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Abstract—This paper addresses the joint design of transmit
and receive beamforming or linear processing (commonly
termed linear precoding at the transmitter and equalization at
the receiver) for multicarrier multiple-input multiple-output
(MIMO) channels under a variety of design criteria. Instead of
considering each design criterion in a separate way, we generalize
the existing results by developing a unified framework based
on considering two families of objective functions that embrace
most reasonable criteria to design a communication system:
Schur-concave and Schur-convex functions. Once the optimal
structure of the transmit-receive processing is known, the design
problem simplifies and can be formulated within the powerful
framework of convex optimization theory, in which a great
number of interesting design criteria can be easily accommodated
and efficiently solved, even though closed-form expressions may
not exist. From this perspective, we analyze a variety of design
criteria, and in particular, we derive optimal beamvectors in the
sense of having minimum average bit error rate (BER). Additional
constraints on the peak-to-average ratio (PAR) or on the signal
dynamic range are easily included in the design. We propose two
multilevel water-filling practical solutions that perform very close
to the optimal in terms of average BER with a low implementation
complexity. If cooperation among the processing operating at dif-
ferent carriers is allowed, the performance improves significantly.
Interestingly, with carrier cooperation, it turns out that the exact
optimal solution in terms of average BER can be obtained in
closed form.

Index Terms—Array signal processing, beamforming, joint
transmit-receive equalization, linear precoding, MIMO channels,
space-time filtering, water-filling.

I. INTRODUCTION

M ULTIPLE-INPUT multiple-output (MIMO) channels
arise in many different scenarios such as when a bundle

of twisted pairs in digital subscriber lines (DSLs) is treated as
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a whole [1], when multiple antennas are used at both sides of a
wireless link [2], or simply when a frequency-selective channel
is properly modeled by using, for example, transmit and receive
filterbanks [3]. In particular, MIMO channels arising from
the use of multiple antennas at both the transmitter and at the
receiver have recently attracted significant interest because
they provide an important increase in capacity over single-input
single-output (SISO) channels under some uncorrelation
conditions [4], [5].

In terms of spectral efficiency, a MIMO system should be
designed to approach the capacity of the channel [6], [2],
[7]. In light of this observation, a frequency-selective MIMO
channel can be dealt with by taking a multicarrier approach,
which is a well-known capacity-lossless structure and allows
us to treat each carrier as a flat MIMO channel [2], [8]. A ca-
pacity-achieving design dictates that the channel matrix at each
carrier must be diagonalized, and then, awater-filling power
allocation must be used on the spatial subchannels (or channel
eigenmodes) of all carriers [6], [2], [7]. Note that this requires
channel state information (CSI) available at both ends of the
link, which we assume in the rest of the paper. In theory, this
solution has the implication that an ideal Gaussian code should
be used on each spatial eigenmode and carrier according to its
allocated power [6]. In practice, however, each Gaussian code
is substituted by a simple (and suboptimal) signal constellation
and a practical (and suboptimal) coding scheme (if any). The
complexity of such a solution is still significative since each
channel eigenmode requires a different combination of signal
constellation and code, depending on the allocated power. To
reduce the complexity, the system can be constrained to use
the same constellation and code in all channel eigenmodes
(possibly optimizing the utilized bandwidth to transmit only
over those eigenmodes with a sufficiently high gain), i.e., an
equal-rate transmission. Examples of this pragmatic and simple
solution are found in the European standard HIPERLAN/2 [9]
and in the U.S. standard IEEE 802.11 [10] for wireless local
area networks (WLANs).

Assuming that the specific signal constellations and coding
schemes for all the substreams have been selected either after
some bit distribution method or simply by taking a simple uni-
form bit distribution, it is then possible to further optimize the
system to improve the quality of each of the communication
links. In particular, we consider the joint design of linear pro-
cessing at both ends of the link (commonly referred to as linear
precoder at the transmitter and equalizer at the receiver), ac-
cording to a variety of criteria, as we now review. In [11]–[13]
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and [3], the sum of the mean square error (MSE) of all channel
substreams (the trace of the MSE matrix) was used as the objec-
tive to minimize under an average power constraint. This crite-
rion was generalized by using a weighted sum (weighted trace)
in [14]. In [3], a maximum signal to interference-plus-noise ratio
(SINR) criterion with a zero-forcing (ZF) constraint was also
considered. For these criteria, the original complicated design
problem is greatly simplified because the channel turns out to be
diagonalized by the transmit-receive processing. In [15], the de-
terminant of the MSE matrix was minimized, and the diagonal
structure was found to be optimal as well. In [16], the results
were extended to the case of a peak power constraint (maximum
eigenvalue constraint) with similar results.

We remark that the channel-diagonalizing property is of para-
mount importance in order to be able to solve the problem. The
main interest of the diagonalizing structure is that it allows a
scalarizationof the problem (meaning that all matrix equations
are substituted with scalar ones) with the consequent great sim-
plification. In light of the optimality of the channel-diagonal-
izing structure in all the aforementioned examples (including
the capacity-achieving solution), one may wonder whether the
same holds for other criteria. Examples of other reasonable cri-
teria to design a communication system are the minimization
of the maximum bit error rate (BER) of the substreams, the
minimization of the average BER, or the maximization of the
minimum SINR of the substreams. In these cases, it is not clear
whether one can assume a diagonal structure, as was obtained
in the previous cases.

In this paper, we consider different design criteria based on
optimizing the MSEs, the SINRs, and also the BERs directly.
Instead of considering each design criterion in a separate way,
we develop a unifying framework and generalize the existing
results by considering two families of objective functions that
embrace most reasonable criteria to design a communication
system: Schur-concave and Schur-convex functions that arise
in majorization theory [17]. For Schur-concave objective
functions, the channel-diagonalizing structure is always op-
timal, whereas for Schur-convex functions, an optimal solution
diagonalizes the channel only after a very specific rotation
of the transmitted symbols. Once the optimal structure of the
transmit-receive processing is known, the design problem sim-
plifies and can be formulated within the powerful framework
of convex optimization theory, in which a great number of
interesting design criteria can be easily accommodated and
efficiently solved, even though closed-form expressions may
not exist. We analyze a variety of criteria, and in particular, we
derive optimal beamvectors in the sense of having minimum
average BER. A convex optimization approach for the simple
case of utilizing a single spatial eigenmode (in other words,
using a single beamforming per carrier) was also taken in [18].
Additional constraints on the peak-to-average ratio (PAR) or
on the signal dynamic range are easily included in the design
within the convex optimization framework. We propose two
multilevel water-filling practical solutions that perform very
close to the optimal in terms of average BER with a low im-
plementation complexity. If cooperation among the processing
operating at different carriers is allowed, the performance
improves significantly. Interestingly, with carrier cooperation,

it turns out that the optimal solution in the sense of minimum
average BER can be obtained in closed form.

The paper is structured as follows. In Section II, a brief pre-
liminary description of convex optimization problems and of
majorization theory is given. The signal model is introduced
in Section III. The main result of the paper (the optimal struc-
ture for Schur-concave and Schur-convex objective functions)
is given in Section IV. Section V is devoted to the systematic
design of beamforming under the framework of convex opti-
mization theory. In Section VI, additional constrains to control
the PAR are considered. Simulation results are given in Sec-
tion VII. The final conclusions of the paper are summarized in
Section VIII.

The following notation is used. Boldface upper-case letters
denote matrices, boldface lower-case letters denote column vec-
tors, and italics denote scalars. The superscripts, , and

denote transpose, complex conjugate, and Hermitian op-
erations, respectively. (also ) and denote the
( th, th) element andth column of matrix , respectively. By

, we mean that is positive semidefinite. The
trace, determinant, and Frobenius norm of a matrix are denoted
by Tr , , and , respectively. By diag , we denote
a block-diagonal matrix with diagonal blocks given by the set

. The gradient of a function with respect tois written as

. We define .

II. PRELIMINARIES

In Section V, a variety of objective functions are considered
under the powerful framework of convex optimization theory
[19]–[21]. For this purpose, we first give an overview in Sec-
tion II-A of the potential and advantages of this framework.
Roughly speaking, one can say that once a problem has been
expressed in convex form, it has been solved. However, before
being able to express the different criteria in convex form, a sim-
plification of the problem is necessary. Majorization theory [17]
provides us with useful tools to simplify many matrix-valued
problems, which we review in Section II-B.

