
3804 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 10, OCTOBER 2005

Designing MIMO Communication Systems:
Constellation Choice and Linear Transceiver Design
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Abstract—This papers considers the design of a mutiple-input
multiple-output (MIMO) communication system with channel
knowledge at the transmitter and receiver. The design methods
available in the literature have addressed the following two as-
pects of the problem: a) choice of the symbol constellations for
a given transmission scheme or b) choice of the optimal (linear)
precoder and equalizer for a given choice of the constellations.
More specifically, the choice of the constellations has been made
enforcing a diagonal, or parallel, transmission. However, in prac-
tice, the two problems of choosing the constellations and the linear
precoder/equalizer are clearly coupled, and the diagonal structure
may not be necessarily the best. This paper attempts to provide
a global view of the problem by bridging the gap between the
existing results on the selection of the constellations and on the
design of the signal processing in the form of a linear transceiver
(i.e., precoding at the transmitter and equalization at the receiver).

Index Terms—Constellation choice, diagonal structure, gap ap-
proximation, linear precoding, linear transceiver, MIMO system,
parallel transmission.

I. INTRODUCTION

MULTIPLE-INPUT multiple-output (MIMO) channels
provide a general framework for modeling a series of

different communication systems of diverse physical nature,
ranging from single-antenna frequency-selective channels [1],
to wireless multiantenna systems [2], [3], and to wireline
digital subscriber line (DSL) systems [4]. This abstract mod-
eling allows for a unified treatment using a very convenient
vector-matrix notation.

The focus of this paper is on point-to-point MIMO commu-
nication systems with perfect channel state information (CSI)
at both sides of the link. In such a case, the system can adapt
to each channel realization to improve the spectral efficiency
and/or reliability of the communication. From a fundamental
point of view, the optimal design, in terms of maximum in-
formation rate, is well known: The MIMO channel has to be
diagonalized and ideal Gaussian codes have to be transmitted
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through the channel eigenmodes with a waterfilling power pro-
file [2], [5]–[7]. In practice, the ideal Gaussian codes are sub-
stituted with finite order constellations [such as quadrature am-
plitude modulation (QAM) constellations] and practical coding
schemes. Furthermore, to simplify the design of such a system,
it is customary to divide it into an inner uncoded part, which
transmits symbols drawn from given constellations, and an outer
coded part that adds redundancy in order to include error cor-
rection capabilities. Although the ultimate system performance
depends on the combination of both parts (in fact, for some sys-
tems, such a division does not even apply), it is convenient, from
the mathematical tractability point of view, to concentrate on
the uncoded part, independently of the error correction block,
to simplify the analysis and design.

The uncoded part of a system can be divided into two blocks:
the constellation mapping and the signal processing. The constel-
lation mapping refers to how the data bits are mapped into points
of a constellation, whereas the signal processing refers to any
additional processing in the form of precoding at the transmitter
and equalization at the receiver that modifies the channel into
an equivalent channel. In particular, the focus will be on linear
signal processing, which is also termed linear transceiver, for
complexity reasons (this choice is also supported from the fact
that a linear transceiver is optimal from an information- theoretic
viewpoint). Linear processing is typically used, for example,
to convert the given MIMO channel into a set of independent
channels. The overall system can then be schematized as shown
in Fig. 1. Roughly speaking, the existing results in the literature
for MIMO channels include, on the one hand, the choice of the
constellations under a diagonal or parallel transmission and, on
the other hand, the optimization of the linear transceiver without
explicitly referring to the constellations used. However, a unified
view of the two problems is missing (an exception is [8], where
the joint design of the constellations and linear transceiver is
considered under a perfect reconstruction criterion, and the cor-
responding extension to multiservice communications in [9]).

As far as the choice of the constellations is concerned, the gap
approximation method gives approximately the best constella-
tions to be used on a set of parallel subchannels to guarantee
a given error probability on each of the subchannels [10]–[13].
Such a result is typically used on MIMO channels by first diag-
onalizing the channel matrix and then using the channel eigen-
modes as parallel subchannels (following the guidelines dictated
by the capacity-achieving solution). However, such combination
of channel diagonalization and employment of the gap approx-
imation over the channel eigenmodes has never been proved to
be optimal. This paper sheds some light into this problem by
clarifying when it is indeed optimal and quantifying how sub-
optimal it can be.
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Fig. 1. Division of the uncoded part of a communication system into two blocks: the constellation mapping and the linear processing (which modifies the channel
into an equivalent channel).

Regarding the design of the linear MIMO transceiver, many
results are available, but either without making any comment
about the constellations or assuming that they have been previ-
ously chosen, regardless of the linear transceiver scheme. The
classical approach refers to the minimization of the sum of the
mean square error (MSE) of all subchannels or, equivalently,
the trace of the MSE matrix with a fixed transmit power [14],
[1], [15]. Some others results consider the maximization of the
signal to interference-plus-noise ratio (SINR) [1]. In [16], a gen-
eral unifying framework was developed to consider a wide range
of different design criteria; in particular, the optimal design was
obtained for the family of Schur-concave and Schur-convex cost
functions. However, rather than the MSE or the SINR, the ul-
timate performance of a system is given by the bit error rate
(BER), which is more difficult to handle. In [17], the minimiza-
tion of the BER (and also of the Chernoff upper bound) averaged
over the subchannels was treated in detail when a diagonal struc-
ture was imposed. Recently, the minimum BER design without
the diagonal structure constraint was independently obtained
in [16] and [18] for the case of equal constellations, resulting
in an optimal nondiagonal structure. The generalization to dif-
ferent constellations was obtained in [19]. In any case, the con-
stellations are always assumed to be known (previously chosen
somehow). Note that as opposed to fixing the transmit power
and optimizing some measure of quality, it is also possible to
minimize the transmit power subject to some minimum global
quality of the system or, even better, subject to an independent
quality for each of the subchannels [20].

