express the different criteria in convex form, a sim-
in majorization theory [17]. For Schur-concave obijectivelification of the problem is necessary. Majorization theory [17]
functions, the channel-diagonalizing structure is always oprovides us with useful tools to simplify many matrix-valued
timal, whereas for Schur-convex functions, an optimal solutigfoblems, which we review in Section II-B.
diagonalizes the channel only after a very specific rotation
of the transmitted symbols. Once the optimal structure of tife Convex Optimization Problems
trgpsmit—receive processing is kr_10\{vn, the design problem sim-y generalconvex optimization probleftonvex prograris
plifies and can be formulated within the powerful frameworks ine form [19], [21]:
of convex optimization theory, in which a great number of

Il. PRELIMINARIES

interesting design criteria can be easily accommodated and min  fo(x)

efficiently solved, even though closed-form expressions may x

not exist. We analyze a variety of criteria, and in particular, we st fi(x) <0, 1<i<m

derive optimal beamvectors in the sense of having minimum hi(x) =0, 1<i<p

average BER. A convex optimization approach for the simple

case of utilizing a single spatial eigenmode (in other wordaherex € R is the optimization variablefy(x), ..., fm(x)
using a single beamforming per carrier) was also taken in [18]re convex functions, ant; (x), ..., h,(x) are linear func-

Additional constraints on the peak-to-average ratio (PAR) tibns (more exactly affine functions). The functignis theob-

on the signal dynamic range are easily included in the desigrtive functioror cost functionThe inequalitiesf;(x) < 0 are
within the convex optimization framework. We propose twealledinequality constraintsand the equationk;(x) = 0 are
multilevel water-filling practical solutions that perform verycalled equality constraintsWhen the functions; and h; are
close to the optimal in terms of average BER with a low inmlinear (affine), the problem is calledliimear program(LP) and
plementation complexity. If cooperation among the processilgmuch simpler to solve.

operating at different carriers is allowed, the performance Many analysis and design problems arising in engineering
improves significantly. Interestingly, with carrier cooperationcan be cast (or recast) in the form of a convex optimization
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problem. In general, some manipulations are required to con-Definition 2 [17, 1.A.1]: Let x, y € R". Vectorx is ma-
vert the problem into a convex one (unfortunately, this is not gbrized by vectory (or y majorizesx) if
ways possible). The interest of expressing a problem in convex . .
form is that although an .analytlcal squ_tlon may not exist and Z o < Z Vi, l<k<n—1
the problem may be difficult to solve (it may have hundreds P P
of variables and a nonlinear nondifferentiable objective func- n
tion), it can still be solved (numerically) very efficiently, both Tp) = Z i)
in theory and practice [21]. Another interesting feature of ex- i=1 i=1
pressing a problem in convex form is that additional constraintsd .
represent it by < y.

can be straightforwardly added, as long as they are convex. egbefinition 3[17, 3.A.1]: A real-valued functio defined on
example, in the problem addressed in this paper, itis very simple noe .
. . a setA C R™ is said to be Schur-convex ot if

to add constraints to control the dynamic range of the power
amplifi)er [22] and the PAR of the transmitted signal (c.f. Sec- x<y on A= ¢x)<H(y).
tion VI).

Convex programming has been used in related areas s&dilarly, ¢ is said to be Schur-concave ohif
as FIR filter design [23], antenna array pattern synthesis [24],
power control for interference-limited wireless networks [25], x=<y on A= ¢(x)24(y)
and transmit downlink beamforming in a multiuser Sce”ariRsaconsequence,gﬁfis Schur-convex ont, then— is Schur-
with a multiantenna base station [22]. concave ond and vice versa.

Solving Convex Optimization Problemé some cases, |t js important to remark that the sets of Schur-concave and
convex optimization problems can be analytically solved usirger_convex functions do not form a partition of the set of all

the Karush-Kuhn-Tucker (KKT) optimality conditions, an¢nctions. In fact, neither are the two sets disjoint (the intersec-
closed-form expressions can be obtained. In general, howeygy, is not empty), nor do they cover the entire set of all func-
one must resort to iterative methods [19], [21]. In the last tg[)s.

years, there has been considerable progress and developmentma 1 [17, 9.B.1]:Let R be ann x n Hermitian matrix

of efficient algorithms for solving wide classes of conveyii, diagonal elements denoted by the vedt@nd eigenvalues
optimization problems. Recently developédterior-point 4o 6ted by the vectox. Then

methodscan be used to iteratively solve convex problems

efficiently in practice by dealing with the constrained problem d=< A

as a sequence of unconstrained problems in which a Newton

method can be efficiently used. This was an important break-Lémma 2 [17, p. 7]:ALet x € R" and1 € R" denote the
through achieved by Nesterov and Nemirovsky in 1988. Th@pnstant vector with; = 377, z;/n. Then

showed that interior-point methods (initially proposed only for
linear programming by Karmarkar in 1984) can, in principle,
be generalized to all convex optimization problems. In [26], @ | emma 3 [17, 9.B.2]:For anyx € R", there exists a real

very general framework was developed for solving convex ogymmetric (and therefore Hermitian) matrix with equal diagonal
timization problems using interior-point methods. In additiony|ements and eigenvalues givensy

the difference between the objective value at each iteration and

the optimum _value can be upper bounded using c_luality theory . SIGNAL MODEL

[19], [21]. This allows the utilization of nonheuristic stopping . o . )
criteria such as stopping when some prespecified resolution ha¥/e consider a communication system with transmit and

been reached. Another interesting family of iterative metho#lg receive dimensions. This gives rise to a MIMO channel that
arecutting-plane method1]. can be represented by a channel matrix. Many different commu-

nication channels can be expressed under the unified notation
of a channel matrix such as a frequency-selective channel em-
ploying transmit and receive filterbanks [3], a bundle of twisted
We introduce the basic notion of majorization and state somairs in DSL [1], or a wireless multiantenna system [27], [2]. Al-
important results (see [17] for a complete reference of the suhough the results in this paper are valid for any MIMO channel,
ject). Majorization makes precise the vague notion that the comie focus on a wireless multiantenna system to gain insight into
ponents of a vectok are “less spread out” or “more nearlybeamforming issues traditionally associated with arrays of an-
equal” than the components of a vector tennas.
Definition 1: For anyx € R", let To deal easily with the frequency-selectivity of the channel,
we take a multicarrier approach without loss of optimality (since
it is known to be a capacity-lossless structure [2], [8]):

NE

1< x.

B. Majorization Theory

Ty 2o 2 T ye=Hgsp +ng, 1<E<SN @)

denote the components &fin decreasing order (also termedvherek denotes the carrier indeX] is the number of carriers,
order statistics ok). s € C"*1 js the transmitted vectoH, € C"z*"7 js the
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Fig. 1. Matrix processing and multiple beamforming interpretations of the communication system. (We assume for the clarity of the flguee thatk.) (a)
Matrix processing interpretation at carrier (b) Multiple beamforming interpretation at carrier

channel matrixy, € C"=*! s the received signal vector, ands;, = byz;. The transmitter is constrained in its average total

n;, € C"&*l s a zero-mean circularly symmetric complexransmit powee

Gaussian noise vector with arbitrary covariance maRiy,, N N

i.e.,n, ~ CN(0, R, ). The channel is assumed fixed durin 21 _ 2

the transmissi(on of a%lock and known at both sides of the co?n— E [”kak” ] B ; 1Bl < Pr 3

munication link as well as the noise covariance matrix. _ _ o )
Ateach carriek;, the matrix channel ha&), < min(nz, ng) where Pr is the power in units of energy per block-transmis-

channel eigenmodes spatial subchannel.e., nonvanishing Sion (or, equivalently, per OFDM symbol). The power in units

singular values of the channel matrix) [2]. We can use thef €nergy per symbol period is given # = Pr/N, and the

as a means of spatial multiplexing [28] to transmit simultan®OWer in units of energy per secondlis/ T, whereT is the

ously L, symbols by havind.; established substreamidotice Symbol period. In Section VI, a separate power constraint per

that established substreams and spatial subchannels (or cha@ft§inna is considered. Note that a power constraint per carrier

eigenmodes) are different concepts that may or may not col«l|7 < Pr can be readily incorporated into the problem for-

cide, depending on whether the channel is diagonalized or falation.

(c.f. Section IV). Although the notation in this paper allows The received vector at thieth carrier after the equalizer is

for arbitrary values ofL, in a practical system, we will typi- % — AH )

cally haveL, < Kj to have an acceptable performance. The k ke Yk

transmitted vector at théth Carrier after ”near pl’eCOding iSWhereAkH c CLk XNnR g the receive matrix processing’ and

k=1

[see Fig. 1(a)] %), € CL+*1 is the estimation ok;. Again, each column of
L. A, can be interpreted as a beamvector adapted to each spa-
s) = Bpx), = Z by iTh.: @) tigl channel substream at carrier i.e., 5 ; = aﬁiyk [see
Pt Fig. 1(b)].