A. Convex Optimization Problems

A generalconvex optimization problem(convex program) is
of the form [19], [21]:

s.t.

where is the optimization variable,
are convex functions, and are linear func-
tions (more exactly affine functions). The functionis theob-
jective functionor cost function. The inequalities are
called inequality constraints, and the equations are
calledequality constraints. When the functions and are
linear (affine), the problem is called alinear program(LP) and
is much simpler to solve.

Many analysis and design problems arising in engineering
can be cast (or recast) in the form of a convex optimization
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problem. In general, some manipulations are required to con-
vert the problem into a convex one (unfortunately, this is not al-
ways possible). The interest of expressing a problem in convex
form is that although an analytical solution may not exist and
the problem may be difficult to solve (it may have hundreds
of variables and a nonlinear nondifferentiable objective func-
tion), it can still be solved (numerically) very efficiently, both
in theory and practice [21]. Another interesting feature of ex-
pressing a problem in convex form is that additional constraints
can be straightforwardly added, as long as they are convex. For
example, in the problem addressed in this paper, it is very simple
to add constraints to control the dynamic range of the power
amplifier [22] and the PAR of the transmitted signal (c.f. Sec-
tion VI).

Convex programming has been used in related areas such
as FIR filter design [23], antenna array pattern synthesis [24],
power control for interference-limited wireless networks [25],
and transmit downlink beamforming in a multiuser scenario
with a multiantenna base station [22].

Solving Convex Optimization Problems:In some cases,
convex optimization problems can be analytically solved using
the Karush–Kuhn–Tucker (KKT) optimality conditions, and
closed-form expressions can be obtained. In general, however,
one must resort to iterative methods [19], [21]. In the last ten
years, there has been considerable progress and development
of efficient algorithms for solving wide classes of convex
optimization problems. Recently developedinterior-point
methodscan be used to iteratively solve convex problems
efficiently in practice by dealing with the constrained problem
as a sequence of unconstrained problems in which a Newton
method can be efficiently used. This was an important break-
through achieved by Nesterov and Nemirovsky in 1988. They
showed that interior-point methods (initially proposed only for
linear programming by Karmarkar in 1984) can, in principle,
be generalized to all convex optimization problems. In [26], a
very general framework was developed for solving convex op-
timization problems using interior-point methods. In addition,
the difference between the objective value at each iteration and
the optimum value can be upper bounded using duality theory
[19], [21]. This allows the utilization of nonheuristic stopping
criteria such as stopping when some prespecified resolution has
been reached. Another interesting family of iterative methods
arecutting-plane methods[21].

B. Majorization Theory

We introduce the basic notion of majorization and state some
important results (see [17] for a complete reference of the sub-
ject). Majorization makes precise the vague notion that the com-
ponents of a vector are “less spread out” or “more nearly
equal” than the components of a vector.

Definition 1: For any , let

denote the components of in decreasing order (also termed
order statistics of ).

Definition 2 [17, 1.A.1]: Let , . Vector is ma-
jorized by vector (or majorizes ) if

and represent it by .
Definition 3 [17, 3.A.1]: A real-valued function defined on

a set is said to be Schur-convex on if

on

Similarly, is said to be Schur-concave onif

on

As a consequence, if is Schur-convex on , then is Schur-
concave on and vice versa.

It is important to remark that the sets of Schur-concave and
Schur-convex functions do not form a partition of the set of all
functions. In fact, neither are the two sets disjoint (the intersec-
tion is not empty), nor do they cover the entire set of all func-
tions.

Lemma 1 [17, 9.B.1]:Let be an Hermitian matrix
with diagonal elements denoted by the vectorand eigenvalues
denoted by the vector. Then

Lemma 2 [17, p. 7]: Let and denote the
constant vector with . Then

Lemma 3 [17, 9.B.2]:For any , there exists a real
symmetric (and therefore Hermitian) matrix with equal diagonal
elements and eigenvalues given by.

III. SIGNAL MODEL

We consider a communication system with transmit and
receive dimensions. This gives rise to a MIMO channel that

can be represented by a channel matrix. Many different commu-
nication channels can be expressed under the unified notation
of a channel matrix such as a frequency-selective channel em-
ploying transmit and receive filterbanks [3], a bundle of twisted
pairs in DSL [1], or a wireless multiantenna system [27], [2]. Al-
though the results in this paper are valid for any MIMO channel,
we focus on a wireless multiantenna system to gain insight into
beamforming issues traditionally associated with arrays of an-
tennas.

To deal easily with the frequency-selectivity of the channel,
we take a multicarrier approach without loss of optimality (since
it is known to be a capacity-lossless structure [2], [8]):

(1)

where denotes the carrier index, is the number of carriers,
is the transmitted vector, is the
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(a)

(b)

Fig. 1. Matrix processing and multiple beamforming interpretations of the communication system. (We assume for the clarity of the figure thatL = L 8k.) (a)
Matrix processing interpretation at carrierk. (b) Multiple beamforming interpretation at carrierk.

channel matrix, is the received signal vector, and
is a zero-mean circularly symmetric complex

Gaussian noise vector with arbitrary covariance matrix ,
i.e., . The channel is assumed fixed during
the transmission of a block and known at both sides of the com-
munication link as well as the noise covariance matrix.

At each carrier , the matrix channel has
channel eigenmodesor spatial subchannels(i.e., nonvanishing
singular values of the channel matrix) [2]. We can use them
as a means of spatial multiplexing [28] to transmit simultane-
ously symbols by having established substreams. Notice
that established substreams and spatial subchannels (or channel
eigenmodes) are different concepts that may or may not coin-
cide, depending on whether the channel is diagonalized or not
(c.f. Section IV). Although the notation in this paper allows
for arbitrary values of , in a practical system, we will typi-
cally have to have an acceptable performance. The
transmitted vector at theth carrier after linear precoding is
[see Fig. 1(a)]

(2)

where represents the transmitted symbols
(we assume zero-mean unit-energy uncorrelated (white) sym-
bols,1 i.e., ), is the transmit

matrix processing, , and . We can
think of each column of as a different beamvector corre-
sponding to each transmitted symbol, giving rise to a multiple
beamforming architecture [see Fig. 1(b)]. Note that if only one
symbol is transmitted per carrier ( ), then (2) reduces
to a classical beamforming structure with a single beamvector:

1White symbols account, for example, to having independent bit streams. In
the case where we have colored symbols due, for example, to a coded trans-
mission, a prewhitening operation can be performed prior to precoding at the
transmitter, and the corresponding inverse operation can be performed after the
equalizer at the receiver.

. The transmitter is constrained in its average total
transmit power:2

(3)

where is the power in units of energy per block-transmis-
sion (or, equivalently, per OFDM symbol). The power in units
of energy per symbol period is given by , and the
power in units of energy per second is , where is the
symbol period. In Section VI, a separate power constraint per
antenna is considered. Note that a power constraint per carrier

can be readily incorporated into the problem for-
mulation.

The received vector at theth carrier after the equalizer is

(4)

where is the receive matrix processing, and
is the estimation of . Again, each column of

can be interpreted as a beamvector adapted to each spa-
tial channel substream at carrier, i.e., [see
Fig. 1(b)].

Hitherto, only an independent processing at each carrier
has been considered, and we call it thecarrier-noncooper-
ative approach[see Fig. 2(a)]. This scheme, however, can
be further generalized by allowing cooperation among car-
riers, which we term thecarrier-cooperative approach[see
Fig. 2(b)]. The signal model is obtained [similarly to (2)–(4)]
by stacking the vectors corresponding to all carriers (e.g.,

), by considering global transmit and
receive matrices (the transmit power con-
straint reduces to ) and ,

2Equation (3) is a short-term power constraint (for each channel state) as
opposed to a less restrictive long-term power constraint that would allow the
transmit power to exceedP for some channel states, as long as it is compen-
sated by some other channel states (this constraint, however, requires knowledge
of the channel statistics or at least of some future realizations of the channel).
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(a)

(b)

Fig. 2. Carrier-cooperative versus carrier-noncooperative approaches. (We assume for clarity of the figure thatL = L 8k.) (a) Carrier-noncooperative approach.
(b) Carrier-cooperative approach.

where is the total number of trans-
mitted symbols, and by defining the global channel as

diag . This general block pro-
cessing scheme was used in [2] to obtain a capacity-achieving
system. This model can easily cope with intermodulation terms,
unlike the noncooperative model of (1), that implicitly assumes
the carriers to be completely orthogonal. The carrier-noncoop-
erative processing model (2)–(4) can be obtained from the more
general carrier-cooperative model by setting diag
and diag , i.e., by imposing a block-diagonal
structure on and . In fact, it is this block-diagonal structure
that makes the carrier-noncooperative scheme less general and,
therefore, have a worse performance than the carrier-coopera-
tive one. From an intuitive point of view, the reason why this
generalized model has a potential better performance is that it
can reallocate the symbols among the carriers in an intelligent
way (e.g., if one carrier is in a deep fading, it will try to use
other carriers instead), whereas the noncooperative scheme will
always transmit symbols through theth carrier, no matter
what the fading state of the carriers is. From a mathematical
point of view, however, the carrier-noncooperative model is
more general since the carrier-cooperative scheme is obtained
by particularizing (a single carrier). Thus, in the sequel,
the carrier-noncooperative matrix signal model is considered
without loss of generality (w.l.o.g.).