This paper addresses the problem of designing both the con-
stellations and the linear transceiver (for a given BER) of a
point-to-point MIMO communication system with CSI. It at-
tempts to provide a global view of the problem by bridging
the gap between the existing independent results on both prob-
lems. In other words, it deals with the multiobjective optimiza-
tion problem involving the three fundamental parameters: BER,
rate, and power. After an overview of different methods to select
the constellations, the optimality of the diagonal transmission
strategy is assessed for each of the methods, showing when it
is an optimal transmission depending on the BER requirements.
Since the diagonal structure is adopted in many current systems,
we also quantify the performance loss resulting from its use
when it is not optimal. A special emphasis will be placed on the
well-known gap approximation as a sounded method to select
the constellations; in particular, in Theorem 1, an approximate
optimal solution is given for the joint design of the constella-
tions and linear transceiver.

The paper is structured as follows. In Section II, the signal
model is introduced, the problem is formulated, and some pre-
liminary results are reviewed. Section III gives an overview of
different methods for choosing the constellations. The main re-
sults of the paper are obtained in Section IV, where the diagonal

structure is analyzed in detail. Section V confronts the results
of the two previous sections and summarizes the whole paper.
Finally, Section VI concludes the paper.

The following notation is used. Boldface upper-case letters
denote matrices, boldface lower-case letters denote column
vectors, and italics denote scalars. and represent
the set of matrices with real- and complex-valued en-
tries, respectively. The superscripts , , and denote
transpose, complex conjugate, and Hermitian operations, re-
spectively. (also ) denotes the ( th, th) element of
matrix . Tr and denote the trace and the determinant
of a matrix, respectively. The operator is
the projection on the nonnegative orthant.

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, first, the basic signal model for MIMO chan-
nels and linear transceivers is introduced; then, the problem ad-
dressed in the paper is explicitly formulated; finally, some pre-
liminary results on the design of linear MIMO transceivers are
given.

A. MIMO Signal Model

The signal model corresponding to a transmission through a
general MIMO communication channel with transmit and

receive dimensions is

(1)

where is the transmitted vector, is
the channel matrix, is the received vector, and

is a zero-mean circularly symmetric complex Gaussian
interference-plus-noise vector with arbitrary covariance matrix

, i.e., . In some situations (such as in mul-
ticarrier systems), it may be useful to model the system as a set
of parallel and noninterfering MIMO channels, for which the
results of this paper also hold.

A linear transceiver is composed of a linear precoding at the
transmitter and a linear equalization at the receiver. The trans-
mitted vector can be written as (see Fig. 2)

(2)

where is the transmit matrix (linear precoder) and
is the data vector that contains the symbols to

be transmitted (zero-mean,1 normalized, and uncorrelated, i.e.,

1If a constellation does not have zero mean, the receiver can always remove
the mean and then proceed as if the mean was zero, resulting in a loss of trans-
mitted power. Indeed, the mean of the signal does not carry any information and
can always be set to zero saving power at the transmitter.
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Fig. 2. Scheme of a general MIMO communication system with a linear
transceiver.

) drawn from a set of finite-order constellations
, i.e., . Note that different symbols may be drawn

from different constellations. For the sake of notation, it is as-
sumed that . The total average transmitted
power (in units of energy per transmission) is

Tr (3)

Similarly, the estimated data vector at the receiver is (see Fig. 2)

(4)

where is the receive matrix (linear equalizer).

B. Problem Formulation

This paper attempts to characterize the Pareto optimal solu-
tions2 of the multiobjective optimization problem corresponding
to the uncoded part of the system with the three following ob-
jectives: (uncoded) BER, (uncoded) rate, and transmit power. To
be more specific, given the signal model ,
where the symbols , the optimization of the uncoded
part of the system corresponds to the design of the linear trans-
ceiver and to the choice of the constellations .
We now comment on each of the objectives or parameters to be
optimized.

• The global average BER of the system is perhaps the best
way to characterize the quality of the system with a single
parameter:

BER BER (5)

where BER is the BER of the th subchannel. Another
equally good approach is to consider the same BER con-
straint on each of the subchannels:

BER BER (6)

In fact, as was obtained in [19], both types of BER con-
straints are essentially the same and there is no significant
difference. The reason is that the average BER is strongly
dominated by the minimum of the individual BERs and,
hence, an optimized system must necessarily have almost
equal BERs on the subchannels. For the rest of the paper,
equal BERs on each subchannel as in (6) are considered
[since it is analytically more convenient than (5)].

2A Pareto optimal solution is an optimal solution to a multiobjective opti-
mization problem; it is defined as any solution that cannot be improved with
respect to any of the objectives without worsening the others [21].

• The rate of the system is trivially defined as the number
of transmitted bits

(7)

where denotes the size of the constellation . For a
given , it is not clear what is the best combination of
the constellations . In principle, a full search should
be done over all the combinations that give the desired
rate; however, as will be seen later in Section III-B, there
are simple methods to choose quasioptimal combinations
such as the gap approximation.

• Finally, the required transmit power is given by
Tr .

Since the system is characterized with three parameters, a
simple way to obtain Pareto optimal solutions is to fix two of the
competing parameters and optimize the third one with respect
to the optimization variables and . To be more
specific, we will fix the BER and the rate to finally minimize
the required transmit power. The main purpose of the paper is
to obtain a simple and quasioptimal way to choose the constel-
lations and to design the linear transceiver.