Hitherto, only an independent processing at each carrier
wherex;, € C"**! represents thd, transmitted symbols has been considered, and we call it t@rier-noncooper-
(we assume zero-mean unit-energy uncorrelated (white) systive approach[see Fig. 2(a)]. This scheme, however, can
bols? i.e., E[xyxy/] = Ir,), By € C"m*!+ is the transmit pe further generalized by allowing cooperation among car-
matrix processingby ; 2 [B].,:, andzy; 2 [xx]:- We can riers, which we term thearrier-cooperative approachsee
think of each column oB; as a different beamvector corre-Fig. 2(b)]. The signal model is obtained [similarly to (2)—(4)]
sponding to each transmitted symbol, giving rise to a multipley stacking the vectors corresponding to all carriers (e.g.,
beamforming architecture [see Fig. 1(b)]. Note that if only one” = [xT, ..., x%]), by considering global transmit and
symbol is transmitted per carriek{ = 1 V k), then (2) reduces receive matrice® € C(rN)*Lr (the transmit power con-
to a classical beamforming structure with a single beamvectstraint reduces tdB||2 < Pr) and A# ¢ CLrx(maN),

Iwhite symbols account, for example, to having independent bit streams. IrPEquation (3) is a short-term power constraint (for each channel state) as
the case where we have colored symbols due, for example, to a coded trapposed to a less restrictive long-term power constraint that would allow the
mission, a prewhitening operation can be performed prior to precoding at th@nsmit power to exceeBr for some channel states, as long as it is compen-
transmitter, and the corresponding inverse operation can be performed aftersted by some other channel states (this constraint, however, requires knowledge
equalizer at the receiver. of the channel statistics or at least of some future realizations of the channel).
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Fig. 2. Carrier-cooperative versus carrier-noncooperative approaches. (We assume for clarity of the fiyrestHat'k.) (a) Carrier-noncooperative approach.
(b) Carrier-cooperative approach.

where Ly = Y.~ , L is the total number of trans- IV. OPTIMALITY OF THE

mitted symbols, and by defining the global channel as CHANNEL-DIAGONALIZING STRUCTURE

H = diag {H,}) € C»=M)x(nrN) This general block pro-

cessing scheme was used in [2] to obtain a capacity-achieving’he joint transmit-receive matrix design is, in general, a
system. This model can easily cope with intermodulation ternggmplicated nonconvex problem. As previously mentioned,
unlike the noncooperative model of (1), that implicitly assumder some specific design criteria, the original complicated
the carriers to be completely orthogonal. The carrier-noncoap-oblem is greatly simplified because the channel turns out
erative processing model (2)—(4) can be obtained from the mdpebe diagonalized by the transmit-receive processing, which
general carrier-cooperative model by settlBig= diag{B;}) allows ascalarizationof the problem (meaning that all matrix
and A = diag{A.}), i.e., by imposing a block-diagonal equations are substituted with scalar ones). Examples are the
structure orB andA.. In fact, it is this block-diagonal structure minimization of the (weighted) sum of the MSEs of all channel
that makes the carrier-noncooperative scheme less general apdfial substreams [13], [3], [14], the minimization of the
therefore, have a worse performance than the carrier-coopeteterminant of the MSE matrix [15], and the maximization
tive one. From an intuitive point of view, the reason why thisf the mutual information [6], [2], [7]. Recall that for other
generalized model has a potential better performance is thanieresting design criteria (such as the minimization of the
can reallocate the symbols among the carriers in an intellig@verage/maximum BER or the maximization of the minimum
way (e.g., if one carrier is in a deep fading, it will try to uséSINR), it is unknown whether the channel-diagonalizing
other carriers instead), whereas the noncooperative scheme siiilicture is optimal.

always transmit.,, symbols through théth carrier, no matter  In the following, we generalize these results by developing a
what the fading state of the carriers is. From a mathematicalified framework. Instead of analyzing each design criterion in
point of view, however, the carrier-noncooperative model esseparate way, we consider that the design is based on the mini-
more general since the carrier-cooperative scheme is obtaimgidation of some arbitrary objective function of the MSEs of all
by particularizingV = 1 (a single carrier). Thus, in the sequelchannel substreamf ({MSE; ;}), where MSE, ; is the MSE

the carrier-noncooperative matrix signal model is considerefitheith spatial substream at tléh carrier (objective functions
without loss of generality (w.l.0.g.). of the SINRs and of the BERs are readily incorporated as we
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show next). In particular, we will obtain that for a wide familyand particularizing: for all the vectors of the canonical base, it

of functions (Schur-concave and Schur-convex functions), thalows that

channel matrix is either fully diagonalized or diagonalized up opt o 1

to a very specific rotation of the data symbols. A = (HyByByHy + Ry, )" HyBy. )
The objective functionfo is an indicator of how well the Expression (7) is the linear minimum MSE (LMMSE) receiver

system performs: As an example, if two MIMO systems ag Wiener filter[30]. Using the optimal receive matri&;>*, we
identical except in one of the substreams for which one 8btain the following concentrated error matrix: ’

the systems outperforms the other, any reasonable funggion

should properly reflect this difference. Therefore, it suffices g, (B,) a E, (B, AP

to consider only theseeasonable functions Mathematically, 1 wHIH HevrH 1

this is equivalent to saying that the objective functinmust =1 B’“HHk (HkaPk Hy' + R, )™ HiBy
be increasing in each one of its arguments while having the rest = (I+ By Ry, By) (8)

fixed. where we have used the matrix inversion lemmand we

have definedR i, £ HkHR;lek (note that the eigenvectors

and eigenvalues dR i, are the right singular vectors and the
To design the system, we first easily derive the optimum requared singular values, respectively, of the whitened channel

ceive matriceg\;’s, assuming the transmit onBg,’s fixed, and R;kl/?Hk)_

then deal with the difficult part, which is the derivation of the op- However' many Objective functions are natura”y expressed as

timal transmit matrice8,’s (this two-step derivation has beenfynctions of the SINR of each substream. The SINR atithe
independenﬂy used in [16]) The MSE matrix at fttla carrier carrier and theth Spatial substream is

is defined as the covariance matrix of the error vector (given by

A. Optimum Receive Matrix

A lag Hyby i

AL .
er = Xk — Xp): SINR;,; 2 < b HIR; H;by; (9)

all. Ry ;ar,;
A . R I , ik,
Ek(Bk7 Ak) =E [(Xk — Xk)(Xk — Xk) ] A HerH " -
= AFR, A, +1- AFH,B, - BFHIA, yvhereRk,,i = HkBkBk H; + R,, - H,?bk,,ibmHk is the
interference-plus-noise covariance matrix seen byt {th)
®) substream, the inequality comes from Cauchy—Schwarz’s in-
equality [31] [with vectors(R;71/2Hkbk7i) and (R,lc{fak,i)],
and the upper bound is achieved ay; o R,:;Hkbkﬂ- o
R;lekbM, i.e., the Wiener filter again. Noting that the MSE

whereR,, £ E[y,y] = Hy;B;BFH¥ + R,,, . The MSE of
the (kth, ith) substream is thah diagonal element df,, i.e.,

can be expressed as
MSE:(Br, ax.;) P
= [Ek]“‘ MSEkz = [(I + BkI.{HfR;:HkBk)_l]ii
= agiRykakﬂ; +1- ai{,inbk’,; — b£7Hfak,, (6) 1

= 10
1 +b£{inHR,;1Hkbk,i (10)

whereay, ; (resp.by ;) is theith column ofA, (resp.By). Ex- "
pression (6) is mathematically intractable since it is nonconvé}e SINR can be easily related to the MSE as

in (B, ax ;). However, for a giverB,, MSE; ; is convex in 1

a;,; and independent of the other columnsAf, and of the SINRy,,; = MSE,; _ L. (11)
other carriers, which means that eagh can be independently "

optimized. To obtain the optimal receive mat_A)ipt inamore Maximizing the SINR is clearly equivalent to minimizing the
direct way, it suffices to find\ ;, such that the diagonal elementdVISE.

of E; are minimized. This can be done regardless of the spe-The performance of a digital communication system is ul-
cific choice of the objective functiorfy since we know itis in- timately given by the fraction of bits in error or bit error rate
creasing in each argument. Alternatively, we can obmjj‘i" (BER). Under the Gaussian assumption, the symbol error proba-
so thatEy (B, Azpt) < Ei(By, Ay), which in particular im- bility P, can be analytically expressed as a function of the SINR
plies that the diagonal elements are minimized (in fact, both ckB2]:

teria are equivalent as shown in [29]). In other words, we want

o solve P.(SINR) = a.Q (/3 SINR) (12)

where o« and g are constants that depend on the signal
constellation, and Q@ is the O-function defined as
Q(z) = (1/v2m) [2°e=*/2d) [32]. It is sometimes conve-
Setting the gradient af? Ej.c = Tr(Exccf) to zero nient to use the Chernoff upper bound of the tail of the Gaussian
distribution functionQ(z) < (1/2)e~*"/2 [33] to approximate

H&l}l CHEk(Bk, Ak)c, Ve.

k

Vax Tr(EkccH) = RykAkccH —H;Bcc? =0, Ve _ _
k 4Matrix Inversion LemmaA + BCD)~* = A-! — A-'B(DA-'B+
3Given anunreasonablebijective function, it is always possible to redefineC~") " 'DA~".
it in a reasonablavay so that it better reflects the system performance. 5Note that0 < MSE < 1.
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002 BERMSH B. Optimum Transmit Matrix

To obtain the set of transmit matricEB,. }, we now consider
the minimization of an arbitrary objective function of the diag-
onal elements of (8). As we now show, for Schur-concave and
.1 Schur-convex objective functions, the problem is scalarized and
simplified (see Fig. 4). In particular, the complicated nonconvex
matrix function[(I + B Ry, Bx)~'];; is simplified into a set
.1 of simple decoupled scalar expressions. We first consider the
single-carrier case and then extend the results to the multicar-
rier case.
- Theorem 1: Consider the following constrained optimization
problem:

0.018 1+
0.016 -
0.014

0.006F} 1 -
0.004 |-

. minfo(d(E(B))

0.002f -

0 1 L ! 1 I L
0 0.02 0.04 0.06 0.08 0.1 0.12 0.14 0.16
MSE

st. T{BB¥)< P,

1
0.18 0.2

. nexD L .
Fig. 3. Convexity of the BER as a function of the MSE for the range of BER where m.at”XB € C . is the optimization Vanable’.
2% 10-2. d(E(B)) is the vector of diagonal elements of the MSE matrix