IV. OPTIMALITY OF THE

CHANNEL-DIAGONALIZING STRUCTURE

The joint transmit-receive matrix design is, in general, a
complicated nonconvex problem. As previously mentioned,
for some specific design criteria, the original complicated
problem is greatly simplified because the channel turns out
to be diagonalized by the transmit-receive processing, which
allows ascalarizationof the problem (meaning that all matrix
equations are substituted with scalar ones). Examples are the
minimization of the (weighted) sum of the MSEs of all channel
spatial substreams [13], [3], [14], the minimization of the
determinant of the MSE matrix [15], and the maximization
of the mutual information [6], [2], [7]. Recall that for other
interesting design criteria (such as the minimization of the
average/maximum BER or the maximization of the minimum
SINR), it is unknown whether the channel-diagonalizing
structure is optimal.

In the following, we generalize these results by developing a
unified framework. Instead of analyzing each design criterion in
a separate way, we consider that the design is based on the mini-
mization of some arbitrary objective function of the MSEs of all
channel substreams MSE , where MSE is the MSE
of the th spatial substream at theth carrier (objective functions
of the SINRs and of the BERs are readily incorporated as we
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show next). In particular, we will obtain that for a wide family
of functions (Schur-concave and Schur-convex functions), the
channel matrix is either fully diagonalized or diagonalized up
to a very specific rotation of the data symbols.

The objective function is an indicator of how well the
system performs. As an example, if two MIMO systems are
identical except in one of the substreams for which one of
the systems outperforms the other, any reasonable function
should properly reflect this difference. Therefore, it suffices
to consider only thesereasonable functions.3 Mathematically,
this is equivalent to saying that the objective functionmust
be increasing in each one of its arguments while having the rest
fixed.

A. Optimum Receive Matrix

To design the system, we first easily derive the optimum re-
ceive matrices ’s, assuming the transmit ones ’s fixed, and
then deal with the difficult part, which is the derivation of the op-
timal transmit matrices ’s (this two-step derivation has been
independently used in [16]). The MSE matrix at theth carrier
is defined as the covariance matrix of the error vector (given by

):

(5)

where . The MSE of
the ( th, th) substream is theth diagonal element of , i.e.,

MSE

(6)

where (resp. ) is the th column of (resp. ). Ex-
pression (6) is mathematically intractable since it is nonconvex
in . However, for a given , MSE is convex in

and independent of the other columns of and of the
other carriers, which means that each can be independently
optimized. To obtain the optimal receive matrix in a more
direct way, it suffices to find such that the diagonal elements
of are minimized. This can be done regardless of the spe-
cific choice of the objective function since we know it is in-
creasing in each argument. Alternatively, we can obtain
so that , which in particular im-
plies that the diagonal elements are minimized (in fact, both cri-
teria are equivalent as shown in [29]). In other words, we want
to solve

Setting the gradient of Tr to zero

Tr

3Given anunreasonableobjective function, it is always possible to redefine
it in a reasonableway so that it better reflects the system performance.

and particularizing for all the vectors of the canonical base, it
follows that

(7)

Expression (7) is the linear minimum MSE (LMMSE) receiver
or Wiener filter[30]. Using the optimal receive matrix , we
obtain the following concentrated error matrix:

(8)

where we have used the matrix inversion lemma,4 and we
have defined (note that the eigenvectors
and eigenvalues of are the right singular vectors and the
squared singular values, respectively, of the whitened channel

).
However, many objective functions are naturally expressed as

functions of the SINR of each substream. The SINR at theth
carrier and theth spatial substream is

SINR (9)

where is the
interference-plus-noise covariance matrix seen by the (th, th)
substream, the inequality comes from Cauchy–Schwarz’s in-
equality [31] [with vectors and ],
and the upper bound is achieved by

, i.e., the Wiener filter again. Noting that the MSE
can be expressed as

MSE

(10)

the SINR can be easily related to the MSE as5

SINR
MSE

(11)

Maximizing the SINR is clearly equivalent to minimizing the
MSE.

The performance of a digital communication system is ul-
timately given by the fraction of bits in error or bit error rate
(BER). Under the Gaussian assumption, the symbol error proba-
bility can be analytically expressed as a function of the SINR
[32]:

SINR SINR (12)

where and are constants that depend on the signal
constellation, and is the -function defined as

[32]. It is sometimes conve-
nient to use the Chernoff upper bound of the tail of the Gaussian
distribution function [33] to approximate

4Matrix Inversion Lemma:(A+BCD) = A �A B(DA B+
C ) DA .

5Note that0 < MSE � 1.
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Fig. 3. Convexity of the BER as a function of the MSE for the range of BER�
2 � 10 .

the symbol error probability as SINR

(which becomes a good approximation for high values of the
SINR). The BER can be approximately obtained from the
symbol error probability (assuming that a Gray encoding is
used to map the bits into the constellation points) as

BER (13)

where is the number of bits per symbol, and is
the constellation size.

It is important to remark that both the exact BER function,
and the Chernoff upper bound are convex decreasing functions
of the SINR (see Appendix H). In addition, they are also convex
increasing functions of the MSE for sufficiently small values of
the argument (interestingly, for BPSK and QPSK constellations,
this is true for any value of the argument), as can be observed
from Fig. 3 (see Appendix H for a formal proof). Note that min-
imizing the BER is tantamount to minimizing the MSE and to
maximizing the SINR. As a rule of thumb, the exact BER func-
tion and the Chernoff upper bound are indeed convex in the MSE
for a BER less than . Note that this is a mild assump-
tion since practical systems have, in general, an uncoded BER6

less than . Therefore, for practical purposes, we can
assume the exact BER and the Chernoff upper bound as convex
functions of the MSE.

Summarizing, the Wiener filter has been obtained as the op-
timum linear receiver in the sense that it minimizes each of the
MSEs, maximizes each of the SINRs, and minimizes each of the
BERs (in terms of capacity, the Wiener filter is capacity-loss-
less and simplifies the signal model). In addition, noting that
the SINR can be expressed as a function of the MSE by (11)
and that the BER can be expressed as a function of the SINR by
(12) and (13), it suffices to focus on objective functions of the
MSEs without loss of generality.

6Given an uncoded bit error probability of at most 10and using a proper
coding scheme, coded bit error probabilities with acceptable low values such as
10 can be obtained.

B. Optimum Transmit Matrix

To obtain the set of transmit matrices , we now consider
the minimization of an arbitrary objective function of the diag-
onal elements of (8). As we now show, for Schur-concave and
Schur-convex objective functions, the problem is scalarized and
simplified (see Fig. 4). In particular, the complicated nonconvex
matrix function is simplified into a set
of simple decoupled scalar expressions. We first consider the
single-carrier case and then extend the results to the multicar-
rier case.

Theorem 1: Consider the following constrained optimization
problem:

s.t. Tr

where matrix is the optimization variable,
is the vector of diagonal elements of the MSE matrix

[the diagonal elements of
are assumed in decreasing order w.l.o.g.], is a
positive semidefinite Hermitian matrix, and: is
an arbitrary objective function (increasing in each variable). It
then follows that there is an optimal solutionof at most rank

rank with the following structure.

• If is Schur-concave, then

(14)

where has as columns the eigenvectors
of corresponding to the largest eigenvalues in in-
creasing order, and diag
has zero elements, except along the rightmost main diag-
onal (which can be assumed real w.l.o.g.).