C. Preliminaries on the Design of Linear MIMO Transceivers

In this section, we will briefly review the design of the linear
transceiver assuming that the constellations have already been
chosen. In particular, we will consider the minimization of the
transmitted power subject to independent quality constraints on
each subchannel; for example, BER constraints as in (6), SINR
constraints, or MSE constraints. As will be argued later, all three
types of constraints essentially reduce to the same problem [20].
For simplicity of exposition, the problem is formulated with
MSE constraints of the form MSE , where the ’s are
the MSE requirements.

Defining the MSE matrix as the covariance matrix of the error
between the transmitted and estimated vectors

(8)

and noting that the MSE of the th subchannel is obtained as the
th diagonal element of , i.e., MSE , the problem can

be mathematically formulated as

Tr

s.t. (9)

1) Linear Receiver: If the transmitter is fixed, the optimal
receiver is obtained as the well-known linear MMSE receiver,
also termed Wiener filter, since it minimizes simultaneously all
MSEs [22], [16], [20]. In addition, the ZF constraint

can be imposed to avoid crosstalk among the different links
established through the MIMO channel; in such a case, the well-
known ZF receiver is obtained [19]. Both the MMSE and ZF
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receivers, along with the corresponding MSE matrices, can be
written in a compact way as follows:

(10)

(11)

where is a parameter defined as

for the MMSE receiver
for the ZF receiver

and is the squared whitened channel ma-
trix. Note that we can always consider that a receiver is com-
posed of an MMSE or ZF stage plus some other stage without
loss of optimality (since the MMSE and ZF receivers are ca-
pacity-lossless3). It important to remark that the SINRs and the
MSEs are easily related for the MMSE/ZF receiver by SINR
MSE [23, Prob. 6.5], [16], [20]. In addition, the BER
can be analytically expressed as a function of the SINR, as-
suming that the crosstalk can be well modeled as a Gaussian
noise [23]–[25]. Hence, given a BER requirement and a con-
stellation, we can straightforwardly obtain the equivalent SINR
or MSE requirement; this is why the formulation with MSE con-
straints in (9) is without loss of generality.

2) Linear Transmitter: Now, in order to design the trans-
mitter , the following problem has to be solved:

Tr

s.t. (12)

where the ’s are the MSE requirements assumed in decreasing
order , without loss of generality. This is a nonconvex
and very complicated problem since, in general, the MSE matrix
is not diagonal, i.e., does not diagonalize . For the sake
of simplicity, one can impose a diagonal structure on
by choosing the following suboptimal solution for [20]:

(13)

where has as columns the eigenvectors of
corresponding to the largest eigenvalues in increasing order

and is a diagonal matrix with squared-
diagonal elements corresponding to the power allocated on
each subchannel, i.e., diag . The problem is then
reduced to obtaining the power allocation as

s.t.

(14)

3It is straightforward to verify that the MMSE and ZF receivers
in (10) are capacity lossless simply by checking that the mu-
tual information (for a given transmitter B) after the receiver A,
log det (I+B H A(A R A) A HB) is equal to the mutual
information of the channel log det(I+B R B).

which is a simple convex problem with solution given by

(15)

Note that each MSE constraint is satisfied with equality:
MSE for .

However, the choice (13) is suboptimal. The optimal solution
to problem (12) was obtained in [20] as

(16)

where is an additional unitary matrix with respect
to the suboptimal solution (13), also termed “rotation” matrix,
which can be easily computed [20]. Note that by using the op-
timal , the optimal power allocation for (16) is no longer given
by (15) but by a waterfilling solution with multiple waterlevels
(cf. [20]).

3) Diagonal versus Nondiagonal Transmission: To better
understand the underlying structure of the communication
when using an MMSE/ZF receiver and a transmitter of the form

, write the global transmit-receive process
explicitly as

(17)

where is an equivalent normalized white noise, and
is the diagonalized squared whitened channel

matrix. For the ZF receiver , the previous expression
simplifies to

(18)

which clearly satisfies the condition (by definition)
but has, in general, a correlated noise among the subchannels. In
other words, when using the ZF receiver, the global transmission
is not really diagonal or parallel since the noise is colored.

In fact, the fully diagonal or parallel transmission does not
depend on whether the ZF or the MMSE receivers are used but
on the choice of the “rotation” . Indeed, by setting , the
global transmit-receive process (17) is fully diagonalized:

(19)
which can be rewritten as

(20)

where (see Fig. 3). Interestingly, by
choosing , the MMSE receiver also results in a diagonal
transmission (which is never the case in the traditional approach,
where only the receiver is optimized). This is all summarized in
the following.

Remark 1: The suboptimal solution (13) leads to a diagonal
transmission or diagonal structure, whereas the optimal solution
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Fig. 3. Scheme of diagonal and nondiagonal (due to the rotation)
transmissions.

(16) yields a nondiagonal scheme composed of an inner diag-
onal structure placed between a “pre-rotation” and a “post-rota-
tion” operators, as shown in Fig. 3.

III. ON THE CHOICE OF THE CONSTELLATIONS

In this section, we consider the choice of the constellations
(and, equivalently, of the allocated power) for transmission over
a set of parallel subchannels:

(21)

where and . The SNR of the th
subchannel is given by SNR , which is a combination
of the subchannel gain and the allocated power .

