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Abstract—This paper considers the employment of linear trans-
ceivers for communication through multiple-input multiple-output
(MIMO) channels with channel state information (CSI) at both
sides of the link. The design of linear MIMO transceivers has
been studied since the 1970s by optimizing simple measures of
the quality of the system, such as the trace of the mean-square
error matrix, subject to a power constraint. Recent results showed
how to solve the problem in an optimal way for the family of
Schur-concave and Schur-convex cost functions. In particular,
when the constellations used on the different transmit dimensions
are equal, the bit-error rate (BER) averaged over these dimensions
happens to be a Schur-convex function, and therefore, it can be
optimally solved. In a more general case, however, when different
constellations are used, the average BER is not a Schur-convex
function, and the optimal design in terms of minimum BER is
an open problem. This paper solves the minimum BER problem
with arbitrary constellations by first reformulating the problem in
convex form and then proposing two solutions. One is a heuristic
and suboptimal solution, which performs remarkably well in
practice. The other one is the optimal solution obtained by decom-
posing the convex problem into several subproblems controlled
by a master problem (a technique borrowed from optimization
theory), for which extremely simple algorithms exist. Thus, the
minimum BER problem can be optimally solved in practice with
very simple algorithms.

Index Terms—BER, convex optimization theory, decomposition
techniques, linear precoder, MIMO channel, transceiver, water-
filling.

I. INTRODUCTION

MANY different communication channels of diverse
physical nature can be treated in a unified way as mul-

tiple-input multiple-output (MIMO) channels, which can be
conveniently and compactly represented by a channel matrix.
Such an abstract representation allows for an elegant, simple,
and powerful vector-matrix notation. The two paradigmatic
examples of MIMO channels are digital subscriber line (DSL)
channels [1] and wireless channels with multiples antennas at
both sides of the link [2], [3], which have recently attracted a
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significant interest because they provide an important increase
in capacity over single-input single-output (SISO) channels
[4], [5].

When channel state information (CSI) is available at both the
transmitter and receiver, the system can adapt to each channel
realization to improve the performance and/or the spectral effi-
ciency. From an information-theoretic viewpoint, the best de-
sign in terms of capacity is well known and is given by the
employment of ideal Gaussian codes [3], [4], [6], [7]. From a
more practical point of view, the system may be divided into
an uncoded part, which transmits symbols drawn from some
constellations, and a coded part that builds upon the uncoded
system. Although the ultimate system performance depends on
the combination of both parts, it is convenient to consider the
uncoded and coded parts independently to simplify the anal-
ysis and design. This paper focuses on the uncoded part of the
system and, specifically, on the employment of linear trans-
ceivers (commonly referred to as linear precoder at the trans-
mitter and equalizer at the receiver) for complexity reasons.

The design of linear MIMO transceivers has been studied
since the 1970s by optimizing easily tractable measures of
quality of the system, such as the sum of the mean-square error
(MSE) of all channel substreams or, equivalently, the trace of
the MSE matrix [8]–[12], with a power constraint. In [13], the
determinant of the MSE matrix was minimized instead. In [11],
a maximum signal-to-interference-plus-noise ratio (SINR) cri-
terion with a zero-forcing (ZF) constraint was also considered.
In [14], the results were extended to the case of a peak power
constraint. In [15], a general framework was developed to
consider a wide range of different design criteria; in particular,
the optimal design for Schur-concave and Schur-convex cost
functions was obtained.