E(B) = (I + BERyB) ! [the diagonal elements d&(B)

o _4/»SINR  &re assumed in decreasing order w.l.oB} € C" " is a
the symbol error probability ag. ~ (1/2)ae™? positive semidefinite Hermitian matrix, anfi: R* — R is
(which becomes a good approximation for high values of thg, arbitrary objective function (increasing in each variable). It
SINR). The BER can be approximately obtained from th@en follows that there is an optimal soluti@hof at most rank

symbol error probability (assuming that a Gray encoding 'fé min(L, rank R )) with the following structure.
used to map the bits into the constellation points) as L
 If fo is Schur-concave, then

BER=~ P./k (13)
B=Ug:1¥51 (14)
wherek = log, M is the number of bits per symbol, aid is 5
the constellation size. whereUy; € C"7*L has as columns the eigenvectors
It is important to remark that both the exact BER function,  of Ry corresponding to thé largest eigenvalues in in-
and the Chernoff upper bound are convex decreasing functions creasing order, an®p; = [0diag{op,;})] € CA**
of the SINR (see Appendix H). In addition, they are also convex has zero elements, except along the rightmost main diag-
increasing functions of the MSE for sufficiently small values of ~ onal (which can be assumed real w.l.0.g.).
the argument (interestingly, for BPSK and QPSK constellations, * If fy is Schur-convex, then
this is true for any value of the argument), as can be observed
from Fig. 3 (see Appendix H for a formal proof). Note that min- _ H
imizing the BER is tantamount to minimizing the MSE and to B =Uni25.1 Vs (13)
maximizing the SINR. As a rule of thumb, the exact BER func- whereUy ; andS 5 ; are defined as before, adp €
tion and the Chernoff upper bound are indeed convexinthe MSE  ¢crxL g 5 unitary matrix such thal + BFR;B)"!
for a BER less thag x 10~2. Note that this is a mild assump- has identical diagonal elements. This rotation can be com-
tion since practical systems have, in general, an uncoded BER puted using the algorithm given in [34, Sect. IV-A] or with
less thar2 x 10~2. Therefore, for practical purposes, we can any rotation matrixQ that satisfie$Q:x| = |Qul, Vi, k, [
assume the exact BER and the Chernoff upper bound as convex  gch as the discrete Fourier transform (DFT) matrix or the
functions of the MSE. _ _ Hadamard matrix (when the dimensions are appropriate
Summarizing, the Wiener filter has been obtained as the op- g ,ch as a power of two [33, p. 66]).
timum linear receiver in the sense that it minimizes each of the ) .
L L Proof: See Appendix A. [ |
MSEs, maximizes each of the SINRs, and minimizes each of theFor the simpl in which onl bol .
ple case in which only one symbol per carrier is

BERs (in t(_erms_, .Of capac_lty, the Wiener filter 1S Capac'.ty'los?Fansmitted at each transmission, i.e., a single spatial eigenmode
less and simplifies the signal model). In addition, noting th?; = 1 is utilized, Theorem 1 simplifies, and the diagonal struc-

the SINR can be expressed as a function of_the MSE by (]tg}e simply means that the spatial subchannel (eigenmode) with
and that the BER can be expressed as a function of the SINRh@’hest gain is used [35], [18]

(12) and (13), it suffices to focus on objective functions of the For Schur-concave objective functions, the global commu-

MSEs without loss of generality. nication process including pre- and post-processkigHB

) ) . ) is fully diagonalized [see Fig. 4(b)] as well as the MSE ma-
6Given an uncoded bit error probability of at most-£0and using a proper

coding scheme, coded bit error probabilities with acceptable low values sucﬂ':cg E. Among theL eStab“Shed substreams, orlyare asso-_
10— can be obtained. ciated to nonzero channel eigenvalues, whereas the remainder
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Fig. 4. Scheme of a MIMO communication system with linear Tx-Rx processing. (a) Original matrix system. (b) Fully diagonalized system. (c)Z@idgonali
(up to a rotation) system.

Lo = L — L are associated with zero eigenvalues. The glob&imilarly, the SINRs are given using (11) by
communication process’is

1 <1< Ly a7
_ SINR; = . 17
X — (I + EgJDHJEBJ) ! 2 1D1/2 (D1/2 EB 1X + W) Ué,(i—LO) )‘H, (i—Lo)>» Ly<i<L.
valentl Note that if L > rankRp) (equivalently,L, > 0), then the
or, equivalently L, substreams associated with zero eigenvalues have an MSE
(0 1<i<lL equal to 1 or a zero SINR (which implies a BER equal to 0.5).
’ ) = =0 Therefore, for Schur-concave objective functions, a communi-
9B, (i Lo) AH, (i=Lo) . cation system should be designed such that rankRy) in
B = 1+ aB (i=Lo) Am, (l Lo) ‘ order to have an acceptable performance.
)\ For Schur-convex objective functions, the global communi-
9B, (i—Lo) “Lo) 4y Lo <i<L cation process including pre- and post-processdf§HB is
1+ UB, (i—Lo) )\H, (i-Lo) N diagonalized only up to a very specific rotation of the data sym-

bols [see Fig. 4(c)], and the MSE matilikis nondiagonal with
whereDy; = diag{\x, L}k 1), the )y ;'s are theL largest equal diagonal elements (equal MSEs). In particular, assummg
eigenvalues oR 4 in increasing order, the2, ,’s represent the a pre-rotation of the data symbols at the transmitter V £

allocated power, and is a normalized equivalent white noiseand a post-rotation of the estimates at the recetver VH
The MSE matrix isE = (I + X2 Dy 1¥5,)"!, and the thesame diagonalizing results of Schur-concave funct|0ns apply

corresponding MSEs are given by [see Fig. 4(c)]. Since the diagonal elements of the MSE matrix
E = (I+ BZRyB) ! are equal whenever the appropriate ro-

1, 1<i< Lo tation is included, the MSEs are identical and given by

- 1 1

MSE; = . , Loy<i<L. 18  Msg = Tr(E)
1+UB,(7',—L0) )‘H,(i—Lg) L
1
Lo+yY —— |, 1<i<L.
’ ; 1+0% A,

Note that A = (HBBYH" + R,) 'HB=R_'HB(I +
BYH"R-'HB)-'. (18)
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Similarly, the SINRs are given using (11) by simplicity of notation, we definey, ; 2 0%, . andAy 2 NH, i
I ) . ]
SINR: = i 1, | <i<L. (19) [Note thatvfor Schur-concave fupctmns_wm > ra_nk(RHk),
i . the L, — L; substreams associated with zero eigenvalues are
Lo + '21 o3, i, simply ignored in the optimization process.]
j= 3 J ’

Note that during the design process, the rotation matrix can Ré pSg-Based Criteria

initially ignored since the minimization can be based directly he followi imize th by minimizing th
on the MSE expression in (18). The rotation can be computed";]t € following, we opgm|ze .t e MSEs by n;nr;:mmng the
at a later stage of the design, as explained in Theorem 1. @{)'—t metic, geome_trlc, and maximum means o the MSEs. We
serve that for Schur-convex functions (unlike for Schur-cor®>° show the equivalence of the minimization of the geometric
cave ones), it is possible to hate> rank R ) (equivalently. mean, the minimization of the determinant of the MSE matrix,
Lo > 0) and still obtain an acceptable performance. This is b@pd the_ ma)_('m'_za“on of the mutual mformatlc_)n_. o

1) Minimization of the ARITH-MSEThe minimization of

cause the, symbols are transmitted over tienonzero eigen- iahted) arithmet £ th
values in a distributed way (as opposed to the parallel and H?-e (weighted) arithmetic mean of the MSEs (ARITH-MSE)

dependent transmission of the symbols for fully diagonalizé(}ﬁ""S .considered in[13], [3],' and [14]. We deal \_N_ith the weighted
systems). version, as was extended in [14] under the unified framework of

In both cases of Schur-concave and Schur-convex objectm.\eorem 1. The objective function is

functions, the expressions of the MSEs have been scalarized
in the sense that the original complicated matrix expressions
have been reduced to simple scalar expressions [see (16) and

(18)]. For Schur-concave functions, the specific power distri- | amma 4: The functionfo({z;}) = 3, (w; x;) (@ssuming
bution among the established substreams will depend on mez zi11) is minimized when the weights are in increasing
particular objective functiorfo. Interestingly, for Schur-convex grgerqy,; < w;41, and it is then a Schur-concave function.
functions, the power distribution is independent of the specific  proof: See Appendix B. n
choice off since both the MSE expression in (18) and the ro- gy | emma 4, the objective function (20) is Schur-concave on
tation matrix to make the diagonal elements of the MSE matrégch carriek:. Therefore, by Theorem 1, the diagonal structure
equal are independent @. is optimal, and the MSEs are given by (16). The problem in

It is worth pointing out that there is a set of functions thatonyex form (the objective is convex and the constraints linear)
are both Schur-concave and Schur-convex, such@)Tsuch jgs

functions happen to be invariant with respect to post-rotations 1
of B and vice versa (this can be easily proved using the same ;i Z I —
ideas of the proof of Theorem 1). ek 50 L+ ki 2k,

fo{MSExi}) = (wyi MSEy ;). (20)
ki

Theorem 1 is easily extended to the multicarrier case as fol- (21)
lows. For any carriek, consider the matrices corresponding to S.1. Z ki < Pr
the rest of the carrierfB, }.-.. fixed, and Theorem 1 can be di- i 5
rectly invoked to show the optimal structure B, . 2k 2 0, 1<kE<N,1<i< L.