A. Capacity-Achieving Solution

We start the discussion with the well-known capacity-
achieving solution since the following methods are strongly
based on it. From the landmark work by Shannon in 1948 [26],
[27], the achievable information rate through a channel with
a given SNR is given by SNR bits/transmission.
For the set of parallel subchannels in (21), the achievable
information rate is given by the sum , and
the capacity is given by the maximum achievable rate over all
possible power allocation strategies . The optimum power
distribution is the well-known waterfilling solution [28], [5]

(22)

where is the waterlevel chosen to satisfy the power constraint
with equality (the waterlevel can be alternatively chosen to sat-
isfy a given required rate with minimum power).

To achieve the channel capacity, however, it is necessary to
use ideal Gaussian codes [5], which are not practical for real sys-
tems; hence the need to employ simpler and more practical con-
stellations such as QAM or pulse amplitude modulation (PAM).

B. Gap Approximation

The basic idea of the gap approximation is to avoid the need
for ideal Gaussian codes inherent in the capacity-achieving solu-
tion. Instead, a family of practical constellations, such as QAM
or PAM, is employed. The number of bits that can be transmitted
for a given family of constellations and a given probability of
detection error is approximately given by SNR ,
where is the gap which depends only on the family of con-
stellations and on [10]–[13]. Interestingly, there is a constant
gap between the Shannon capacity and the spectral efficiency
of realistic constellations, which can be interpreted as a penalty
for not using ideal Gaussian codes. This observation was ini-
tially reported for channels with intersymbol interference with
decision-feedback equalization [29]. The gap approximation is
a widely used technique to select the constellations in wireline
communication systems such as DSL [30].

The derivation of the gap approximation method is
straightforward as we now show. For QAM constella-
tions, for example, the symbol error probability can be
approximated (upper bounded, to be exact) by SNR

SNR [31], [24], from which the
constellation size that achieves a given in the th parallel
subchannel of (21) is

SNR SNR
(23)

where is the gap. If, instead,
the error probability is approximated as SNR

SNR , where

[31], [23], then the resulting gap is
. Hence, the total number of bits that can be

transmitted with a given is

(24)

where we have used SNR . The optimum power dis-
tribution that maximizes the total number of bits also follows a
waterfilling solution

(25)

and the number of bits to be transmitted on the th subchannel
is .

Although the gap approximation method is designed to
achieve the same symbol error probability (and not bit error
probability) on each subchannel, it can still be approximately
used when the same BER is desired (because the BER and
differ approximately by the factor which is not in the
exponent and therefore is not very relevant). The more exact
expression for the gap was proposed
in [13] based on a better fit of the BER for . As a final
comment, it is important to point out that the gap approxima-
tion can easily incorporate other factors such as a margin gain

(which is an additional gain included to make the system
more robust) and a coding gain (to account for the gain
given by an outer code) with the following gap expression:

.
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C. Gap Approximation Distortion

In practice, however, it is not possible to implement the con-
tinuous bit distribution (also termed bit loading) as given by
the gap approximation due mainly to two sources of distortion:
the granularity and the bit cap [30]. The granularity refers to
the smallest incremental unit of information that can be trans-
mitted, which means that the bit distribution dictated by the gap
approximation has to be somehow rounded [30]; for example,
it is customary to use constellations that correspond to an in-
teger number of bits. The bit cap is a distortion phenomenon
that arises because the maximum constellation-size is generally
limited in real systems [30].

The distortion introduced in the bit distribution implies a dis-
tortion on the power allocation necessary to achieve the desired
error probability and can be conveniently written as

(26)

where denotes the distortion. The number of bits to
be transmitted on the th subchannel is then

.
Next, we characterize the distortion resulting from two dif-

ferent types of rounding and from the bit cap.
1) Rounding to the Closest Smaller Integer: Rounding to the

closest smaller integer satisfies the condition

which implies

(27)

2) Rounding to the Closest Integer: Rounding to the closest
smaller integer satisfies the condition

which implies

(28)

3) Bit Cap: For the active subchannels, the power alloca-
tion is with a limitation on the
maximum constellation size or, equivalently, on the maximum
gain . This implies the following bounds on the
distortion:

(29)

D. Equal Power

The power allocation obtained from the gap approxima-
tion can be approximated in practice
with a flat power allocation or equal power distribution

over the best subchannels.4 Such a solution is ap-
proximately valid for sufficiently high SNR; to be exact, it
suffices to have for the used subchannels such

4One possible way to choose the best subchannels for the flat power allocation
is to select the subchannels that would be used by the waterfilling solution.

that (indeed, due to the
logarithmic dependence, the number of transmitted bits is
insensitive to the exact power allocation). This observation
was empirically made in [32] (called “on/off” distribution) and
further analyzed in [33] using the duality gap.

In practice, as happened with the gap approximation, the uni-
form power allocation is distorted due to the rounding of the
allocated bits.

E. Equal Constellations

In order to reduce the complexity of a system employing
different constellations and codes, it can be constrained to use
the same constellation and code in all subchannels (possibly
optimizing the utilized bandwidth to transmit only over those
subchannels with a sufficiently high gain), i.e., an equal-rate
transmission. Examples of this pragmatic and simple solution
are found in the European standard HIPERLAN/2 [34] and in
the US standard IEEE 802.11 [35] for Wireless Local Area
Networks (WLAN).

In order to achieve the same BER on each subchannel (with
equal constellations), the SINRs must be the same and the power
allocation is such that resulting gains of the subchan-
nels are equal.

F. Numerical Comparison

In this subsection, we compare the following methods for
choosing the constellations: i) best-constellations for the sub-
channels, which is obtained through a full search over all com-
binations of constellations; ii) gap approximation; iii) equal-
power, which optimizes the number of subchannels used for
each channel realization; iv) equal-constellations, which also
optimizes the number of subchannels used for each channel real-
ization; v) best fixed-equal-constellations, which are equal con-
stellations over the best subchannels but with a fixed number of
subchannels used for all channel realizations; vi) wrong fixed-
equal-constellations, which are equal constellations again over
a fixed number of subchannels but, in this case, wrongly chosen.