• If is Schur-convex, then

(15)

where and are defined as before, and
is a unitary matrix such that

has identical diagonal elements. This rotation can be com-
puted using the algorithm given in [34, Sect. IV-A] or with
any rotation matrix that satisfies ,
such as the discrete Fourier transform (DFT) matrix or the
Hadamard matrix (when the dimensions are appropriate
such as a power of two [33, p. 66]).

Proof: See Appendix A.
For the simple case in which only one symbol per carrier is

transmitted at each transmission, i.e., a single spatial eigenmode
is utilized, Theorem 1 simplifies, and the diagonal struc-

ture simply means that the spatial subchannel (eigenmode) with
highest gain is used [35], [18].

For Schur-concave objective functions, the global commu-
nication process including pre- and post-processing
is fully diagonalized [see Fig. 4(b)] as well as the MSE ma-
trix . Among the established substreams, onlyare asso-
ciated to nonzero channel eigenvalues, whereas the remainder
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(a)

(b)

(c)

Fig. 4. Scheme of a MIMO communication system with linear Tx-Rx processing. (a) Original matrix system. (b) Fully diagonalized system. (c) Diagonalized
(up to a rotation) system.

are associated with zero eigenvalues. The global
communication process is7

or, equivalently

where diag , the ’s are the largest
eigenvalues of in increasing order, the ’s represent the
allocated power, and is a normalized equivalent white noise.
The MSE matrix is , and the
corresponding MSEs are given by

MSE (16)

7Note that A = (HBB H + R ) HB = R HB(I +
B H R HB) .

Similarly, the SINRs are given using (11) by

SINR (17)

Note that if rank (equivalently, ), then the
substreams associated with zero eigenvalues have an MSE

equal to 1 or a zero SINR (which implies a BER equal to 0.5).
Therefore, for Schur-concave objective functions, a communi-
cation system should be designed such that rank in
order to have an acceptable performance.

For Schur-convex objective functions, the global communi-
cation process including pre- and post-processing is
diagonalized only up to a very specific rotation of the data sym-
bols [see Fig. 4(c)], and the MSE matrixis nondiagonal with
equal diagonal elements (equal MSEs). In particular, assuming
a pre-rotation of the data symbols at the transmitter
and a post-rotation of the estimates at the receiver ,
the same diagonalizing results of Schur-concave functions apply
[see Fig. 4(c)]. Since the diagonal elements of the MSE matrix

are equal whenever the appropriate ro-
tation is included, the MSEs are identical and given by

MSE Tr

(18)
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Similarly, the SINRs are given using (11) by

SINR (19)

Note that during the design process, the rotation matrix can be
initially ignored since the minimization can be based directly
on the MSE expression in (18). The rotation can be computed
at a later stage of the design, as explained in Theorem 1. Ob-
serve that for Schur-convex functions (unlike for Schur-con-
cave ones), it is possible to have rank (equivalently,

) and still obtain an acceptable performance. This is be-
cause the symbols are transmitted over thenonzero eigen-
values in a distributed way (as opposed to the parallel and in-
dependent transmission of the symbols for fully diagonalized
systems).

In both cases of Schur-concave and Schur-convex objective
functions, the expressions of the MSEs have been scalarized
in the sense that the original complicated matrix expressions
have been reduced to simple scalar expressions [see (16) and
(18)]. For Schur-concave functions, the specific power distri-
bution among the established substreams will depend on the
particular objective function . Interestingly, for Schur-convex
functions, the power distribution is independent of the specific
choice of since both the MSE expression in (18) and the ro-
tation matrix to make the diagonal elements of the MSE matrix
equal are independent of .

It is worth pointing out that there is a set of functions that
are both Schur-concave and Schur-convex, such as Tr. Such
functions happen to be invariant with respect to post-rotations
of and vice versa (this can be easily proved using the same
ideas of the proof of Theorem 1).

Theorem 1 is easily extended to the multicarrier case as fol-
lows. For any carrier , consider the matrices corresponding to
the rest of the carriers fixed, and Theorem 1 can be di-
rectly invoked to show the optimal structure for .

V. JOINT TX-RX BEAMFORMING DESIGN: A CONVEX

OPTIMIZATION APPROACH

In this section, using the optimal receive matrix given by (7)
and the unified framework obtained in Theorem 1, we systemat-
ically consider a variety of design criteria. The potential of the
proposed framework is made evident by showing that a great
variety of interesting and appealing objective functions are ei-
ther Schur-concave or Schur-convex, and thus, Theorem 1 can
be applied to scalarize and simplify the design. The aim of this
section is to express each problem in convex form so that the
well-developed body of literature on convex optimization theory
[19]–[21] can be used to obtain optimal solutions very effi-
ciently in practice using, for example, interior-point methods
(c.f. Section II-A). In fact, it is possible in many cases to ob-
tain simple closed-form solutions by means of the KKT opti-
mality conditions that can be efficiently implemented in prac-
tice (see [36] for simple practical implementation algorithms
derived from the KKT conditions and also for more design cri-
teria).

Some of the considered design criteria have also been used
in [35] and [18] for the simple case of single beamforming. For

simplicity of notation, we define and .
[Note that for Schur-concave functions with rank ,
the substreams associated with zero eigenvalues are
simply ignored in the optimization process.]

A. MSE-Based Criteria

In the following, we optimize the MSEs by minimizing the
arithmetic, geometric, and maximum means of the MSEs. We
also show the equivalence of the minimization of the geometric
mean, the minimization of the determinant of the MSE matrix,
and the maximization of the mutual information.

1) Minimization of the ARITH-MSE:The minimization of
the (weighted) arithmetic mean of the MSEs (ARITH-MSE)
was considered in [13], [3], and [14]. We deal with the weighted
version, as was extended in [14] under the unified framework of
Theorem 1. The objective function is

MSE MSE (20)

Lemma 4: The function (assuming
) is minimized when the weights are in increasing

order , and it is then a Schur-concave function.
Proof: See Appendix B.

By Lemma 4, the objective function (20) is Schur-concave on
each carrier . Therefore, by Theorem 1, the diagonal structure
is optimal, and the MSEs are given by (16). The problem in
convex form (the objective is convex and the constraints linear)
is8

s.t. (21)

This particular problem can be solved very efficiently be-
cause the solution has a nice water-filling interpretation (from
the KKT optimality conditions):

(22)

where is thewater-levelchosen to satisfy the power con-
straint with equality.

2) Minimization of the GEOM-MSE:The objective function
corresponding to the minimization of the weighted geometric
mean of the MSEs (GEOM-MSE) is

MSE MSE (23)

Lemma 5: The function (assuming
) is minimized when the weights are in increasing

order , and it is then a Schur-concave function.
Proof: See Appendix C.

8Note that it is not necessary to explicitly include the constraints corre-
sponding to MSE � MSE in the convex problem formulation since an
optimal solution always satisfies them.
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By Lemma 5, the objective function (23) is Schur-concave on
each carrier . Therefore, by Theorem 1, the diagonal structure
is optimal, and the MSEs are given by (16). The problem in
convex form (since the objective is log-convex, it is also convex
[21]) is

s.t. (24)

This problem also has a water-filling solution (from the KKT
optimality conditions):

(25)

where is the water-level chosen to satisfy the power con-
straint with equality. Note that for , (25) becomes the
classical capacity-achieving water-filling solution9 [6], [2].

3) Minimization of : The minimization of the deter-
minant of the MSE matrix was considered in [15]. We now
show how this particular criterion is easily accommodated in
our framework as a Schur-concave function of the diagonal
elements of the MSE matrix . [For the carrier-noncooperative
case, simply consider the global MSE matrix defined as

diag .]
Using the fact that , it follows that

is minimized for the choice of the receive matrix given by (7).
From (8), it is clear that does not change if the transmit ma-
trices ’s are post-multiplied by a unitary matrix (a rotation).
Therefore, we can always choose a rotation matrix so thatis
diagonal without loss of optimality (as we already knew from
[15]), and then

(26)

Therefore, the minimization of is equivalent to the mini-
mization of the (unweighted) product of the MSEs as in Sec-
tion V-A2.