This particular problem can be solved very efficiently be-
cause the solution has a nice water-filling interpretation (from
the KKT optimality conditions):

In this section, using the optimal receive matrix given by (7)
and the unified framework obtained in Theorem 1, we systemat- ki = (;L_I/le/z)\_lﬂ _ )\—1>+ (22)

. . . . . . . 552 ki 7'k, k,i
ically consider a variety of design criteria. The potential of the v ’

proposed framework is made evident by showing that a gr‘?ﬁt’iere;rl/2 is thewater-levelchosen to satisfy the power con-
variety of interesting and appealing objective functions are &iraint with equality

ther Schur-concave or Schur-convex, and thus, Theorem 1 €aBy Minimization of the GEOM-MSEThe objective function

be a_ppli_ed o scalarize and simplify t_he design. The aim of t %rresponding to the minimization of the weighted geometric
section is to express each problem in convex form so that Ran of the MSEs (GEOM-MSE) is

well-developed body of literature on convex optimization theory
[19]-[21] can be used to obtain optimal solutions very effi- fo({MSE; ;1)) = H(MSEM)W. (23)
ciently in practice using, for example, interior-point methods "
(c.f. Section 1I-A). In fact, it is possible in many cases to ob-
tain simple closed-form solutions by means of the KKT opti- Lemma5: The functionfy({z;}) = [, z;” (assuming; >
mality conditions that can be efficiently implemented in prace;; > 0) is minimized when the weights are in increasing
tice (see [36] for simple practical implementation algorithmsrderw; < w;1, and it is then a Schur-concave function.
derived from the KKT conditions and also for more design cri-  Proof: See Appendix C. ]
teria). . T .

Some of the considered design criteria have also been usgloiareyse "2 Ses™"%, 5 SXhiely incice e corsteits core
in [35] and [18] for the simple case of single beamforming. Faiptimal solution always satisfies them.

V. JOINT TX-RX BEAMFORMING DESIGN. A CONVEX
OPTIMIZATION APPROACH
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By Lemma 5, the objective function (23) is Schur-concave and the maximization of the mutual information are all equiva-
each carriek. Therefore, by Theorem 1, the diagonal structurdent criteria with the solution given by a channel-diagonalizing
is optimal, and the MSEs are given by (16). The problem ®tructure and the classical capacity-achieving water-filling for
convex form (since the objective is log-convex, it is also convake power allocation:

[21]) is® +
wr ; = —_ )\t 29)
1 Wi 4 Zkﬂ M ki . (
(E L+ Akji Zhyi 5) Minimization of the MAX-MSEin general, the overall

(24) performance (average BER) is dominated by the substream with
st Z ki < Pr highest MSE. It makes sense then to minimize the maximum of
k.t

5 the MSEs (MAX-MSE) [37]. The objective function is
Zki >0, 1<k<N,1<0< L.

MSE; ;}) = MSE; ; }. 30
This problem also has a water-filling solution (from the KKT fol eit) n};}x{ il (30)

optimality conditions): Lemma 6: The functionfy({z;}) = max;{z;} is a Schur-

_1) + (25) convex function. _
Proof: See Appendix D. [ ]

1 . By Lemma 6, the objective function (30) is Schur-convex on
wherep~* is the water-level chosen to satisfy the power con- . . )
. . . each carrie. Therefore, by Theorem 1, the optimal solution
straint with equality. Note that fomy.; = 1, (25) becomes the has a nondiagonal MSE matili, with equal diagonal elements
classical capacity-achieving water-filling solutfof6], [2]. 9 9 9

3) Minimization of [E|: The minimization of the deter- given by (18), which have to be minimized (scalarized problem).

minant of the MSE matrix was considered in [15]. We noVlv?ecallthat after minimizing the MSEs, we must still obtain the

. . Lo . optimal rotation matrices so that the diagonal elements of the
show how this particular criterion is easily accommodated

. . SE matricesE,’s are identical. The scalarized problem in
our framework as a Schur-concave function of the diagonal C T .
. -~ convex form (the objective is linear and the constraints are all
elements of the MSE matriK. [For the carrier-noncooperative

—1
Zki = (l’/ Wk,i — )‘k,i

case, simply consider the global MSE matrix defined acspnvex) IS
E = diagEy, ..., Ex).] min ¢
Using the fact thaX > Y = |X| > |Y], it follows that|E]| t i}

is minimized for the choice of the receive matrix given by (7). 1 3 Ly 1
From (8), itis clear thafE| does not change if the transmitma-  s.t. ¢t > - (Lk — Lk) + Z T o
tricesBy’s are post-multiplied by a unitary matrix (a rotation). k = LT AR 2k (31)
Therefore, we can always choose a rotation matrix SoEhiat 1<kE<N
diagonal without loss of optimality (as we already knew from 2 < Pr
[15]), and then A

|E|:HAJ(E):H[E]M' (26) 2k > 0, 1<k<N,1<i< L.

J J This problem has a multilevel water-filling solution (from the

Therefore, the minimization of| is equivalent to the mini- KKT optimality conditions):
mization of the (unweighted) product of the MSEs as in Sec- _1/2\—1/2 N\t
tion V-A2. Phyi = (“k Aei ~ )‘kz) (32)

4) Maximization of Mutual Information:The maximization 1/2 _ .
of the mutual information can be used to obtain a capacityhere{zz;’ "} are multiple water levels chosen to satisfy the

achieving solution [6] constraints ort and the power constraint all with equality. For
the case of single beamforming (i.&;, = 1), the solution sim-
max I=log|I+R;'HQHY (27) plifies to
. . . . . P
whereQ is the transmit covariance matrix. Using the fact that 2k = )\;1 T_l (33)
I+ XY]| = I+ YX|andthaQ = BB¥ [from (2)], the mu- 2N

. . . l
tual information can be expressed (see [29] for detailed connec-

tions between the mutual information and the MSE matrix) a@S Was obtained in [35] and [18]. For the single-carrier case (or
multicarrier cooperative approach), problem (31) simplifies to

I =—logl|E| (28) the minimization of the unweighted ARITH-MSE considered

o , __in Section V-A1 with solutiorz; = (Y2072 — A7)+,
and therefore, the maximization éfis equivalent to the mini- ’ ’

mization of|E| treated in Section V-A3. B. SINR-Based Criteria
Hence, the minimization of the unweighted product of the

MSEs, the minimization of the determinant of the MSE matrix _In the_followmg, we opt|m|ze_the SINR.S _by maximizing the
arithmetic, geometric, harmonic, and minimum means of the

9Under the constraint of usinfy, substreams on each carrier SINRs. We also consider the maximization of the product of the
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terms(1+SINR;, ;) and its connection to the capacity-achieviné\ote that the maximization of the product of the SINRs is equiv-
solution. We can now define the objective function to minimizalent to the maximization of the sum of the SINRs expressed in
as a function of the SINRg ({SINRy.;}) = fo({MSE;}). decibels.
Since, in Theorem 1, we assumed MSE> MSE; 41, the Lemma 8: The functionfo({z;}) = — [[;(z; * = 1) (as-
SINRs are in increasing order SINR< SINRy, ;1. suming0.5 > z; > ;41 > 0) is minimized when the weights

1) Maximization of the ARITH-SINRThe objective func- are in increasing orden; < w;41, and it is then a Schur-con-
tion to be minimized for the maximization of the (weightedtave function.

arithmetic mean of the SINRs (ARITH-SINR) is Proof. See Appendix F. [ |
. By Lemma 8, the objective function (38) is Schur-concave on
fo({SINRy.;}) = = (wx ;SINRy ) (34)  each carriek;, provided that MSE,; < 0.5 Yk, i (this is a mild
ki assumption since a MSE greater than 0.5 is unreasonable for a

. : : ctical communication system). Therefore, by Theorem 1, the
which can be expressed as a function of the MSEs using ul)ﬁ%gonal structure is optimal, and the SINRs are given by (17).
fo({MSE;,;}) = fo({MSE,Zj —1}) The problem expressed in convex form (the weighted geometric

. mean is a concave function[20], [21]) is 1©
=-) wri(MSE;1 —1).  (35)

k,i . NWk i
| {rilka)i 1,} (Ak,i 2k,:)
Lemma 7: The functionfo({z;}) = — 3, wi(z; ' — 1) (as- ’
sumingz; > z;41 > 0) is minimized when the weights are s.t. Zz,” < Pr (39)
in increasing ordetw; < w;41, and it is then a Schur-concave ki
function. Zpi > 0, 1<k<N,1<i<lIy
Proof: See Appendix E. [ |

By Lemma 7, the objective function (35) is Schur-concave omherewy. ; = wx,;/(>; ;wi,;), and it is assumed thay, ; >
each carriek. Therefore, by Theorem 1, the diagonal structur@ V %, i (otherwise, the problem has trivial solutiap; = 0
is optimal and the SINRs are given by (17). The problem eX-k, 7). The solution is easily obtained from the KKT optimality
pressed in convex form (it is actually an LP since the objectiv@nditions as
and the constraints are all linear)ds

2k = W Pr. (40)
max Zwk,i)\k,i 2k,
(SR Particularizing for a uniform weightingu,; = 1, the
blem reduces to the maximization of the geometric mean
t ; < (36) Prot . .
st kz i < Pr subject to the arithmetic mean:
>0, 1<k<N,1<i<lL. 1/L
e e max [0
The optimal solution is to allocate all the available power to ki
the _substream_ Wlt_h maximum Welgh'ged g&iny ; \x. ;) (oth- _ st. 1/Lp sz,i < Pr/Ly (41)
erwise, the objective value could be increased by transferring o
power from other substreams to this substream). Although this 26> 0

solution indeed maximizes the weighted sum of the SINRs, it
is a terrible solution in practice due to the extremely poor SP&fhere .. 2 Eﬁ;l L. From the arithmetic-geometric mean

tral efficiency (only one substream would be conveying infok ; /N » 1 i ity
. A . X _ quality(T], «x) < = >,z (with equality if and only
mation). This criterion gives a pathological solution and shoulfr:]zk - Vk’j_ ) [31], it f(;\llowé that the optimal solution is a

not be usgd._ ) L uniform power allocation
2) Maximization of the GEOM-SINRThe objective func-
tion to be minimized for the maximization of the (weighted) P Pr/Lr. (42)

geometric mean of the SINRs (GEOM-SINR) is

Note that the uniform power distribution is commonly used due
to its simplicity, e.g., [38].