The gains of the subchannels are obtained as the eigenvalues
of a randomly generated 4 4 channel matrix with independent
and identically distributed (i.i.d.) complex Gaussian elements of
zero mean and unit variance. To design the system, we impose a
BER of on each subchannel (which is basically equivalent
to fixing the global averaged BER to , cf. Section II-C) and
compute the minimum transmit power for each desired rate.

In Fig. 4, the required normalized transmit power (defined as
where is the noise power) is plotted as a function of

the desired rate for the six methods for choosing the constella-
tions; to be exact, the outage power with an outage probability
of 5% (computed with 1000 channel realizations) is plotted. The
full search over all constellations gives, as expected, the best
solution; in fact, it gives a Pareto optimal solution in terms of
BER, rate, and power. The gap approximation, as could be ar-
gued from its analytical derivation, is almost indistinguishable
from the full search. The equal-power method approximates the
gap approximation extremely well. The equal-constellation ap-
proach has some performance loss (about 1 or 2 dB) but still per-
forms quite well. Surprisingly, the best fixed-equal-constellation
method performs very close to its adaptive counterpart, with the
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Fig. 4. Tradeoff curves of power versus rate (for a given BER of 10 ) for
different methods of choosing the constellations.

advantage that not only the constellations but, in addition, the
number of subchannels are fixed for all channel realizations. In
particular, for a 4 4 MIMO channel, the best choice is
(for other configurations such as 6 6 or 8 8 MIMO channels,
the best choice is and , respectively; this amounts
to using approximately 65% of the subchannels). However, if
the number of subchannels is not properly chosen (in particular,
we use all the subchannels in Fig. 4), the performance de-
grades dramatically. Similar curves as those plotted in Fig. 4 are
obtained for other channel configurations with different number
of transmit and receive dimensions, for which the same obser-
vations hold.

Summarizing, if the system can adapt the constellations to the
channel realization, then the gap approximation and the equal-
power methods are virtually optimal. If, instead, the system
cannot change the constellations, the loss can still be kept small
provided that the (possibly fixed) number of subchannels to be
used is properly selected such that the bad subchannels are al-
ways discarded.

IV. ON THE DESIGN OF LINEAR MIMO TRANSCEIVERS

The purpose of this section is to shed some light into the
choice between diagonal and nondiagonal transmissions. We
first obtain some general results regarding the optimality and
suboptimality of the diagonal structure and then apply these
results to the different methods for choosing the constellations
described in Section III. In particular, Theorem 1 reveals an
approximate optimal solution for the joint design of the con-
stellations and linear transceiver.

We restate the following result from [16], which characterizes
the transmitter when the performance of the system is measured
by a Schur-concave/convex function [36].

Proposition 1: [16] Consider the following two constrained
optimization problems:

s.t. Tr

and

Tr

s.t.

where and are the power and quality requirements, re-
spectively, and is an arbitrary cost function
(increasing in each variable) of the MSEs. Then, it follows that
there is an optimal solution with the following structure:

if is Schur-concave
if is Schur-convex

(30)

where and are defined as in (13), and is a unitary
matrix such that the MSE matrix has equal
diagonal elements (e.g., the unitary Fourier matrix).

An immediate consequence of Proposition 1 is that the diag-
onal structure is optimal for Schur-concave functions; whereas
for Schur-convex ones, it is never optimal (unless the used
channel eigenvalues are all equal).

In many cases, however, the system cannot be measured by a
Schur-concave/convex function. The following result gives the
necessary and sufficient conditions under which the diagonal
transmission is optimal for any system.

Proposition 2: The diagonal transmission, given by (13) and
(15), is the optimal solution of problem (12) if and only if

MSE MSE (31)

where the channel eigenvalues are in increasing order
, and the MSEs are in decreasing order MSE MSE ,

where MSE .
Proof: This result was given in [20] for the case of an

MMSE receiver and is easily obtained from the
Karush–Kuhn–Tucker (KKT) optimality conditions of the
problem [37], [38] (see Appendix A for a proof).

What is important to remark here is that, depending on the
constellation chosen for each subchannel (cf. Section III), the
MSEs required to guarantee a given BER with these constel-
lations change. As a consequence, the system may or may not
satisfy the conditions in (31). This means that for some constel-
lations the diagonal transmission may be optimal, whereas for
others it may not.

Proposition 2 is useful to obtain a binary answer to the ques-
tion of whether the diagonal transmission is optimal or not. In
practice, when Proposition 2 is not satisfied but a suboptimal di-
agonal structure is still employed, it is important to quantify the
loss resulting from the use of the diagonal structure. The answer
is given by the following result.

Proposition 3: The power loss incurred by using a diag-
onal transmission, given by (13) and (15), with respect to the op-
timal transmission (possibly including an additional “rotation”
in (13), as in (16)) is upper bounded as

MSE

MSE MSE
(32)

where the channel eigenvalues are in increasing
order , the MSEs are in decreasing order
MSE MSE , and is the set of subchannels that
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do not satisfy the diagonality condition in (31), i.e.,
MSE MSE .

Proof: The loss of optimality of the diagonal transmission
can be easily quantified with the concept of duality gap arising
in convex optimization theory [37], [38] (see Appendix B for a
detailed proof).

In words, Proposition 3 says that if the optimality conditions
of the diagonal structure (obtained in Proposition 2) are not sat-
isfied by not too much, then the diagonal transmission is almost
optimal, i.e., the performance degrades gracefully.

