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Unified Framework for Linear MIMO Transceivers
With Shaping Constraints

Daniel Pérez Palomar

Abstract—This letter considers optimum linear transceivers
for MIMO channels under a general framework based on Schur-
concave and Schur-convex cost functions, subject to shaping
constraints on the transmit covariance matrix. Such constraints
may be useful, for example, to impose spectral masks in cable
systems, to control the power transmitted along certain directions
in wireless systems, or to limit the dynamic range of the power
amplifiers at the different transmit dimensions.

Index Terms—Linear precoding, MIMO channel, peak power,
spectral mask, transceiver.

I. INTRODUCTION

THE design of linear transceivers for multi-input multi-
output (MIMO) channels (commonly referred to as linear

precoders at the transmitter and equalizers at the receiver) has
been considered in the literature according to different design
criteria under an average power constraint (trace constraint) at
the transmitter. The most used criterion is the minimization of
the sum of the mean square error (MSE) of the channel sub-
streams (the trace of the MSE matrix) [1]–[3].

Some other design criteria that have been considered include
the minimization of the determinant of the MSE matrix [4],
the maximization of the signal to interference-plus-noise ratio
(SINR) with a zero-forcing (ZF) constraint [2], and the mini-
mization of the bit error rate (BER) for ZF receivers [5]. In [6],
a general framework that embraces the previous design criteria
and generalizes upon them was developed based on Schur-con-
vexity [7] (also with an average power constraint). In [8], some
design criteria were considered with a peak power constraint
(maximum eigenvalue constraint).

This letter considers optimum linear transceivers for MIMO
channels under a general framework based on Schur-concave and
Schur-convex cost functions, similar to that in [6], but subject to
shaping constraints on the transmit covariance matrix rather than
an average power constraint. Shaping constraints are useful to set
limits on the shape of the transmitted power along different vir-
tual directions. Some examples include: imposing spectral masks
in cable systems (to control the crosstalk among users), limiting
thepower transmittedalongcertaindirections inwirelesssystems
(to avoid causing excessive interference), or limiting the dynamic
rangeof thepoweramplifiersat thedifferent transmitdimensions.
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II. SIGNAL MODEL

Consider a MIMO communication channel with transmit
and receive dimensions. The signal model is

(1)

where is the transmitted vector, is
the channel matrix, is the received vector, and

is a zero-mean circularly symmetric complex Gaussian
interference-plus-noise vector with arbitrary covariance matrix

, i.e., .
With the use of a transmit linear processing matrix

(commonly termed linear precoder), the transmitted
vector can be written as

(2)

where is the data vector that contains the symbols
to be transmitted. The total average transmitted power (in units
of energy per transmission) is

(3)

where we have assumed zero-mean unit-energy uncorrelated
symbols, i.e., .

Similarly, assuming a receive linear processing matrix
, the estimated data vector is

(4)

The main result of this letter only holds when the rank of the
transmit covariance matrix is unconstrained, i.e., when

(typically, ). This is not a strong assumption
and examples can be found in all kinds of systems: a single-input
single-output (SISO) multicarrier system can transmit as many
symbols as carriers, a wireline channel with lines can clearly
support users, and a wireless multiantenna channel can
also support substreams.

III. SHAPING CONSTRAINTS

A general shaping constraint on the transmit covariance ma-
trix is of the form

(5)

where is the upper bound (an equality constraint can be sim-
ilarly considered) and means that is positive
semidefinite. Such a shaping constraint includes as particular
cases, among others, the following constraints.
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A. Peak Power Constraint

Since , one simple way to control
the maximum power at each transmit dimension1 is by imposing

[9], [8] or, equivalently

(6)

This constraint is useful to control, for example, the dynamic
range of the power amplifier at each transmit antenna [10].

B. Independent Power Constraint Per Transmit Dimension

One simple way to limit each diagonal element of the transmit
covariance matrix is

(7)

The previous upper bound is optimal in the sense that there
is no other satisfying and .
There is, however, an infinite number of other choices with the
same property (not comparable with ); the considered one
has the lowest condition number among such pos-
sible solutions.

C. Spectral Masks

In wireline systems, such as digital subscriber line (DSL),
spectral masks are typically used to guarantee spectral compat-
ibility among different users/services sharing the same cable
[11]. Assuming a multicarrier modulation and modeling the
system in a matrix form, the previously considered independent
power constraint per transmit dimension is obtained.

D. Power Constraint Along a Direction

The power transmitted along the direction given by the uni-
tary vector is . If the power along such a direc-
tion is to be limited to , it suffices to choose a shaping upper
bound satisfying . The same idea can be used
to limit the power along several directions. This type of con-
straint may be very useful in multiuser scenarios when the inter-
ference caused to other users is to be limited (see, for example,
[12] where EIRP constraints were considered).

IV. OPTIMUM TRANSCEIVERS WITH SHAPING CONSTRAINTS

Consider the following constrainedoptimizationproblemwith
a general shaping constraint on the transmit covariance matrix:

(8)

where
is the MSE matrix, its diagonal

elements are the MSEs of the different established
substreams,2 and is an arbitrary cost function of the MSEs
(increasing in each of the arguments). In [6], a similar problem
was considered with an average power constraint expressed as

.
In a similar way, cost functions of the SINRs and of the BERs

could be considered. However, as shown in [6], such functions
can always be expressed as functions of the MSEs due to the

1It is a peak power constraint is in the sense of the peak along the transmit
dimensions, but it is still an average power constraint.