3) Maximization of the HARM-SINRThe maximization of
which can be expressed as a function of the MSEs using (11)tB& harmonic mean of the SINRs (HARM-SINR) was consid-
ered in [35] for the case of single beamforming. Using the uni-

fo({SINRy;}) = — [ ] (SINR ;)" (37)

ki

fo(UMSEi}) = fo({MSE;; — 1}) fied framework of Theorem 1, we can extend this result to the
—1 Wi ;

= H (MSEk_,i - 1)“”” . (38) 11The concavity of the geometric mean is easily verified by showing that the

ki Hessian matrix is positive semidefinite for positive values of the arguments.

The extension to include boundary points (points with zero-valued arguments)
10Note that it is not necessary to explicitly include the constraints corrés straightforward either by using a continuity argument to show fliék +
sponding to SINR; < SINR;. ;1 in the convex problem formulation since (1 — 6)y) > 6f(x) + (1 — 6)f(y) for 0 < 6 < 1 or by considering the
an optimal solution always satisfies them. epigraph of the function and using [19, Prop. 2.7.4].
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case of multiple beamforming. The objective function to be mitdsing the relation between the MSE and the SINR in (11), this

imized is maximization can be equivalently expressed as the minimiza-
. 1 tion of H,m MSE; ; as in (23) withwy, ; = 1, as the minimiza-
fo({SINR; }) = Z SINR (43) tion of the determinant of the MSE matrix (Section V-A3), and
ki ki as the maximization of the mutual information (Section V-A4)

_ ) ) with the solution given by the capacity-achieving expression
which can be expressed as a function of the MSEs using (11)3§) This result is completely natural since maximizing the log-
arithm of (48) is tantamount to maximizing the mutual informa-

MSE; ; .
ki *

Lemma 9: The functionfo({z;}) = >_,(z:/(1 — ;)) (for C. BER-Based Criteria

0 < x; < 1)is a Schur-convex function. Next, we consider that the minimization of the average BER
Proof: See Appendix G. B (the minimization of the maximum of the BERs (MAX-BER)

By Lemma 9, the objective function (44) is Schur-convex oig equivalent to the maximization of the minimum of the SINRs
each carriefs. Therefore, by Theorem 1, the optimal solutiorand to the minimization of the maximum of the MSEs, provided
has a nondiagonal MSE matri, with equal diagonal ele- that the same constellations are used on all the substreams).
ments given by (18), which have to be minimized. The scalar-1) Minimization of the ARITH-BERThe minimization
ized problem in convex form is of the average BER or of the arithmetic mean of the BER’s

(ARITH-BER) can be considered as the best criterion (as-

min Z b suming that after the linear processing at the receiver, each

(e} {zeal 71—tk substream is detected independently). In practice, multicarrier

i communication systems use some type of coding over the

s.t. 1>t > 1 (Lk _ ik) + Z 1 carriers and/or over different transmissions to reduce the BER
- — 1+ Akji Zhi (usually some orders of magnitude). The ultimate measure is

then the coded BER as opposed to the uncoded BER (obtained

L<E<SN  \ithout using any coding). However, the coded BER is strongly
Z zki < Pr related to the uncoded BER (in fact, for codes based on hard
ki decisions, both quantities are strictly related). In such cases,

2k >0, 1<k<N,1<i<Ly. it suffices to focus on the uncoded BER when designing the

(45)  uncoded part of a communication system.

The problem has a multilevel water-filling solution In [39], the minimization of the average BER (and also of the
4 Chernoff upper bound) is treated in detail when a diagonal struc-
ki = (ﬁllc/g)‘k_';/2 _ Azﬁ) (46) ture is imposed. This design criterion has been independently

considered in [40] under a ZF constraint obtaining a nondiag-
nal optimal MSE matrix (in agreement with our results). The

—1/2 . . .0
where {,’“} are multiple water levels chosen to Sat's%bjective function is

the lower constraints on thg,’s and the power constraint,
-1//2
all with equality, and also the constraim}c/ 2 - ok ,

where v is a positive parameter [36]. For thelcgse of fo({BERw}) = Z BER.; (49)
single beamforming (i.e., = 1), the solution reduces to ki
zr = A;l/z(PT/ > ){”2) [35]. For the single-carrier case ) )
(or multicarrier cooperative approach), the problem simplifieéhich can be expressed as a function of the MSEs using (11)
to that considered in Section V-AL. and (12) and (13) as

4) Maximization of the MIN-SINRThe objective function

to be minimized for the maximization of the minimum of the fo({MSE;;}) = Z BER(MSE; ; — 1). (50)
SINRs (MIN-SINR) is i
fo({SINRy;}) = _H,;,i}l{SWRk,i}- (47) Lemma 10: The function fo({z;}) = 3, BER(z; ' — 1)

(assumingd > =x; > 0, for sufficiently smallf such that
This design criterion is equivalent to the minimization of th8ER(z;* — 1) < 2 x 10~2, V1) is a Schur-convex function.
maximum MSE treated with detail in Section V-A5. In [14],the ~ Proof: See Appendix I. [ |
same criterion was used, imposing a channel diagonal structureBy Lemma 10, the objective function (50) is Schur-convex
5) Maximization of the PROD-{@ASINR): Consider for a on each carriek (assuming the same constellation/coding on

moment the following maximization: all substreams of thith carrier), provided that BER < 2 x
10~2 (interestingly, for BPSK and QPSK constellations, this is
max H(1 + SINRy, ;). (48) true for any value of the BER). Therefore, by Theorem 1, the

ki optimal solution has a nondiagonal MSE matilx with equal
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diagonal elements given by (18), which have to be minimized. = MAX-MSE, HARM-SINR, MIN-SINR, ARITH-BER}3
The scalarized problem in convex formz2s and MAX-BER') have the same optimal solution.
Hence, the best performance (given by the ARITH-BER
min Z akg( /3k(t;1 - 1)) criterion with a carrier-cooperative approach) has a
(e il closed-form solution that can be obtained in practice with
. i . low complexity using the simple water-filling solution
L _F of the ARITH-MSE criterion in (22) plus the rotation
st b2t = Ly (Le = La) + z_; 1+ Aiji 2k, matrix.

« Itis very common in the literature of equalization to in-
clude a ZF constraint in the design. Such a constraint can
be easily introduced in the unified framework (see [36] for
details), although the performance degrades due to the ad-

; 1<k<N,1<i< L. ditional constraint.
(51)

Note that we have explicitly included the upper bouhdn

the MSEs to guarantee the convexity of the BER function and,
therefore, of the whole problem. For a general case jth- 1 As explained in Section Il, one of the nice properties of ex-
andN > 1, problem (51) does not have a simple closed-for@ressing a problem in convex form is that additional constraints
solution, and one has to resort to general-purpose iteratih@n be added, as long as they are convex without affecting the
methods such as interior-point methods (see Section 1I-A). Fe#lvability of the problem. Of course, with the additional con-
the single-carrier case (or multicarrier cooperative approachjraints, the closed-form solutions previously obtained are not
the problem simplifies to the ARITH-MSE criterion consideredalid any more.

in Section V-Al plus the rotation matrix to make the diagonal

1<k<N

Zki >0

VI. INTRODUCING ADDITIONAL CONSTRAINTS

elements of the MSE matrix equal. A. Dynamic Range of Power Amplifier
We can easily add constraints on the dynamic range of the
D. Remarks power amplifier at each transmit antenna element, as was done
Some observations are in order. in [22]. Consider a Schur-concave objective function and as-

« Most of the presented methods under the framework 8fme for simplicityL; = LV k. From the optimal structure in
convex optimization theory have nice closed-form sold14) Br = Um, 135, 1, the total average transmitted power

tions that can be easily implemented in practice (see [36] Units of energy per symbol period) by tité antenna is
for simple practical algorithms derived from the KKT op-

N L
timality conditions to implement the water-filling solu- P = 1 I[Blit|?
tions). N ; ; ’
» Method ARITH-BER is clearly the best in terms of av- N
erage BER and is therefore considered as a benchmark. =5 Z Z 0%, U alial® (52)

For the carrier-noncooperative approach, it does not have
a closed-form solution, and an iterative approach is nec- . = ) . ) .
essary such as an interior-point method (see [21] for praghich is linear in the variablegor, ;}. (For the carrier-coop-
tical implementation details). Interestingly, for the singleerative schemeP; = (1/N) > SV |Bliy (b-1yng 1)
carrier and multicarrier-cooperative approaches, the soilherefore, the following constraints are linear:
tion can be obtained in closed form, as mentioned below. I U _
« Methods ARITH-MSE, HARM-SINR, and MAX-MSE af <P<op  1<isnr
have very simple solutions and, as will be observed in tr\ﬁn

simulations, perform really close to the benchmark IVRnna. Similarly, it is straightforward to set limits on the relative

g?&gig;fpf:e&g?;irr;ig;c;ds should therefore be CO'gﬁ/namic range of a single element in comparison with the total
» Two novel multilevel water-filling solutions have been opPOVer for the whole array [22];

tained for the MAX-MSE and the HARM-SINR criteria PF Parray < Pi < pU Parray 1<i<ngp
(see [36] for practical implementation algorithms).
+ Cooperation among carriers improves performanagherep? andp? are the relative bounds, amt,.., = Y b
without significant increase on the complexity (eacks the total power that is also linear {@3, ;}.
carrier can be diagonalized independently, and then, the
largest eigenmodes are selected). B. Peak-to-Aveage Ratio (PAR)

* A striking result (as mentioned in Section IV) is that One of the main practical problems that OFDM systems face

for single-carrier and multicarrier-cooperative systems the PAR. Indeed, multicarrier signals exhibit Gaussian-like
all criteria with Schur-convex objective functions (e.g.,
13Recall that with carrier cooperation, the ARITH-BER and MAX-BER
12\/e have implicitly assumed for each carrier the same constellation and codethods require all spatial/carrier substreams to use the same constella-
on all the spatial eigenmodes. tion/coding scheme in order to be Schur convex.