Interestingly, the previous conditions on the optimality of the
diagonal structure can be checked before actually designing the
transceiver so that one is able to check, a priori, the maximum
power loss. In the following, we particularize the previous re-
sults to different methods for choosing the constellations, as de-
scribed in Section III.

A. Capacity-Achieving Solution

For convenience of exposition, we start by briefly recalling
the well-known diagonality result of the capacity-achieving so-
lution. It suffices to show that the mutual information is always
increased when the whitened channel matrix is diagonalized:

(33)

where is the transmit covariance matrix, we have
used the eigendecomposition ,

(note that the power constraint Tr
is similarly given in terms of by Tr ), and the in-
equality comes from Hadamard’s inequality
(with equality if and only if is diagonal) [5]. There-
fore, the transmit covariance matrix should be of the form

diag (so that is diagonal), where the
optimal power allocation follows the waterfilling form as in
(22): .

This is a well-known result obtained from information-theo-
retic arguments, e.g., [5]. Interestingly, we now obtain the op-
timality of the diagonal structure when using the waterfilling
power allocation from a pure signal processing perspective in-
voking Proposition 2.

Corollary 1: The diagonal transmission is an optimal struc-
ture when the power allocation over the channel eigenvalues is
given by the classical capacity-achieving waterfilling solution

.
Proof: It follows from Proposition 2 (see Appendix C set-

ting ).

B. Gap Approximation

As explained in Section III, the gap approximation is an ap-
proximately optimal way to choose the constellations for a set of
parallel subchannels (in the sense of maximizing the rate with a
fixed transmit power or minimizing the power with a fixed rate).
When dealing with a MIMO channel, one can always diago-
nalize the channel matrix and treat it as a set of parallel subchan-
nels. However, the optimality of the diagonal structure for the

gap approximation (as happens with the capacity-achieving so-
lution) has never been proved (to the best of the authors’ knowl-
edge) even though it is commonly used in practice. An excep-
tion is [8], where the joint design of the constellations and linear
transceiver is considered under a perfect reconstruction criterion
(i.e., for a ZF receiver) and the diagonal structure is found to be
optimal (the choice of constellations derived happens to be es-
sentially equivalent to the gap approximation method although
not explicitly mentioned). The following result shows that in-
deed the diagonal structure is optimal when using the gap ap-
proximation (for MMSE and ZF receivers).

Theorem 1: The diagonal transmission is an optimal struc-
ture when the performance of the system is measured by the
aggregate rate of the subchannels SINR ac-
cording to the gap approximation method with gap .

Proof: It suffices to show that the function that measures
the performance of the system is Schur-concave and then invoke
Proposition 1. Recalling the relation SINR MSE as
given in Section II, the cost function of the system (to be mini-
mized) can be written as

MSE
MSE

which is Schur-concave since it is the sum of identical concave
functions (given by ) [36, 3.H.2].

Theorem 1 states that the combination of the gap approxima-
tion method plus a diagonal structure is in fact an almost optimal
way (due to the nonexact nature of the gap approximation itself)
to jointly design the constellations and the linear transceiver.

For illustration purposes (since the following subsections pro-
ceed in the same way), we characterize the optimality of the di-
agonal structure invoking Proposition 2 instead.

Corollary 2: The diagonal transmission is an optimal struc-
ture when the power allocation over the channel eigenvalues
is given by the gap approximation waterfilling solution

.
Proof: It follows from Proposition 2 (see Appendix C for

details).

C. Gap Approximation Distortion

As treated in detail in Section III, a practical implementation
of the gap approximation requires rounding the number of allo-
cated bits on each subchannel, which can be written in terms of
power as . The following result gives
the conditions under which the diagonal structure is optimal for
transmission.

Corollary 3: The diagonal transmission is an optimal struc-
ture when the power allocation over the channel eigenvalues is
given by the gap approximation plus a distortion

if the following conditions are satisfied:

(34)

or, roughly speaking

.
(35)
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Proof: The proof follows from Proposition 2 (see
Appendix D for details).

Since the optimality conditions of Corollary 3 are not satisfied
in many cases, it is important to quantify then the suboptimality
of the diagonal structure. We now obtain a very simple upper
bound on the increase of power required due to the use of the
suboptimal diagonal structure.

Corollary 4: The loss incurred by using a diagonal transmis-
sion with respect to the optimal transmission, when the gap ap-
proximation with distortion is used, is upper bounded as

MSE (36)

where is the set of subchannels that do not satisfy the diago-
nality condition in (31), as defined in Proposition 3. In case of
rounding to the closest smaller integer , for
example, the following more illustrative bound is obtained:

MSE (37)

Proof: It follows from Proposition 3 (see Appendix E for
details).

From the previous result, it is clear that the loss of per-
formance increases gracefully with the distortion on each
subchannel [see, for example, (37)]. Hence, we can expect
the gap approximation plus distortion to have a negligible
loss in practice (this is supported by the numerical results in
Section IV-F).

D. Equal Power

In the simple case of using a uniform power allocation, the
diagonal structure is almost always optimal as the following re-
sult shows.

Corollary 5: The diagonal transmission is an optimal struc-
ture when an equal power allocation is used if

(38)

which is always true for the ZF receiver and for the
MMSE receiver if the total power is sufficiently
high.

Proof: It follows from Proposition 2 (see Appendix F for
details).

The following corollary quantifies the loss in case that the
minimum used channel eigenvalue is sufficiently small so
that the condition of Corollary 5 is not satisfied.