4) Maximization of Mutual Information:The maximization
of the mutual information can be used to obtain a capacity-
achieving solution [6]

(27)

where is the transmit covariance matrix. Using the fact that
and that [from (2)], the mu-

tual information can be expressed (see [29] for detailed connec-
tions between the mutual information and the MSE matrix) as

(28)

and therefore, the maximization ofis equivalent to the mini-
mization of treated in Section V-A3.

Hence, the minimization of the unweighted product of the
MSEs, the minimization of the determinant of the MSE matrix,

9Under the constraint of using�L substreams on each carrierk.

and the maximization of the mutual information are all equiva-
lent criteria with the solution given by a channel-diagonalizing
structure and the classical capacity-achieving water-filling for
the power allocation:

(29)

5) Minimization of the MAX-MSE:In general, the overall
performance (average BER) is dominated by the substream with
highest MSE. It makes sense then to minimize the maximum of
the MSEs (MAX-MSE) [37]. The objective function is

MSE MSE (30)

Lemma 6: The function is a Schur-
convex function.

Proof: See Appendix D.
By Lemma 6, the objective function (30) is Schur-convex on

each carrier . Therefore, by Theorem 1, the optimal solution
has a nondiagonal MSE matrix with equal diagonal elements
given by (18), which have to be minimized (scalarized problem).
Recall that after minimizing the MSEs, we must still obtain the
optimal rotation matrices so that the diagonal elements of the
MSE matrices ’s are identical. The scalarized problem in
convex form (the objective is linear and the constraints are all
convex) is

s.t.

(31)

This problem has a multilevel water-filling solution (from the
KKT optimality conditions):

(32)

where are multiple water levels chosen to satisfy the
constraints on and the power constraint all with equality. For
the case of single beamforming (i.e., ), the solution sim-
plifies to

(33)

as was obtained in [35] and [18]. For the single-carrier case (or
multicarrier cooperative approach), problem (31) simplifies to
the minimization of the unweighted ARITH-MSE considered
in Section V-A1 with solution .

B. SINR-Based Criteria

In the following, we optimize the SINRs by maximizing the
arithmetic, geometric, harmonic, and minimum means of the
SINRs. We also consider the maximization of the product of the
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terms SINR and its connection to the capacity-achieving
solution. We can now define the objective function to minimize
as a function of the SINRs SINR MSE .
Since, in Theorem 1, we assumed MSE MSE , the
SINRs are in increasing order SINR SINR .

1) Maximization of the ARITH-SINR:The objective func-
tion to be minimized for the maximization of the (weighted)
arithmetic mean of the SINRs (ARITH-SINR) is

SINR SINR (34)

which can be expressed as a function of the MSEs using (11) as

MSE MSE

MSE (35)

Lemma 7: The function (as-
suming ) is minimized when the weights are
in increasing order , and it is then a Schur-concave
function.

Proof: See Appendix E.
By Lemma 7, the objective function (35) is Schur-concave on

each carrier . Therefore, by Theorem 1, the diagonal structure
is optimal and the SINRs are given by (17). The problem ex-
pressed in convex form (it is actually an LP since the objective
and the constraints are all linear) is10

s.t. (36)

The optimal solution is to allocate all the available power to
the substream with maximum weighted gain (oth-
erwise, the objective value could be increased by transferring
power from other substreams to this substream). Although this
solution indeed maximizes the weighted sum of the SINRs, it
is a terrible solution in practice due to the extremely poor spec-
tral efficiency (only one substream would be conveying infor-
mation). This criterion gives a pathological solution and should
not be used.

2) Maximization of the GEOM-SINR:The objective func-
tion to be minimized for the maximization of the (weighted)
geometric mean of the SINRs (GEOM-SINR) is

SINR SINR (37)

which can be expressed as a function of the MSEs using (11) as

MSE MSE

MSE (38)

10Note that it is not necessary to explicitly include the constraints corre-
sponding to SINR � SINR in the convex problem formulation since
an optimal solution always satisfies them.

Note that the maximization of the product of the SINRs is equiv-
alent to the maximization of the sum of the SINRs expressed in
decibels.

Lemma 8: The function (as-
suming ) is minimized when the weights
are in increasing order , and it is then a Schur-con-
cave function.

Proof: See Appendix F.
By Lemma 8, the objective function (38) is Schur-concave on

each carrier , provided that MSE (this is a mild
assumption since a MSE greater than 0.5 is unreasonable for a
practical communication system). Therefore, by Theorem 1, the
diagonal structure is optimal, and the SINRs are given by (17).
The problem expressed in convex form (the weighted geometric
mean is a concave function11 [20], [21]) is

s.t. (39)

where , and it is assumed that
(otherwise, the problem has trivial solution

). The solution is easily obtained from the KKT optimality
conditions as

(40)

Particularizing for a uniform weighting , the
problem reduces to the maximization of the geometric mean
subject to the arithmetic mean:

s.t. (41)

where . From the arithmetic-geometric mean
inequality (with equality if and only
if ) [31], it follows that the optimal solution is a
uniform power allocation

(42)

Note that the uniform power distribution is commonly used due
to its simplicity, e.g., [38].

3) Maximization of the HARM-SINR:The maximization of
the harmonic mean of the SINRs (HARM-SINR) was consid-
ered in [35] for the case of single beamforming. Using the uni-
fied framework of Theorem 1, we can extend this result to the

11The concavity of the geometric mean is easily verified by showing that the
Hessian matrix is positive semidefinite for positive values of the arguments.
The extension to include boundary points (points with zero-valued arguments)
is straightforward either by using a continuity argument to show thatf(�x +
(1 � �)y) � �f(x) + (1 � �)f(y) for 0 � � � 1 or by considering the
epigraph of the function and using [19, Prop. 2.7.4].
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case of multiple beamforming. The objective function to be min-
imized is

SINR
SINR

(43)

which can be expressed as a function of the MSEs using (11) as

MSE
MSE

MSE
(44)

Lemma 9: The function (for
) is a Schur-convex function.

Proof: See Appendix G.
By Lemma 9, the objective function (44) is Schur-convex on

each carrier . Therefore, by Theorem 1, the optimal solution
has a nondiagonal MSE matrix with equal diagonal ele-
ments given by (18), which have to be minimized. The scalar-
ized problem in convex form is

s.t.

(45)
The problem has a multilevel water-filling solution

(46)

where are multiple water levels chosen to satisfy
the lower constraints on the ’s and the power constraint,

all with equality, and also the constraint ,
where is a positive parameter [36]. For the case of
single beamforming (i.e., ), the solution reduces to

[35]. For the single-carrier case
(or multicarrier cooperative approach), the problem simplifies
to that considered in Section V-A1.

4) Maximization of the MIN-SINR:The objective function
to be minimized for the maximization of the minimum of the
SINRs (MIN-SINR) is

SINR SINR (47)

This design criterion is equivalent to the minimization of the
maximum MSE treated with detail in Section V-A5. In [14], the
same criterion was used, imposing a channel diagonal structure.

5) Maximization of the PROD-(1SINR): Consider for a
moment the following maximization:

SINR (48)

Using the relation between the MSE and the SINR in (11), this
maximization can be equivalently expressed as the minimiza-
tion of MSE as in (23) with , as the minimiza-
tion of the determinant of the MSE matrix (Section V-A3), and
as the maximization of the mutual information (Section V-A4)
with the solution given by the capacity-achieving expression
(29). This result is completely natural since maximizing the log-
arithm of (48) is tantamount to maximizing the mutual informa-
tion SINR .

C. BER-Based Criteria

Next, we consider that the minimization of the average BER
(the minimization of the maximum of the BERs (MAX-BER)
is equivalent to the maximization of the minimum of the SINRs
and to the minimization of the maximum of the MSEs, provided
that the same constellations are used on all the substreams).

1) Minimization of the ARITH-BER:The minimization
of the average BER or of the arithmetic mean of the BER’s
(ARITH-BER) can be considered as the best criterion (as-
suming that after the linear processing at the receiver, each
substream is detected independently). In practice, multicarrier
communication systems use some type of coding over the
carriers and/or over different transmissions to reduce the BER
(usually some orders of magnitude). The ultimate measure is
then the coded BER as opposed to the uncoded BER (obtained
without using any coding). However, the coded BER is strongly
related to the uncoded BER (in fact, for codes based on hard
decisions, both quantities are strictly related). In such cases,
it suffices to focus on the uncoded BER when designing the
uncoded part of a communication system.