>~
Il
-

1

1

erea” anda! are the lower and upper bounds for ttiean-



2394 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 51, NO. 9, SEPTEMBER 2003

time-domain waveforms with relatively high PAR, i.e., they ex Delay (as) | Average relative
hibit large amplitude spikes when several frequency comp power (dB)
nents add in-phase. These spikes may have a serious imj 0 -3.3
on the design complexity and feasibility of the transceiver ;3 j§;§
analog front-end (i.e., high resolution of D/A-A/D converter: 30 42 L0000 04154 02057 0.1997]
and power amplifiers with a linear behavior over alarge dynar %0 o _ | 0.a154 10000 03336 03453
ical range). In practice, the transmitted signal has to be clipp 110 17 Ros™ | 02057 03336 1.0000 05226
when it exceeds a certain threshold, and it has detrimental 140 2.6 [ 01997 0.3453 0.5226 1.0000 |
fects on the BER. A variety of techniques have been devised )30 o ) )
deal with the PAR [41], [42]. In this section, we show how thi 280 -4.4 (‘)2222 ‘1’-(3)333 8-2;2: gi;gg
PAR can be taken into account into the design of the beamw igg :g Rus= | 0.0685 03245 10000 03093
tors using a convex optimization framework. Note that the 8 4, 79 | 0.3566 0.1848 0.3093 1.0000 |
ready-existing techniques to cope with the PAR and this a 600 9.4
proach are not exclusive and can be simultaneously used. Zgg :2§

The PAR is defined as 1050 _2]:2

) @ ®)
PARZ max A0 (53)

Fig. 5. (a) Power delay profile type C for HIPERLAN/2. (b) Envelope
correlation matrices at the base station (BS) and at the mobile station (MS) in

. . . the Nokiaenvi t.
whereT is the symbol periodA(t) is the zero-mean trans- ¢ NoKaenvironmen

mitted signal, andr> = E[A2(¢)]. Since the number of car-
riers is usually largeN > 64), A(t) can be accurately modeled VII. SIMULATION RESULTS

asa Gaussian_ random process (ce_ntral-limit theorem) with Z€T%0r the numerical results, we have chosen the European stan-
mean and variance [41]. Using this assumption, the proba-ya 4 pipERLAN/2 for WLAN [9]. It is based on the multicar-

bility that th_e PAR exc_eeds certain threshpld or, equivalenther modulation OFDM (64 carriers are used in the simulations).
the probability that the instantaneous amplitude exceeds a CWé consider multiple antennas at both the transmitter and the re-

ping valueAcp, is ceiver, obtaining, therefore, the multicarrier MIMO model used
throughout the paper. Perfect CSl is assumed at both sides of
Pr{|A(t)| > Acip} = 2Q <@> ) (54) the communication link?
o The frequency selectivity of the channel is modeled using the
power delay profile type C for HIPERLAN/2 as specified in [43]
[see Fig. 5(a)], which corresponds to a typical large open space
. indoor environment for non line of sight (NLOS) conditions
Paip(0) =1 — (1 —20 <@>> ) (55) with 150 ns average r.m.s. Qelay spread and 1059 ns maximum
o delay (the sampling period is 50 ns) [9]. The spatial correlation
of the MIMO channel is modeled according to thekiamodel
In other words, in order to have a clipping probability lower thagefined in [44] (which corresponds to a reception hall) speci-
P with respect to the maximum instantaneous amplitddg,,  fied by the correlation matrices of the envelope of the channel
the average signal power must satisfy fading at the transmit and receive side given in Fig. 5(b), where
the base station is the receiver (uplink) (see [44] for details of
- Aclip : ) (56) the model). It provides a large open indoor environment with
o1 (HLZ)”(N)) two floors, which could easily illustrate a conference hall or a
shopping galleria scenario. The matrix channel generated was

When using multiple antennas for transmission, the previollgrmalized so tha}’, E[[H;;(n)|"] = 1. The SNR is defined
equation has to be satisfied for all transmit antennas. Those c8f.fhe transmitted power normalized with the noise variance.
straints can be easily incorporated in any of the convex desi%gé_:or the numerical simulations, the following design cri-

derived in Section V with a Schur-concave objective functiof€li@ have been considered: ARITH-MSE, GEOM-MSE,
MAX-MSE (equivalentl, MIN-SINR or MAX-BER),

GEOM-SINR, HARM-SINR, and ARITH-BER (benchmark).
| ML The utilization of the Chernoff upper bound instead of the exact
Z Z op, |[Um 1lial> <ol 1<i<nr (57) BER function gives indistinguishable results and is therefore
k=1 I=1 not presented in the simulation results. Unless otherwise spec-
ified, carrier-noncooperative approaches are considered. The
which is linear in the optimization variable{sr%m}. Such a performance is given in terms of outage BER (averaged over
constraint has two effects in the solution: i) The power distri-
bution over the carriers changes with respect to the diStfibUtiOﬁqn practice, channel estimation errors exist, and it is therefore necessary to
ith h . dii th | itted d qﬁjantify the loss for each of the methods. Alternatively, it is possible to take
without the constraint, and ii) the total transmitted power FORRannel estimation errors into account in the design either from a worst-case or
as necessary. from a Bayesian perspective (c.f. [36]).

0<t<T, 02

The clipping probability of an OFDM symbol is then [41]

g S Uclip(P)

Using (52), the constraint is
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Outage BER (QPSK) in a MIMO(2,2) channel Outage BER (16-QAM) in a MIMO(4,2) channel

[~ GEOM-MSE | "
—— GEOM-SINR

| - ARITH-MSE |’

—0- HARM-SINR |

-8~ MAX-MSE |}

— ARITH-BER |:

—*- GEOM-MSE

| =%~ GEOM-SINR |

-©- ARITH-MSE

—0— HARM-SINR |

-8 MAX-MSE
A

10°° 1 1 1

5 8
SNR (dB) SNR (dB)

Fig. 6. BER (at an outage probability of 5%) versus SNR when using QPSKg. 7. BER (at an outage probability of 5%) versus SNR when using 16-QAM
ina 2 x 2 MIMO channel withL. = 1 for the GEOM-MSE, GEOM-SINR, ina4x 2 MIMO channel (two transmit and four receive antennas) Wits 1
ARITH-MSE, HARM-SINR, MAX-MSE, and ARITH-BER criteria (without forthe GEOM-MSE, GEOM-SINR, ARITH-MSE, HARM-SINR, MAX-MSE,
carrier cooperation). and ARITH-BER criteria (without carrier cooperation).

the channel substreams), i.e., the BER that can be guaranteeabability no greater than the prespecified value?,(Gs ex-

with some probability or, equivalently, the BER that is nopected. The BER, however, can be severely affected if a very low
achieved with some small outage probability. In particular, weipping probability is imposed due to power backoffs. From
consider the BER with an outage probability of 5%. Note th#tig. 8(a), a choice of: = 4 seems reasonable. In Fig. 8(b), the
for typical systems with delay constraints, the outage BER rigsults are shown as a function of the SNR foe 4. For the

a more realistic measure than the commonly used mean BE&Ssign with PAR constraints, the BER is slightly higher due to
that only makes sense when the transmission coding blockhe additional constraint. However, the system is guaranteed to
long enough to reveal the long-term ergodic properties of tihave a clipping probability of at most 18, unlike in the uncon-

fading process (no delay constraints). strained case, where nothing can be guaranteed. Recall thatin a
Single BeamformingFirst, we show some results wherpractical system, the final BER increases due to the clipping.
using a single channel spatial substrealn (= 1 Vk). In Multiple Beamforming: We now consider the simultaneous

Fig. 6, the BER is plotted versus the SNR for x2 MIMO transmission of more than one symbol per carrier, i.e., multiple
channel using QPSK constellations. Clearly, the ARITH-BEBeamforming (we considdr, = L Vk).

criterion has the lowest BER because it was designed forin Fig. 9, the BER is plotted versus the SNR for ax44
that. The MAX-MSE criterion performs really close to theMIMO channel withl, = 2 using QPSK constellations. In gen-
ARITH-BER and can be considered the second best criteri@ral, similar observations hold, as for the single beamforming
The HARM-SINR, as well as the ARITH-MSE, performcase. However, it is worth pointing out that in this case, the
reasonably well (in fact, for values of the BER higher thaRlARM-SINR method performs much closer to the benchmark
102, they outperform the MAX-MSE). The GEOM-MSE andthan the ARITH-MSE method. For higher values of the ratio
the GEOM-SINR criteria perform really badly in terms of BERL/ min(nr, ng), the superiority of Schur-convex criteria with
and should not be used. In Fig. 7, the same results are shaespect to the Schur-concave methods (which have a channel-di-
for a 4 x 2 MIMO channel using 16-QAM constellations, andagonalizing structure) becomes more clear (c.f. [36]).

the same observations hold. Carrier Cooperation: We now analyze the improvement in
Therefore, the best criteria are (in order) ARITH-BERperformance when using cooperation among carriers for the
MAX-MSE, HARM-SINR, and ARITH-MSE. best methods: ARITH-MSE, HARM-SINR, MAX-MSE, and

Including PAR Constraints:We now consider the introduc- ARITH-BER. Recall that with carrier cooperation, the HARM-
tion of PAR constraints, as described in Section VI. We p&INR, MAX-MSE, and ARITH-BER criteria provide the same
rameterize the clipping amplitude with respecit@sA.;, =  solution since they are all Schur-convex functions (see Sec-
wuy/ Pr/nr to make the results independent of the total trantien V-D).
mitted powerPr. In Fig. 8, the probability of clipping along In Fig. 10, the BER is plotted versus the SNR with and
with the BER (when using QPSK constellations) is shown favithout carrier cooperation for a 2 2 MIMO channel with
the ARITH-MSE criterion in a 2 2 MIMO channel both with L, = 1 using QPSK constellations. In this case, carrier
PAR constraintsB.;;, = 10~2) and without them. In Fig. 8(a), cooperation gives an improvement of 0.5-2 dB. For higher
the results are shown as a functionaf It can be observed values of the ratid./ min(nr, ng), the improvement is even
how the design with the PAR constraints always has a clippimgore significant (c.f. [36]).
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Prob. clipping (SNR=8.00 dB) in a MIMO(2,2) channel

— ARITH-MSE .
—%-_ ARITH-MSE (PAR const.