2d(X) and ���(X) denote the vectors with the diagonal elements and eigen-
values of matrix X, respectively.

relation between the SINR and the MSE, and between the BER
and the SINR (under the Gaussian approximation). Therefore,
it suffices to consider cost functions of the MSEs without loss
of generality (w.l.o.g.).

A. Optimal Receive Matrix

For a fixed transmitter , the optimum (linear) receiver is the
MMSE receiver of Wiener filter [6]

(9)

and the MSE matrix reduces then to

(10)

where . Note that the MMSE receiver is op-
timum regardless of since it minimizes simultaneously all
MSEs (cf. [6]).

B. Optimal Transmit Matrix

Theorem 1: Consider the constrained optimization problem:

(11)

where matrix is the optimization variable
,3 is a positive semidefinite Hermitian ma-

trix, and is an arbitrary cost function (increasing
in each variable).

It then follows that there is an optimal solution , such that
, given by

(12)

where is a “square-root” of (not necessarily
Hermitian or square) satisfying and

is a unitary matrix. The optimal solution and the min-
imum cost value are further simplified in the following cases.

• If is a Schur-concave function [7], [6], then the optimal
has as columns the eigenvectors of and

the minimum cost value is given by

• If is a Schur-convex function [7], [6], then the optimal
is such that has equal diag-

onal elements (examples of matrices that satisfy this prop-
erty can be obtained as the matrix with the eigenvectors of

(as in the previous case) multiplied by the
unitary DFT matrix or the Hadamard matrix, cf., [6]) and
the minimum cost value is given by

Proof: See Appendix.
Remarkably, the previous optimal solutions are independent

of the specific choice of and only depend on whether is
Schur-concave or Schur-convex (the optimal cost value does de-
pend on ). The previous result not only tells that an optimal
solution must satisfy (which is an intuitive and ex-
pected result) but also characterizes the rotation .

The maximization of the rate in a SISO multicarrier channel
with a spectral mask is a particular case of Theorem 1 of a great

3To be exact, it is only required that L � rank(S ).



PALOMAR: UNIFIED FRAMEWORK FOR LINEAR MIMO TRANSCEIVERS 699

practical interest in wireline systems. Such a problem was con-
sidered in [13] with results [13, eq. (5a)] in agreement with The-
orem 1 (note that the total rate as measured with the gap-approx-
imation method [13] is a Schur-concave function).

Corollary 1: For the particular case of a peak power con-
straint or eigenvalue constraint, expressed as ,
the result of Theorem 1 simplifies to . In
this case, however, it is possible to relax the constraint .
In particular, the optimal solution for is then given by

(13)

where contains as columns the eigenvectors of cor-
responding to the largest eigenvalues in increasing order. To
be more precise:

• if is a Schur-concave function, then ;
• if is a Schur-convex function, then is, for example,

the unitary DFT matrix or the Hadamard matrix.
For instance, if the trace or the determinant of the MSE matrix

are to be minimized, an optimal transmit matrix (but not the only
one) is simply given by because the cost
function is Schur-concave [6]. This result coincides with that
obtained in [8] for a peak power constraint.

APPENDIX

First, rewrite the problem as

and
It follows from that can always be written as

, where is any “square-root” of
(not necessarily Hermitian or square) satisfying

and is an arbitrary unitary matrix (note that
since all square-roots are related by a unitary transformation,
we can just consider one of them w.l.o.g.).

The problem can then be rewritten as

(14)
where

We now characterize the function . Consider two
matrices and satisfying . It then follows that

, which implies [14, Cor. 7.7.4] that

where is the th eigenvalue of in some spe-
cific order (e.g., decreasing or increasing). Now, since
and can always be written (as was done with ) as

and , respec-
tively, and for the nonzero eigenvalues
[14, Th. 1.3.20], it follows that

or, equivalently,

As a consequence, for any given , there exists such that

(simply note that if , then
for any unitary matrix ). Finally, since

the function is increasing in each argument, it follows that
if . In other words, the function is

-decreasing.
The solution to problem (14) is now straightforward since

is -decreasing in and the problem is constrained by
. To be more specific, the minimum cost value is achieved

when and is given by . This is true because
any other matrix satisfying the constraint is
clearly worse than in terms of . Note that we cannot make
a similar statement if , because there is an infinite
number of matrices with rank (satisfying ) that
are not comparable under the partial ordering defined by the
positive semidefinite cone. In such a case, the only way to find
the best matrix is to evaluate all of them with (whose result
will depend on the particular channel realization and no
general claim can be made).

Finally, it remains to obtain a more explicit characterization
of by finding the minimizing . For this purpose, the
results obtained in [6] can be directly used as we now restate
without proof. If is a Schur-concave function, the optimum

is such that is diagonal, and, if is a
Schur-convex function, the optimum is such that

has equal diagonal elements.
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