In [39], the minimization of the average BER (and also of the
Chernoff upper bound) is treated in detail when a diagonal struc-
ture is imposed. This design criterion has been independently
considered in [40] under a ZF constraint obtaining a nondiag-
onal optimal MSE matrix (in agreement with our results). The
objective function is

BER BER (49)

which can be expressed as a function of the MSEs using (11)
and (12) and (13) as

MSE BER MSE (50)

Lemma 10: The function BER
(assuming , for sufficiently small such that
BER , ) is a Schur-convex function.

Proof: See Appendix I.
By Lemma 10, the objective function (50) is Schur-convex

on each carrier (assuming the same constellation/coding on
all substreams of theth carrier), provided that BER

(interestingly, for BPSK and QPSK constellations, this is
true for any value of the BER). Therefore, by Theorem 1, the
optimal solution has a nondiagonal MSE matrix with equal
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diagonal elements given by (18), which have to be minimized.
The scalarized problem in convex form is12

s.t.

(51)
Note that we have explicitly included the upper boundon
the MSEs to guarantee the convexity of the BER function and,
therefore, of the whole problem. For a general case with
and , problem (51) does not have a simple closed-form
solution, and one has to resort to general-purpose iterative
methods such as interior-point methods (see Section II-A). For
the single-carrier case (or multicarrier cooperative approach),
the problem simplifies to the ARITH-MSE criterion considered
in Section V-A1 plus the rotation matrix to make the diagonal
elements of the MSE matrix equal.

D. Remarks

Some observations are in order.

• Most of the presented methods under the framework of
convex optimization theory have nice closed-form solu-
tions that can be easily implemented in practice (see [36]
for simple practical algorithms derived from the KKT op-
timality conditions to implement the water-filling solu-
tions).

• Method ARITH-BER is clearly the best in terms of av-
erage BER and is therefore considered as a benchmark.
For the carrier-noncooperative approach, it does not have
a closed-form solution, and an iterative approach is nec-
essary such as an interior-point method (see [21] for prac-
tical implementation details). Interestingly, for the single-
carrier and multicarrier-cooperative approaches, the solu-
tion can be obtained in closed form, as mentioned below.

• Methods ARITH-MSE, HARM-SINR, and MAX-MSE
have very simple solutions and, as will be observed in the
simulations, perform really close to the benchmark given
by ARITH-BER. These methods should therefore be con-
sidered for practical purposes.

• Two novel multilevel water-filling solutions have been ob-
tained for the MAX-MSE and the HARM-SINR criteria
(see [36] for practical implementation algorithms).

• Cooperation among carriers improves performance
without significant increase on the complexity (each
carrier can be diagonalized independently, and then, the
largest eigenmodes are selected).

• A striking result (as mentioned in Section IV) is that
for single-carrier and multicarrier-cooperative systems,
all criteria with Schur-convex objective functions (e.g.,

12We have implicitly assumed for each carrier the same constellation and code
on all the spatial eigenmodes.

MAX-MSE, HARM-SINR, MIN-SINR, ARITH-BER,13

and MAX-BER ) have the same optimal solution.
Hence, the best performance (given by the ARITH-BER
criterion with a carrier-cooperative approach) has a
closed-form solution that can be obtained in practice with
low complexity using the simple water-filling solution
of the ARITH-MSE criterion in (22) plus the rotation
matrix.

• It is very common in the literature of equalization to in-
clude a ZF constraint in the design. Such a constraint can
be easily introduced in the unified framework (see [36] for
details), although the performance degrades due to the ad-
ditional constraint.

VI. I NTRODUCINGADDITIONAL CONSTRAINTS

As explained in Section II, one of the nice properties of ex-
pressing a problem in convex form is that additional constraints
can be added, as long as they are convex without affecting the
solvability of the problem. Of course, with the additional con-
straints, the closed-form solutions previously obtained are not
valid any more.

A. Dynamic Range of Power Amplifier

We can easily add constraints on the dynamic range of the
power amplifier at each transmit antenna element, as was done
in [22]. Consider a Schur-concave objective function and as-
sume for simplicity . From the optimal structure in
(14) , the total average transmitted power
(in units of energy per symbol period) by theth antenna is

(52)

which is linear in the variables . (For the carrier-coop-
erative scheme, .)
Therefore, the following constraints are linear:

where and are the lower and upper bounds for theth an-
tenna. Similarly, it is straightforward to set limits on the relative
dynamic range of a single element in comparison with the total
power for the whole array [22]:

where and are the relative bounds, and
is the total power that is also linear in .

B. Peak-to-AverageRatio (PAR)

One of the main practical problems that OFDM systems face
is the PAR. Indeed, multicarrier signals exhibit Gaussian-like

13Recall that with carrier cooperation, the ARITH-BER and MAX-BER
methods require all spatial/carrier substreams to use the same constella-
tion/coding scheme in order to be Schur convex.
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time-domain waveforms with relatively high PAR, i.e., they ex-
hibit large amplitude spikes when several frequency compo-
nents add in-phase. These spikes may have a serious impact
on the design complexity and feasibility of the transceiver’s
analog front-end (i.e., high resolution of D/A-A/D converters
and power amplifiers with a linear behavior over a large dynam-
ical range). In practice, the transmitted signal has to be clipped
when it exceeds a certain threshold, and it has detrimental ef-
fects on the BER. A variety of techniques have been devised to
deal with the PAR [41], [42]. In this section, we show how the
PAR can be taken into account into the design of the beamvec-
tors using a convex optimization framework. Note that the al-
ready-existing techniques to cope with the PAR and this ap-
proach are not exclusive and can be simultaneously used.

The PAR is defined as

PAR (53)

where is the symbol period, is the zero-mean trans-
mitted signal, and . Since the number of car-
riers is usually large ( ), can be accurately modeled
as a Gaussian random process (central-limit theorem) with zero
mean and variance [41]. Using this assumption, the proba-
bility that the PAR exceeds certain threshold or, equivalently,
the probability that the instantaneous amplitude exceeds a clip-
ping value is

Pr (54)

The clipping probability of an OFDM symbol is then [41]

(55)

In other words, in order to have a clipping probability lower than
with respect to the maximum instantaneous amplitude ,

the average signal power must satisfy

(56)

When using multiple antennas for transmission, the previous
equation has to be satisfied for all transmit antennas. Those con-
straints can be easily incorporated in any of the convex designs
derived in Section V with a Schur-concave objective function.
Using (52), the constraint is

(57)

which is linear in the optimization variables . Such a
constraint has two effects in the solution: i) The power distri-
bution over the carriers changes with respect to the distribution
without the constraint, and ii) the total transmitted power drops
as necessary.

Fig. 5. (a) Power delay profile type C for HIPERLAN/2. (b) Envelope
correlation matrices at the base station (BS) and at the mobile station (MS) in
theNokiaenvironment.

VII. SIMULATION RESULTS

For the numerical results, we have chosen the European stan-
dard HIPERLAN/2 for WLAN [9]. It is based on the multicar-
rier modulation OFDM (64 carriers are used in the simulations).
We consider multiple antennas at both the transmitter and the re-
ceiver, obtaining, therefore, the multicarrier MIMO model used
throughout the paper. Perfect CSI is assumed at both sides of
the communication link.14

The frequency selectivity of the channel is modeled using the
power delay profile type C for HIPERLAN/2 as specified in [43]
[see Fig. 5(a)], which corresponds to a typical large open space
indoor environment for non line of sight (NLOS) conditions
with 150 ns average r.m.s. delay spread and 1050 ns maximum
delay (the sampling period is 50 ns) [9]. The spatial correlation
of the MIMO channel is modeled according to theNokiamodel
defined in [44] (which corresponds to a reception hall) speci-
fied by the correlation matrices of the envelope of the channel
fading at the transmit and receive side given in Fig. 5(b), where
the base station is the receiver (uplink) (see [44] for details of
the model). It provides a large open indoor environment with
two floors, which could easily illustrate a conference hall or a
shopping galleria scenario. The matrix channel generated was
normalized so that . The SNR is defined
as the transmitted power normalized with the noise variance.