Corollary 6: The loss incurred by using a diagonal transmis-
sion with respect to the optimal transmission, when an equal
power allocation is used, is upper bounded as

(39)

Proof: It follows from Proposition 3 (see Appendix G for
details).

Fig. 5. Loss of performance of the diagonal transmission with respect to the
optimal structure (in terms of required transmit power to achieve a given BER)
as a function of the rate for different ways of choosing the constellations.

E. Equal Constellations

In the simple case of using the same constellation on each
subchannel, the diagonal structure is never optimal with proba-
bility one (in case of a randomly chosen channel).

Corollary 7: The diagonal transmission is an optimal struc-
ture when equal constellations are used if and only if the channel
eigenvalues used are identical.

Proof: It follows from Proposition 2 (Appendix H for
details).

We now quantify the loss in case that equal constellations are
used with a diagonal transmission.

Corollary 8: The loss incurred by using a diagonal transmis-
sion with respect to the optimal transmission, when equal con-
stellations are used, is upper bounded as

MSE

MSE
(40)

where MSE is the required MSE for each of the subchannels
to satisfy the required BER constraint.

Proof: It follows from Proposition 3 (see Appendix I for
details).

F. Numerical Comparison

To support and illustrate the analytical results obtained in this
section, the loss of the diagonal transmission with respect to
the optimal structure is numerically evaluated for the different
methods of choosing the constellations (cf. Section III-F). A
4 4 channel matrix is randomly generated with i.i.d. complex
Gaussian elements of zero mean and unit variance. The loss is
measured in terms of increase of transmit power required to
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Fig. 6. Potential improvement that can be achieved by optimizing the constellations and/or the linear transceiver.

achieve a given BER of on each subchannel; it can be
defined as a percentage or
as a difference in decibels dB dB dB ,
where is the power needed with the diagonal structure
and the minimum power required (assuming the optimal
structure).5

In Fig. 5, the power loss of the diagonal transmission is
plotted as a function of the rate. It can be observed that when
the constellations are properly selected (best-constellation, gap
approximation, and equal-power), the loss is insignificant (less
than 0.2 dB). For the equal-constellation approach, the loss is
still very small (0.5–1 dB). Interestingly, if the constellations
are chosen equal and fixed for all channel realizations (using

), the loss is also small (around 1 dB). However, if
the choice of the constellations is not properly done (fixed
equal-constellations with ), then the loss can be quite
significant (around 4 dB).

Numerical results for the upper bounds on the loss of perfor-
mance of Corollaries 4, 6, and 8 (and also of the general upper
bound in Proposition 3) are not reported in the plots for the sake
of space; however, they can be easily summarized as follows.
For the gap approximation with rounding, the general bound in
Proposition 3 is indistinguishable from the real loss (0.05 dB
of difference), whereas the bound in Corollary 4 is very loose
(2 dB over the real loss in Fig. 5); hence, Corollary 4 is mainly
a theoretical result to observe that the loss of performance in-
creases gracefully. For an equal power allocation, both upper

5The loss in percentage or in decibels is easily related as �P (%)=100 =

1� 10 dB or �P (dB)=10 = � log (1��P (%)=100).

bounds in Proposition 3 and Corollary 6 are very tight and are
almost indistinguishable from the real loss (0.05 dB of differ-
ence). For equal constellations, both upper bounds in Proposi-
tion 3 and Corollary 8 (only the tighter bound) are reasonably
tight (the loss in decibels is approximately doubled, i.e., if the
real loss is about 0.5 or 1 dB, the upper bound would be around
1 or 2 dB, respectively).

V. SUMMARY OF CONSTELLATION CHOICE AND LINEAR

TRANSCEIVER DESIGN

In this section, we first list some of the results obtained in
the paper and then summarize the lesson learned and illustrate
it with a numerical result.

The main analytical results of the paper can be paraphrased
as follows.

• The combination of the (ideal) gap approximation method
plus a diagonal structure on the MIMO channel is an al-
most optimal way to jointly design the constellations and
the linear transceiver.

• With the gap approximation method plus distortion (the
case in practice), the diagonal transmission either is op-
timal or incurs in a really small loss. The same comment
holds for the more pragmatic equal power allocation.

• With equal constellations, the diagonal transmission is
never optimal. However, if the number of subchannels
used is properly selected (even if it is independent on the
channel realization), the loss is small; otherwise, the loss
can be significant.



3814 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 10, OCTOBER 2005

Fig. 7. Tradeoff curve of BER versus rate (for a given transmit power of 15 dB)
corresponding to the two extreme approaches: gap-approximation + diagonal
structure and wrong fixed equal-constellations+ optimal structure; and also the
intermediate approach: best fixed equal-constellations + optimal structure.

Hence, we can say that the better the constellations are se-
lected, the less effort is needed in designing the linear trans-
ceiver, as is illustrated in Fig. 6.

In Fig. 7, the tradeoff curve of BER versus rate (for a given
normalized transmitted power of 15 dB) is plotted for the two
extreme approaches: gap approximation (including rounding)
with a diagonal structure (which is virtually optimal) and
wrongly fixed equal constellations with the optimal structure;
and also for the intermediate approach: best fixed equal con-
stellations with the optimal structure.

VI. CONCLUSIONS

This paper has considered the design of the uncoded part of
a point-to-point MIMO communication system with respect to
three parameters: BER, rate, and transmit power. As opposed to
the existing results that deal either with the choice of the constel-
lations (imposing a diagonal transmission) or with the design
of the linear transceiver (with given fixed constellations), this
paper has approached both problems in a unified way. Among
other results, an almost optimal way to jointly design the con-
stellations and the linear transceiver happens to be the well-
known combination of the gap approximation method plus a di-
agonal structure on the MIMO channel (which is a widely used
approach in practice).