However, rather than the MSE or the SINR, the ultimate per-
formance of a system is given by the bit-error rate (BER), which
is more difficult to handle. In [16], the minimization of the
BER (and also of the Chernoff upper bound) averaged over the
channel substreams was treated in detail when a diagonal struc-
ture is imposed. Recently, the minimum BER design without
the diagonal structure assumption was independently obtained
in [15] and [17], obtaining an optimal nondiagonal structure.
This result, however, only applies when the constellations used
in all channel substreams are equal, in which case the cost func-
tion happens to be Schur-convex [15]. The solution for the gen-
eral case of different constellations remains unsolved (in such a
case, the cost function is neither Schur-convex nor Schur-con-
cave). Some interesting results along this line were obtained in
[18] by combining the suboptimal diagonal structure with the
optimal nondiagonal solution for equal constellations.
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This paper considers and solves the minimum BER problem
(BER averaged over the channel substreams) with arbitrary con-
stellations, which are assumed given and fixed (obtained, for ex-
ample, using some kind of bit allocation strategy). The problem
can be formulated either as the minimization of the average BER
with a power constraint or as the minimization of the power
subject to an average BER constraint. First, the problem is re-
formulated in convex form after some manipulations based on
majorization theory [19]. Then, a heuristic and suboptimal solu-
tion, which performs remarkably well in practice, is proposed.
Finally, the optimal solution of the problem is obtained based
on a primal decomposition approach of the convex problem, a
technique borrowed from optimization theory [20]–[22]. In a
nutshell, the original complicated problem is decomposed into
several subproblems that can be independently and easily solved
(possibly in a parallel fashion) and a master problem that coor-
dinates the subproblems. Thus, the minimum BER problem can
be optimally solved in practice with very simple and efficient
algorithms.

The paper is structured as follows. In Section II, the signal
model is introduced and the problem is formulated. Section III
provides some preliminary results. Section IV contains the main
results of the paper: 1) the reformulation of the minimum BER
problem in convex form, 2) its decomposition into several sub-
problems controlled by a master problem, 3) the full character-
ization of the subproblems, and 4) a simple optimal algorithm
for the master problem. A summary of the whole design process
is given in Section V. Section VI is devoted to numerical simula-
tions. Finally, in Section VII, the main conclusions of the paper
are drawn.

The following notation is used. Boldface uppercase letters
denote matrices, boldface lowercase letters denote column
vectors, and italics denote scalars. represents the
complex field. The superscripts , , and denote
transpose, complex conjugate, and Hermitian operations,
respectively. (also ) denotes the th element
of matrix . and are the vectors containing the
diagonal elements and eigenvalues of matrix , respectively,
and diag is a diagonal matrix with diagonal elements
given by the set . denotes the size or cardinality of a

set, Tr denotes the trace of a matrix, and
is the projection on the non-negative orthant. The derivative of
a function is denoted by and the gradient by .

II. SYSTEM MODEL AND PROBLEM FORMULATION

In this section, after introducing the basic signal model for
MIMO channels and linear processing, the problem is mathe-
matically formulated.

A. System Model

Consider a general MIMO communication channel with
transmit and receive dimensions. The sampled baseband
signal model is

(1)

where is the transmitted vector, is
the channel matrix, is the received vector, and

is a zero-mean circularly symmetric complex
Gaussian interference-plus-noise vector with arbitrary (but
known) covariance matrix , i.e., . Note that
the model in (1) is indeed very general and can model a wide
range of different communication systems of diverse physical
nature, ranging from DSL systems to wireless multiantenna
systems to convolutional channels1 (see [23] for an overview of
how to model different scenarios as (1)).

In some situations (such as in multicarrier systems), it may be
useful to model the system as a set of parallel and noninter-
fering MIMO channels, with the signal model at the th MIMO
channel similarly given by

(2)

where each term is similarly defined as in the case of a single
MIMO channel and (noise from different
carriers is assumed uncorrelated). Since the case of multiple
MIMO channels (2) is mathematically more general than (1),
it will be considered in the sequel. We will restrict the results to
the use of linear processing at the transmitter and at the receiver,
obtaining linear transceivers.

It is important to remark that a multicarrier MIMO channel
can be modeled in two different ways: as a set of parallel
MIMO channels, for which we will need pairs of transmit-re-
ceive matrices, and as a single big MIMO channel, for which
we will need a single pair of transmit-receive matrices. In the
former approach, an independent processing per carrier is as-
sumed (termed carrier-noncooperative), whereas in the latter
approach, a joint processing over all carriers is assumed (termed
carrier-cooperative).

Considering the use of transmit linear processing matrices
(commonly termed linear precoders), the transmitted vector at
the th MIMO channel can be written as (see Fig. 1)

(3)

where is the transmit matrix, is
the data vector that contains the symbols to be transmitted
(which, in principle, can be larger than the rank of the channel
matrix), and is the total number of transmitted
symbols. In the same way as denotes the number of estab-
lished links, it is convenient to define rank
as the number of effective channel eigenvalues used and

.
The total average transmitted power (in units of energy per

transmission) is

Tr (4)

where we have assumed zero-mean unit-energy uncorrelated
symbols, i.e., .