For the numerical simulations, the following design cri-
teria have been considered: ARITH-MSE, GEOM-MSE,
MAX-MSE (equivalently, MIN-SINR or MAX-BER),
GEOM-SINR, HARM-SINR, and ARITH-BER (benchmark).
The utilization of the Chernoff upper bound instead of the exact
BER function gives indistinguishable results and is therefore
not presented in the simulation results. Unless otherwise spec-
ified, carrier-noncooperative approaches are considered. The
performance is given in terms of outage BER (averaged over

14In practice, channel estimation errors exist, and it is therefore necessary to
quantify the loss for each of the methods. Alternatively, it is possible to take
channel estimation errors into account in the design either from a worst-case or
from a Bayesian perspective (c.f. [36]).
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Fig. 6. BER (at an outage probability of 5%) versus SNR when using QPSK
in a 2� 2 MIMO channel withL = 1 for the GEOM-MSE, GEOM-SINR,
ARITH-MSE, HARM-SINR, MAX-MSE, and ARITH-BER criteria (without
carrier cooperation).

the channel substreams), i.e., the BER that can be guaranteed
with some probability or, equivalently, the BER that is not
achieved with some small outage probability. In particular, we
consider the BER with an outage probability of 5%. Note that
for typical systems with delay constraints, the outage BER is
a more realistic measure than the commonly used mean BER
that only makes sense when the transmission coding block is
long enough to reveal the long-term ergodic properties of the
fading process (no delay constraints).

Single Beamforming:First, we show some results when
using a single channel spatial substream ( ). In
Fig. 6, the BER is plotted versus the SNR for a 22 MIMO
channel using QPSK constellations. Clearly, the ARITH-BER
criterion has the lowest BER because it was designed for
that. The MAX-MSE criterion performs really close to the
ARITH-BER and can be considered the second best criterion.
The HARM-SINR, as well as the ARITH-MSE, perform
reasonably well (in fact, for values of the BER higher than
10 , they outperform the MAX-MSE). The GEOM-MSE and
the GEOM-SINR criteria perform really badly in terms of BER
and should not be used. In Fig. 7, the same results are shown
for a 4 2 MIMO channel using 16-QAM constellations, and
the same observations hold.

Therefore, the best criteria are (in order) ARITH-BER,
MAX-MSE, HARM-SINR, and ARITH-MSE.

Including PAR Constraints:We now consider the introduc-
tion of PAR constraints, as described in Section VI. We pa-
rameterize the clipping amplitude with respect toas

to make the results independent of the total trans-
mitted power . In Fig. 8, the probability of clipping along
with the BER (when using QPSK constellations) is shown for
the ARITH-MSE criterion in a 2 2 MIMO channel both with
PAR constraints ( ) and without them. In Fig. 8(a),
the results are shown as a function of. It can be observed
how the design with the PAR constraints always has a clipping

Fig. 7. BER (at an outage probability of 5%) versus SNR when using 16-QAM
in a 4� 2 MIMO channel (two transmit and four receive antennas) withL = 1

for the GEOM-MSE, GEOM-SINR, ARITH-MSE, HARM-SINR, MAX-MSE,
and ARITH-BER criteria (without carrier cooperation).

probability no greater than the prespecified value 10, as ex-
pected. The BER, however, can be severely affected if a very low
clipping probability is imposed due to power backoffs. From
Fig. 8(a), a choice of seems reasonable. In Fig. 8(b), the
results are shown as a function of the SNR for . For the
design with PAR constraints, the BER is slightly higher due to
the additional constraint. However, the system is guaranteed to
have a clipping probability of at most 10, unlike in the uncon-
strained case, where nothing can be guaranteed. Recall that in a
practical system, the final BER increases due to the clipping.

Multiple Beamforming:We now consider the simultaneous
transmission of more than one symbol per carrier, i.e., multiple
beamforming (we consider ).

In Fig. 9, the BER is plotted versus the SNR for a 44
MIMO channel with using QPSK constellations. In gen-
eral, similar observations hold, as for the single beamforming
case. However, it is worth pointing out that in this case, the
HARM-SINR method performs much closer to the benchmark
than the ARITH-MSE method. For higher values of the ratio

, the superiority of Schur-convex criteria with
respect to the Schur-concave methods (which have a channel-di-
agonalizing structure) becomes more clear (c.f. [36]).

Carrier Cooperation: We now analyze the improvement in
performance when using cooperation among carriers for the
best methods: ARITH-MSE, HARM-SINR, MAX-MSE, and
ARITH-BER. Recall that with carrier cooperation, the HARM-
SINR, MAX-MSE, and ARITH-BER criteria provide the same
solution since they are all Schur-convex functions (see Sec-
tion V-D).

In Fig. 10, the BER is plotted versus the SNR with and
without carrier cooperation for a 2 2 MIMO channel with

using QPSK constellations. In this case, carrier
cooperation gives an improvement of 0.5–2 dB. For higher
values of the ratio , the improvement is even
more significant (c.f. [36]).
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Fig. 8. Probability of clipping and BER (at an outage probability of 5%) when using QPSK in a 2� 2 MIMO channel withL = 1 for the ARITH-MSE criterion
with and without PAR constraints (without carrier cooperation). (a) As a function of� (for SNR= 8 dB andP � 10 ). (b) As a function of the SNR (for
� = 4 andP � 10 ).

Fig. 9. BER (at an outage probability of 5%) versus SNR when using QPSK
in a 4� 4 MIMO channel withL = 2 for the GEOM-MSE, GEOM-SINR,
ARITH-MSE, HARM-SINR, MAX-MSE, and ARITH-BER criteria (without
carrier cooperation).

VIII. C ONCLUSIONS

In this paper, we have formulated and solved the joint de-
sign of transmit and receive multiple beamvectors or beam-ma-
trices (also known as linear precoders and equalizers) for mul-
ticarrier MIMO systems under a variety of design criteria. In-
stead of considering each design criterion in a separate way, we
have developed a unifying framework that generalizes the ex-
isting results by considering two families of objective functions

Fig. 10. BER (at an outage probability of 5%) versus SNR when using QPSK
in a 2� 2 MIMO channel withL = 1 for the ARITH-MSE, HARM-SINR,
MAX-MSE, and ARITH-BER criteria with (coop) and without (noncoop)
carrier cooperation.

that embrace most reasonable criteria to design a communica-
tion system: Schur-concave and Schur-convex functions. For
Schur-concave objective functions, the channel-diagonalizing
structure is always optimal, whereas for Schur-convex func-
tions, an optimal solution diagonalizes the channel only after
a very specific rotation of the transmitted symbols.

Once the optimal structure of the communication process has
been obtained, the design problem has been formulated within
the powerful framework of convex optimization theory, in which
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a great number of interesting design criteria can be easily ac-
commodated and efficiently solved, even though closed-form
expressions may not exist. From this perspective, a variety of
design criteria have been analyzed, and in particular, optimal
beamvectors have been derived in the sense of having minimum
average BER. It has been shown how to include additional con-
straints on the design to control the dynamic range of the trans-
mitted signal and the PAR. We have also considered the more
general scheme in which cooperation among different carriers
is allowed to improve performance. We have obtained two mul-
tilevel water-filling practical solutions to optimize the spatial
substreams at all carriers (one minimizes the maximum MSE,
and the other maximizes the harmonic mean of the SINRs) that
perform very close to the optimal solution in terms of average
BER with a low implementation complexity. Interestingly, for
carrier-cooperative schemes, it turns out that exact optimal so-
lution in terms of minimizing the average BER can be obtained
in closed form.

APPENDIX A
PROOF OFTHEOREM 1

We first present a couple of lemmas and then proceed to the
proof of Theorem 1.

Lemma 11 [17, 9.H.1.h]:If and are positive
semidefinite Hermitian matrices, then

Tr

where and are the eigenvalues of and , respec-
tively, in decreasing order.

Lemma 12: Given a matrix and a positive
semidefinite Hermitian matrix such that

is a diagonal matrix with diagonal elements in
increasing order (possibly with some zero diagonal elements),
it is always possible to find another matrix of the form

of at most rank rank that
satisfies with Tr Tr ,
where has as columns the eigenvectors of
corresponding to the largest eigenvalues in increasing order,
and diag has zero
elements, except along the right-most main diagonal (which
can be assumed real w.l.o.g.).