Prob. clipping (mu=4.0) in a MIMO(2,2) channel

......{ %= ARITH-MSE (PARconst) | ...

10° i ' :

Outage BER (QPSK) in a MIMO(2,2) channel
T T T

—_ E
- ARITH-MSE (PAR const.

2 25 3 35 4 45 5 55 5
mu SNR (dB)

@ ()

Fig. 8. Probability of clipping and BER (at an outage probability of 5%) when using QPSK i 28 RIIMO channel withL, = 1 for the ARITH-MSE criterion
with and without PAR constraints (without carrier cooperation). (a) As a functign(@r SNR= 8 dB andF.;;, < 10~2). (b) As a function of the SNR (for
= 4 andPC“p S 1072).

Outage BER (QPSK) in a MIMO(4,4) channel

Outage BER (QPSK) in a MIMO(2,2) channel
T

*'| =&~ ARITH-MSE-noncoop

""" - ©: ARITH-MSE-coop

vvvvvvvvvvvvvvvvvvvvv -+ | =9= HARM-SINR-noncoop
B : -9 HARM-SINR-coop

2 -8 MAX-MSE-noncoop

- 8- MAX-MSE-coop

—— ARITH-BER-noncoop

-~ ARITH-BER-coop

—4~ GEOM-MSE
| -~ GEOM-SINR
-6~ ARITH-MSE
-0~ HARM-SINR :
-8~ MAX-MSE : 10
— ARITH-BER

8
SNR (dB) SNR (dB)

Fig. 9. BER (at an outage probability of 5%) versus SNR when using QPJRI- 10.  BER (atan outage probability of 5%) versus SNR when using QPSK
in a 4 x 4 MIMO channel withL = 2 for the GEOM-MSE, GEOM-SINR, ina 2x 2 MIMO channel withL. = 1 for the ARITH-MSE, HARM-SINR,
ARITH-MSE, HARM-SINR, MAX-MSE, and ARITH-BER criteria (without MAX-MSE, and ARITH-BER criteria with (coop) and without (noncoop)
carrier cooperation). carrier cooperation.

that embrace most reasonable criteria to design a communica-
tion system: Schur-concave and Schur-convex functions. For
In this paper, we have formulated and solved the joint d&chur-concave objective functions, the channel-diagonalizing
sign of transmit and receive multiple beamvectors or beam-nsructure is always optimal, whereas for Schur-convex func-
trices (also known as linear precoders and equalizers) for mtibns, an optimal solution diagonalizes the channel only after
ticarrier MIMO systems under a variety of design criteria. Ina very specific rotation of the transmitted symbols.
stead of considering each design criterion in a separate way, w®nce the optimal structure of the communication process has
have developed a unifying framework that generalizes the éeen obtained, the design problem has been formulated within
isting results by considering two families of objective functionthe powerful framework of convex optimization theory, in which

VIIl. CONCLUSIONS
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a great number of interesting design criteria can be easily asatrix ¥ € C"* % is composed of zero elements and contains
commodated and efficiently solved, even though closed-for®/2 in its top-right block so thal# % = D. In particular,
expressions may not exist. From this perspective, a varietyipf,. > I, thenD = D and® = D:)/Q], and ifny < L,
design criteria have been analyzed, and in particular, optimpbn > — [0 D1/2] (note that the position of matri*/2
beamvectors have been derived in the sense of having minimyithin X is different from the classical definition of the SVD
average BER. It has been shown how to include additional cqB1] because the diagonal elementsR¥ Ry B are assumed
straints on the design to control the dynamic range of the traf\§increasing order). Assuming that matii is nonsingular

mitted signal and the PAR. We have also considered the mgygh eigendecomposition given By = UyDgUE, we can
general scheme in which cooperation among different carrig|gite

is allowed to improve performance. We have obtained two mul-

tilevel water-filling practical solutions to optimize the spatial B = RI_{lﬂQE = UHD;Il/("UgQE. (58)
substreams at all carriers (one minimizes the maximum MSE, L

and the other maximizes the harmonic mean of the SINRs) thaicase thaRy is singular, clearlyB must be orthogonal to
perform very close to the optimal solution in terms of averad8€ nNull space oR ;r; otherwise, this c}gmponent could be made
BER with a low implementation complexity. Interestingly, for?€"© Without changing the value &~ R B and decreasing

H .
carrier-cooperative schemes, it turns out that exact optimal 3(BB" ). Knowing thafB must be orthogonal to the null space
lution in terms of minimizing the average BER can be obtainét] R, (58) is still valid using the pseudo-inverselj; instead

in closed form. of the inverse.
The idea now is to find another matrR by changing the
APPENDIX A unitary matrix Q in (58) with the lowest possible value of
PROOF OFTHEOREM 1 Tr(BB) (note that any matriB obtained from (58) satisfies

by definition the desired constraiB” RyB = D). Using

We first present a couple of lemmas and then proceed t0 thgy,ma 11 T(.BBH) can be lower bounded as follows:
proof of Theorem 1.

Lemma 11 [17, 9.H.1.h]:If A andB aren x n positive Tr(BB?) =Tr (EZHﬂHDEIfj)
semidefinite Hermitian matrices, then i
> didg
=1

whereU 2 UZQ, d; is theith diagonal element ab in in-
creasing order, and\y ;}- , are thel largest eigenvalues
of Ry in increasing order. If the;s are different, the lower
bound is achieved by matrikJ being a permutation matrix.
for subsets of equd}’s, the corresponding subblock T3 can

Tr(AB) > Aaidp it

i=1

wherel 4 ; and A, ; are the eigenvalues ¢ andB, respec-
tively, in decreasing order.

Lemma 12:Given a matrixB € C""*” and a positive
semidefinite Hermitian matrid®R gy € C"7*"7 such that
B"RyB is a diagonal matrix with diagonal elements i

increasing order (possibly with some zero diagonal element? f any rotation rr?atrlx.l Therehfqrelz,Iﬂ is chosen "Jl‘s a r(;rmu-
it is always possible to find another matrix of the fornfetion matrixP that selects thd. largest eigenvalues &y

B = Uy ,5p, of at most ranki A min(Z, rank(R.7)) that In the same orderln_g as thk's, thg Iowe_r bound is achlev_ed.

e e o P . = H From (58), we obtain that the optimBl [in the sense of min-
satisfiesBYR ;B = BT Ry, B with T(BB) < Ti(BB ), - 100 S value of TfBB")] has at most rank, and is of
whereUy ; € C"7*L has as columns the eigenvectorsof g

. — —1/2 _
corresponding to thé largest eigenvalues in increasing orde%fT];oLrT]B - UffDH HI:E = UH,ltEB,lv whereUH,1d_€
andSp; = [0, 1 diag{on,i})ry] € CL*L has zero as as columns the eigenvectorsRof; corresponding

elements, except along the right-most main diagonal (Whi%?l theL largest e|ge2vzjillues in increasing order, aig; =
can be assumed real w.1.0.g.). 0 diag{og,:})] € C**" has zero elements, except along the

Proof: Although the basic idea follows easily from the ap/9nt-mostmain diagonal (which can be assumed real w.l.m.g.).
Proof of Theorem 1.The constrained optimization

plication of Lemma 11, the formal proof for arbitrary values :
of ny, L, and rankR ;) becomes notationally involved. SincgProblem to be solved is
BfRyB € CI*L s diagonal with diagonal elements in in- min  fo(d(E(B)))
creasing order, we can write B

st. T(BBY) < Pr

BRyB=D = [8 [0)} whered(E) is the vector of diagonal elements of the MSE ma-
trix E(B) = (I + BERyB) L. It is mathematically conve-
where D is a square diagonal matrix (with real diagonahient to assume the diagonal elementd¢B) in decreasing
elements) of dimensior, £ min(L, rankRy)). Using the order, i.e.d;(E) > d;1(E). Interestingly, this is without loss
singular value decomposition (SVD) [31], we can then writef generality. In fact, most reasonable objective functions (in
R},QB = QX, whereQ € C™r*"r js a unitary matrix particular, all the objective functions considered in Section V)
whose columns are the left singular vectors, the right singulaave a fixed preferred ordering of the arguments, i.e., the value
vectors (eigenvectors db) are the canonical vectors, andof the function is minimized with a very specific ordering of the
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arguments. In such cases, it suffices to relabel the argumentsience, we can write an optimB as
so that the preferred ordering is decreasing. In a more general
case, however, a function may not have a fixed preferred or-
dering since it may depend on the specific value of the argu-

ments. In such a case, since we are interested in minimizi\% . LxL
L ) ' ) ) ereUy 1 andX 5 1 are defined as before, aMiz € C“** is
the objective function, we can define and use instead the fu o1 Bl

po e rotation to make the diagonal element BYRyB)!
tion fo(x) = minpen fo(Px), whereP is a permutation ma- g Hot nB)