The final conclusion is that, if possible, the constellations
should be optimized for each channel realization, for example,
with the gap approximation plus rounding; in such a case, the
diagonal structure has been shown to be almost optimal (it is in-
deed optimal if the exact gap approximation without rounding
is used). On the other hand, if the constellations are not prop-
erly chosen, the performance decreases, and something can be
gained back by optimizing the transmission structure rather than
diagonalizing the channel.

One issue not addressed in this paper that may be interesting
for future research is the effect of nonperfect CSI, which is
clearly relevant for real systems.

APPENDIX A
PROOF OF PROPOSITION 2

The original problem is

Tr

s.t. (41)

As was shown in [20], this problem can be rewritten in convex
form as

s.t.

(42)

Now, since (42) is a convex problem, we can analyze it using
the existing tools for convex optimization [37], [38]. In partic-
ular, we first form the Lagrangian

(43)
where the ’s and the ’s are the dual variables or Lagrange
multipliers. Then, we obtain the sufficient and necessary KKT
optimality conditions (the problem satisfies the Slater’s condi-
tion and therefore strong duality holds) [37], [38]:

(44)

(45)

(46)

(47)

At this point, it suffices to plug the diagonal solution
of (15) into the KKT conditions and observe under which
circumstances they are satisfied. Recalling the diagonal so-
lution , it is straightforward to see that

, which implies that and .
Therefore, the only KKT conditions that are not trivially satis-
fied are

(48)

where . Since for ,
it follows that such a set of ’s exists if and only if

.
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APPENDIX B
PROOF OF PROPOSITION 3

A useful concept in convex optimization theory is the duality
gap since, among other things, it provides an upper bound on
the loss of optimality for an arbitrary (in general suboptimal)
solution to the problem. The gap is defined as the difference
between the primal and the dual objective functions [37], [38].
In the present problem [see (42))], the primal objective is

(49)

and the constraints are

The corresponding Lagrangian is

(50)

where . The dual function is defined as
. Setting the gradient of the

Lagrangian to zero, we obtain

The dual function is then

(51)

The gap, as a function of the primal variable and of the dual
variables , is given by

(52)

Evaluating the gap at the suboptimal solution corresponding to
the diagonal transmission gives

(53)

Although the exact loss of optimality is given by
, we can obtain an upper bound on the loss by

choosing some other convenient value for the dual variables
. In particular, by choosing , the gap simplifies to

(54)

If we could choose now , the gap would become
zero, but we can only choose feasible dual variables
or, equivalently, . In other words, the gap
becomes zero if and only if , which agrees
with the result obtained in Proposition 2. Choosing now

(55)
the gap simplifies to

(56)

from which (32) is readily obtained.

APPENDIX C
PROOF OF COROLLARY 2

It suffices to note that the MSEs achieved by the gap ap-
proximation solution in the active subchannels are given by
MSE (from MSE SINR
and SINR ) and to invoke Proposition 2.

Since ( and ) and
( and in the active subchan-

nels), it follows that . Now, using
, we can write

where the last inequality corresponds to MSE
MSE and, hence, Proposition 2 can be invoked.
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APPENDIX D
PROOF OF COROLLARY 3

It suffices to note that the MSEs achieved by the gap ap-
proximation solution plus a distortion in the active subchan-
nels are given by MSE (from
MSE SINR and SINR ) and to invoke
Proposition 2.

The condition of Proposition 2, MSE MSE ,
can be written in this case as

or, equivalently, as

Since , a sufficient condition so that
the previous inequality is satisfied is (34).

APPENDIX E
PROOF OF COROLLARY 4

From Corollary 2, the diagonal structure is optimal for the
gap approximation without distortion, i.e., MSE

MSE or, equivalently

MSE MSE

which can be rewritten [using MSE ] as

With the distortion, however, the MSE is MSE
, and we can write

MSE

MSE

The loss incurred by using a diagonal transmission can then be
upper bounded (using Proposition 3) as

MSE

APPENDIX F
PROOF OF COROLLARY 5

The MSEs achieved by the equal power allocation
are MSE . We can now invoke Proposi-
tion 2 to obtain the condition for the optimality of the diagonal
structure.

The condition of Proposition 2 MSE MSE
can be written in this case as

or, after some manipulations (recalling that ), as

Since the eigenvalues are in increasing order, the previous con-
ditions for all subchannels is equivalent to

A sufficient condition is given in (38).

APPENDIX G
PROOF OF COROLLARY 6

To upper bound the loss, instead of using the final result
given in Proposition 3, we use the similar expression in (54).
Noting that the term MSE is increasing in for

(and decreasing otherwise), we can particu-
larize the upper bound on the loss of power in (54) with the
choice

MSE otherwise

since the condition is then satisfied as required in
(54). The bound on the power loss is then

MSE

from which (39) is obtained using MSE .

APPENDIX H
PROOF OF COROLLARY 7

If the same constellations are used each with the same BER,
then the MSEs are all equal: MSE const. The condition of
Proposition 2 is then

However, since the channel eigenvalues are assumed in in-
creasing order , this can only be true if and only if

.
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APPENDIX I
PROOF OF COROLLARY 8

To upper bound the loss, instead of using the final result given
in Proposition 3, we use the similar expression in (54). Noting
that all the MSEs are equal MSE MSE , the upper bound
on the loss of power is

MSE MSE

Since the ’s are in increasing order and the ’s have to be in
increasing order, the best choice is MSE , obtaining

MSE

where the minimizing is obtained as .
The bound is finally given by

MSE

from which the upper bound in (40) is obtained.
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