Proof: Although the basic idea follows easily from the ap-
plication of Lemma 11, the formal proof for arbitrary values
of , , and rank becomes notationally involved. Since

is diagonal with diagonal elements in in-
creasing order, we can write

where is a square diagonal matrix (with real diagonal
elements) of dimension rank . Using the
singular value decomposition (SVD) [31], we can then write

, where is a unitary matrix
whose columns are the left singular vectors, the right singular
vectors (eigenvectors of ) are the canonical vectors, and

matrix is composed of zero elements and contains
in its top-right block so that . In particular,

if , then and , and if ,
then (note that the position of matrix
within is different from the classical definition of the SVD
[31] because the diagonal elements of are assumed
in increasing order). Assuming that matrix is nonsingular
with eigendecomposition given by , we can
write

(58)

In case that is singular, clearly, must be orthogonal to
the null space of ; otherwise, this component could be made
zero without changing the value of and decreasing
Tr . Knowing that must be orthogonal to the null space
of , (58) is still valid using the pseudo-inverse of instead
of the inverse.

The idea now is to find another matrix by changing the
unitary matrix in (58) with the lowest possible value of
Tr (note that any matrix obtained from (58) satisfies
by definition the desired constraint ). Using
Lemma 11, Tr can be lower bounded as follows:

Tr Tr

where , is the th diagonal element of in in-
creasing order, and are the largest eigenvalues
of in increasing order. If the s are different, the lower
bound is achieved by matrix being a permutation matrix.
For subsets of equal ’s, the corresponding subblock in can
be any rotation matrix. Therefore, if is chosen as a permu-
tation matrix that selects the largest eigenvalues of
in the same ordering as the’s, the lower bound is achieved.
From (58), we obtain that the optimal [in the sense of min-
imizing the value of Tr ] has at most rank and is of
the form , where

has as columns the eigenvectors of corresponding
to the largest eigenvalues in increasing order, and

diag has zero elements, except along the
right-most main diagonal (which can be assumed real w.l.o.g.).

Proof of Theorem 1:The constrained optimization
problem to be solved is

s.t. Tr

where is the vector of diagonal elements of the MSE ma-
trix . It is mathematically conve-
nient to assume the diagonal elements of in decreasing
order, i.e., . Interestingly, this is without loss
of generality. In fact, most reasonable objective functions (in
particular, all the objective functions considered in Section V)
have a fixed preferred ordering of the arguments, i.e., the value
of the function is minimized with a very specific ordering of the
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arguments. In such cases, it suffices to relabel the arguments
so that the preferred ordering is decreasing. In a more general
case, however, a function may not have a fixed preferred or-
dering since it may depend on the specific value of the argu-
ments. In such a case, since we are interested in minimizing
the objective function, we can define and use instead the func-
tion , where is a permutation ma-
trix, and is the set of the different permutation matrices.
The original minimization of without the ordering constraint
is equivalent to the minimization of with the ordering con-
straint. Therefore, we can always assume that the function to
be minimized has been properly defined so that the ordering
constraint can be included without loss of generality (c.f. Sec-
tion V).

If is Schur-concave, it follows by Lemma 1 that
, where is the vector of eigen-

values of in decreasing order. The lower bound
is achieved if matrix is diagonal
with diagonal elements in decreasing order or, equivalently,
if is diagonal with diagonal elements in increasing
order. Furthermore, for any given, one can always find a
rotation matrix so that becomes diagonal
and use instead the transmit matrix , improving the
performance (by this rotation, the utilized power remains the
same). This implies that for Schur-concave functions, there is
an optimal with a structure such that is diagonal
with diagonal elements in increasing order.

If is Schur-convex, the opposite happens. By Lemma 2,
it follows that is minimized when has equal diag-
onal elements. Furthermore, for any given, one can always
find a rotation matrix so that has
identical diagonal elements by Lemma 3 (the sum of diagonal
elements of remains the same regardless of) and use in-
stead the transmit matrix , improving the performance
(the transmit power remains the same). Therefore, for an op-
timal , we have that Tr

. Interestingly, regardless of the specific function
, the optimal can be found by first minimizing Tr

(without imposing the constraint that the diagonal
elements be equal) and then including the rotation to make the
diagonal elements identical. The rotation can be found using the
algorithm given in [34, Sect. IV-A] or with any rotation matrix

that satisfies , , such as the DFT matrix
or the Hadamard matrix (when the dimensions are appropriate
such as a power of two [33, p. 66]). Regarding the minimization
of Tr , since it is a Schur-concave function of
the diagonal elements , the previous result
can be applied to show that there is an optimal(excluding for
the moment the rotation) such that is diagonal with
diagonal elements in increasing order.

Given that is diagonal, it follows from Lemma
12 that has at most rank rank and
can be written as , where
has as columns the eigenvectors of corresponding
to the largest eigenvalues in increasing order, and

diag has zero elements,
except along the right-most main diagonal.

Hence, we can write an optimal as

for Schur-concave

for Schur-convex

where and are defined as before, and is
the rotation to make the diagonal elements of
identical.

APPENDIX B
PROOF OFLEMMA 4

Given a set of ’s in decreasing order , the func-
tion is minimized with the weights in in-
creasing order . To show this, assume for a moment
that for ( ), the weights are such that . We
now show that the term can be minimized by
simply swapping the weights:

To prove that is Schur-concave, define
, where . Function is Schur-convex

because whenever [17, 3.H.2]. There-
fore, is Schur-concave (see Definition 3).

APPENDIX C
PROOF OFLEMMA 5

Given a set of strictly positive ’s in decreasing order
, the function is minimized with the

weights in increasing order . To show this, assume
for a moment that for ( ), the weights are such
that . We now show that the term can be
minimized by simply swapping the weights:

To prove that is Schur-concave, define
, where . Function

is Schur-convex because whenever
[17, 3.H.2]. Since and function is de-
creasing in , is Schur-concave [17, 3.B.1].

APPENDIX D
PROOF OFLEMMA 6

From Definition 1, it follows that .
If , it must be that (from Definition 2), and
therefore, . This means that is Schur-convex
by Definition 3.

APPENDIX E
PROOF OFLEMMA 7

Since the ’s are strictly positive and in decreasing order
, the function



PÉREZ PALOMARet al.: JOINT TX-RX BEAMFORMING DESIGN 2399

is minimized with the weights in increasing order
(this can be similarly proved as was done in the proof of Lemma
4).

To show that is Schur-concave, define
, where . Since

whenever , it follows that is Schur-convex [17, 3.H.2],
and therefore, is Schur-concave (see Definition 3).

APPENDIX F
PROOF OFLEMMA 8

Given a set of strictly positive ’s in decreasing order
, the function is minimized

with the weights in increasing order (this can be
similarly proved, as was done in the proof of Lemma 4).

To show that is Schur-concave provided that ,
define , where

. Function is Schur-convex because
whenever 15 [17, 3.H.2]. Since
and function is decreasing in , is Schur-con-

cave [17, 3.B.1].

APPENDIX G
PROOF OFLEMMA 9

To prove that the function is Schur-
convex, rewrite it as where

. Since is convex, it follows that is Schur-convex [17,
3.H.2].

APPENDIX H
ANALYSIS OF THE CONVEXITY OF THE BER

In this Appendix, we show that the BER and the cor-
responding Chernoff upper bound are convex decreasing
functions of the SINR and convex increasing functions of the
MSE (for sufficiently small values of the MSE).

BER as a Function of the SINR:To prove that the BER is
convex decreasing in the SINR, it suffices to show that the first
and second derivatives of are negative and positive,
respectively (note that a positive scaling factor preserves mono-
tonicity and convexity):

The same can be done for the Chernoff upper bound :

15Function(1� x)x is increasing inx for 0 � x � 0:5.

BER as a Function of the MSE:To prove that the BER is
convex increasing in the MSE, it suffices to show that the first
and second derivatives are both positive:

where the zeros are

and

(it has been tacitly assumed that ). It is remarkable that
for , both zeros coincide, which means that the BER func-
tion is convex for the whole range of MSE values. To be more
specific, BPSK and QPSK constellations satisfy this condition,
and consequently, their corresponding BER function is always
convex in the MSE.

The same can be done for the Chernoff upper bound
:

Therefore, the Chernoff upper bound is convex increasing in the
MSE for MSE .

Concluding, as a rule of thumb, the BER and the Chernoff
upper bound are convex increasing in the MSE for a BER

(see [36] for more details).

APPENDIX I
PROOF OFLEMMA 10 BER

To prove that the function BER is
Schur-convex for (for sufficiently small such that
BER ), write , where

BER . Since function is convex within the
range (see Appendix H), it follows that is Schur-convex
[17, 3.H.2].
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