: . . : ; identical. [ |
trix, andII is the set of the.! different permutation matrices.
The original minimization off, without the ordering constraint APPENDIX B
is eguwalent to the minimization of, with the ordering con- PROOF OFLEMMA 4 (fo(x) = 3, (w; 7))
straint. Therefore, we can always assume that the function to ¢
be minimized has been properly defined so that the orderingGiven a set ofz;’s in decreasing ordet; > ;41, the func-
constraint can be included without loss of generality (c.f. SeBon fo(x) = 3=, (w; ;) is minimized with the weights in in-
tion V). creasing ordew; < w;1. To show this, assume for a moment
If f, is Schur-concave, it follows by Lemma 1 thathatfori <j(z; > x;), the weights are such that > w;. We
fo(AME)) < fo(d(E)), where A\(E) is the vector of eigen- NOW show tha_t the terr(m{i z; + w; ;) can be minimized by
values ofE in decreasing order. The lower bourfg(A(E)) SIMPly swapping the weights:
is achieved if matrixE = (I + BfRyzB)~! is diagonal wi(z; — x;) >wi(z; — ;)
with diagonal elements in decreasing order or, equivalently,
if BERyB is diagonal with diagonal elements in increasing A
order. Furthermore, for any giveB, one can always find a  To prove thatf, is Schur-concave, defing(x) = — fo(x) =

B Up 1331, for fo Schur-concave
B {UHJEBJVQ for f, Schur-convex

= Wik +WT; 2> Wik + Wi,

rotation matrixQ so thatQ” (B¥R;B)Q becomes diagonal >_; 9i(zi), whereg;(z) = —w;z. Functiong is Schur-convex
and use instead the transmit matBx= BQ, improving the becausey;(a) > g;,(b) whenever > b [17, 3.H.2]. There-
performance (by this rotation, the utilized power remains tHere. fo is Schur-concave (see Definition 3). u
same). This implies that for Schur-concave functions, there is

an optimalB with a structure such thd” RyB is diagonal APPENDIX C

with diagonal elements in increasing order. PROOF OFLEMMA 5 (fo(x) = []; #;")

If fo is Schur-convex, the opposite happens. By Lemma 2,Given a set of strictly positive;’s in decreasing order; >
it follows that fo(d(E)) is minimized wherE has equal diag- z,,, > 0, the functionfy(x) = ], %" is minimized with the
onal elements. Furthermore, for any givBn one can always weights in increasing order; < w;, . To show this, assume
find a rotation matrixQ so thatQ”(I + B¥RyB)~'Q has for a moment that foi < j (z; > =;), the weights are such
identical diagonal elements by Lemma 3 (the sum of diagor#atw; > w;. We now show that the terr(m“i”ix;f’f) can be
elements offt remains the same regardless@jf and use in- minimized by simply swapping the weights:
stead the transmit matri8 = BQ, improving the performance ’ ‘
(the transmit power remains the same). Therefore, for an op- w; log <—L> > wjlog <—l>
timal B, we have thaf(I + BYRyB)~!];; = (1/L)Tr(I +

J Lj

BARyB)!. Interestingly, regardless of the specific function — <ﬁ) 1 > (ﬂ) ’
fo, the optimalB can be found by first minimizing TI + ?71 . wl’j’
BYRyB)~! (withoutimposing the constraint that the diagonal = zxy’ >ap T

elements be equal) and then including the rotation to make thel_ : ' A

. . . . . o prove thatfy is Schur-concave, defing(x) = —log
diagonal elements identical. The rotation can be found using th ) .
algorithm given in [34, Sect. IV-A] or with any rotation matrix/0) = 2; 6i(w:), Whereg;(z) = —w;log. Functiong

, . : ,
et , . is Schur-convex becausg(a) > g;,,(b) whenevera > b

Q that satisfie$Q,x| = |Qul, V3, k, I, such as the DFT matrix 7, 3.H.2]. Sincefo(x) = e~ and functione—* is de-
or the Hadamard matrix (when the dimensions are appropri%r%’asi'n |nr fois Sochur-concave [17,3.B.1] =
such as a power of two [33, p. 66]). Regarding the minimization gine, Jo T
of Tr(I + B¥RyB) !, since it is a Schur-concave function of
the diagonal elementsfy(d) = E,L.Lzl d;), the previous result
can be applied to show that there is an optilBdkxcluding for

the moment the rotation) such thBf’ R ;B is diagonal with ~ From Definition 1, it follows thatfo(x) = max;{z;} = .

APPENDIX D
PROOF OFLEMMA 6 (fo(x) = max;{z;})

diagonal elements in increasing order. If x <y, it must be thatr;) < ypy (from Definition 2), and
Given thatB”RyB is diagonal, it follows from Lemma therefore,fo(x) < fo(y). This means thaf, is Schur-convex
12 that B has at most rank, 2 min(L, rankRy)) and PY Definition 3. u

can be written aB = Uy X5, whereUy; € Cnrxt
; ; APPENDIX E

has as columns the eigenvectors By corresponding =)

to the L largest eigenvalues in increasing order, and PROOF OFLEMMA 7 (fo(x) = — 32;(wi(z; " — 1))

Y51 = [0 diag{cp,.i})] € CE*L has zero elements, Since thez;’s are strictly positive and in decreasing order

except along the right-most main diagonal. z; > w1 > 0, the functionfy(x) = — 3. (w;(z]* — 1))
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is minimized with the weights in increasing ordey < w;1
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BER as a Function of the MSETo prove that the BER is

(this can be similarly proved as was done in the proof of Lemntanvex increasing in the MSE, it suffices to show that the first

4).
To show thatf, is Schur-concave, defing(x) 2_ fo(x) =
>, gi(z:), whereg;(z) = w;(z~" —1). Sinceg;(a) > g/, (b)

whenever > b, it follows that¢ is Schur-convex [17, 3.H.2],

and thereforef, is Schur-concave (see Definition 3). [ |

APPENDIX F
PROOF OFLEMMA 8 (fo(x) = — [[;(z7* — 1)™)

Given a set of strictly positive;’s in decreasing ordes; >
z;41 > 0, the functionfy(x) = — [[;(z;* —1)** is minimized
with the weights in increasing order; < w,; (this can be
similarly proved, as was done in the proof of Lemma 4).

To show thatf, is Schur-concave provided thaf < 0.5,
define p(x) = log(—fo(x)) = ¥, gi(x:), whereg;(z)
w; log(x~! — 1). Functiong is Schur-convex becaugg(a)
gi+1(b) whenever0.5 > a > b5 [17, 3.H.2]. Sincefy(x)
—e?™®) and function—e” is decreasing in:, fo is Schur-con-
cave [17, 3.B.1].

IAVAN|

APPENDIX G
PROOF OFLEMMA 9 (fo(x) = 3=, (wi/(1 — z:)))

To prove that the functioffiy(x) = >, (x;/(1—=z;)) is Schur-
convex, rewrite it agy(x) = >, g(z;) whereg(z) = z/(1 —
x). Sinceg is convex, it follows thatf, is Schur-convex [17,

3.H.2]. [ |

APPENDIX H
ANALYSIS OF THE CONVEXITY OF THE BER

In this Appendix, we show that the BER and the cor-
responding Chernoff upper bound are convex decreasirﬁe_ﬁ(,;lﬂ)/2
functions of the SINR and convex increasing functions of the———

MSE (for sufficiently small values of the MSE).

BER as a Function of the SINRFo prove that the BER is
convex decreasing in the SINR, it suffices to show that the first

and second derivatives are both positive:

ag( Bz = 1))

ox
— ﬁ ea/i’(x_lfl)/2(x3 _ x4)’1/2 >0, 0<z<1
8T
920 ( Blz—T - 1))
0x?
_ 1 ﬂef,ri(x*171)/2($3 _ x4)’1/2 ﬁ_3_4$ >0
2V 8r x? r—x?

0<z<z,, z, <

where the zeros are

(B+3)— /B2 —105+9

:L’zl =
8
and
. _(ﬂ+3)+\/62—10ﬂ+9
zZ2 — 8

(it has been tacitly assumed that< 1). It is remarkable that
for 8 = 1, both zeros coincide, which means that the BER func-
tion is convex for the whole range of MSE values. To be more
specific, BPSK and QPSK constellations satisfy this condition,
and consequently, their corresponding BER function is always
convex in the MSE.

The same can be done for the Chernoff upper bound
e Bl =1)/2.

He—B(z 1+1)/2

,6 3/2 —1 2 2
— € / e '8 / X
al‘

>0, O0<zr<

p eBl2e=Pat /2y —4 <§ — 2;1:) >0

Ox? =2

8

0<z<t.
=7

and second derivatives @ (/A=) are negative and positive, Therefore, the Chernoff upper bound is convex increasing in the
respectively (note that a positive scaling factor preserves momeSE for MSE < 3/4.

tonicity and convexity):

9Q (V) g

—__ P —pz/2,-1/2
52 87re T <0, O0<z<o0
2 Vep=
0 Q( /6(17) :1 /—367’0$/21’71/2 l_l_/ﬁ >0
0x? 2V 8r T
0<z<o0.

The same can be done for the Chernoff upper baurti/2:

de=P=/? 3

eT:—%e‘ﬁ”“/2<07 0<z<oo
€T

92— Bx/2 2

2—2:<§> e P2 50,  0<z<o0.
xXr

15Function(1 — )« is increasing inc for 0 < x < 0.5.

Concluding, as a rule of thumb, the BER and the Chernoff
upper bound are convex increasing in the MSE for a BER
2 x 10~2 (see [36] for more details).

APPENDIX |
PROOF OFLEMMA 10 (fo(x) = 3, BER(z;* — 1))

To prove that the functiorfo(x) = 3, BER(z;* — 1) is
Schur-convex fof > x; > 0 (for sufficiently smallf such that
BER(z; ' — 1) < 1072 Vi), write fo(x) = 3, g(=;), where
g(z) = BER(z~! — 1). Since functiory is convex within the
range(0, 0] (see Appendix H), it follows thafy is Schur-convex
[17, 3.H.2]. [
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