1Convolutional channels can be conveniently modeled, for example: 1) using
a filterbank approach [7], [11], 2) defining a convolutional matrix as channel
[3], and 3) in a multicarrier fashion [3].
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Fig. 1. Block diagram of multiple MIMO channels with linear processing at both the transmitter and the receiver (linear transceivers).

Similarly, assuming linear receive processing matrices (usu-
ally referred to as linear equalizers), the estimated data vector
at the th MIMO channel is (see Fig. 1)

(5)

where is the receive matrix.
The quality of the th established link in the th MIMO

channel can be measured, among others, in terms of MSE,
SINR, or BER, defined, respectively, as2

MSE

(6)

SINR
desired component

undesired component
(7)

BER
bits in error

transmitted bits
SINR (8)

where and are the th columns of matrices and ,
respectively, and are the th elements of vectors and

, respectively, is the
interference-plus-noise covariance matrix seen by the th
link, and is a function that relates the BER to the SINR at
the th substream, which depends on the constellation used
(c.f. Section III-C).

B. Problem Formulation

This paper considers the design of linear transceivers, i.e., of
the linear transmitters and receivers , to minimize the
transmitted power while satisfying some global average BER
constraint. The constellations used on the different substreams
are assumed known and fixed (the choice of the constellations
or, equivalently, the bit allocation can range from simply using
the same constellations to using a sophisticated bit allocation
strategy based on a gap-approximation approach [24, Part II]).
The mathematical formulation of the problem is

Tr

s.t. BER BER (9)

2Note that in any real system, we have 0 � MSE � 1, SINR � 0, and
0 � BER � 0:5.

where BER is the maximum permitted average BER and each
BER depends on the linear transceiver [see (7) and (8)].

Similarly, the problem could have been formulated as the
minimization of the average BER subject to some power con-
straint (both formulations are, in fact, equivalent). This paper
focuses on the BER-constrained problem in (9), although the
same methodology used in this paper to solve problem (9) could
be followed for the alternative power-constrained formulation.
Note also that given an algorithm for the BER-constrained
problem, one can readily solve the power-constrained problem
simply by using a bisection method [25, Alg. 4.1]. This obser-
vation comes straightforwardly by noticing that both problems
characterize the same strictly monotonic curve of power versus
BER.

The motivation for the problem formulation in (9) hinges on
the fact that the ultimate measure of performance of a system is
the BER. It makes sense then to design the system by dealing di-
rectly with the BER rather than using some other quantity, such
as the commonly used sum of the MSEs. The related problem
of imposing independent BER constraints on each of the sub-
streams rather than a global average BER was considered in [26]
(c.f. Section IV-A). The interested reader is referred to [15] for a
comparison of different design criteria and also to the following
illustrative example that shows how the classical method of min-
imizing the sum of the MSEs does not necessarily perform very
well since it ignores the knowledge of the constellations.

Illustrative Example: Consider a system with the fol-
lowing characteristics: a diagonal 2 2 MIMO channel

diag , a white normalized noise , two
quadrature phase shift keying (QPSK) symbols simultane-
ously transmitted with a ZF receiver (c.f. Section III-B), and
a signal-to-noise ratio (SNR) of 10 dB. If the transceiver is
designed according to the classical criterion of minimizing
the sum of the MSEs with a diagonal transmission, which
does not take into account the tradeoff between the con-
stellations and the channel eigenvalues, the transmitter is

diag , the MSEs are 0.031 25 and 0.125, the
BERs are and , and the average
BER is . If, instead, the transceiver is properly de-
signed by minimizing the average BER, one possible solution is

diag (where is a 2 2 Hadamard
matrix; c.f. [15]), the MSEs are both equal to 0.078 125, and
the BERs are also equal with average value of ,
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Fig. 2. Decomposition of a large problem into several subproblems controlled by a master problem.

which is one order of magnitude below the classical design
based on the sum of the MSEs.

III. PRELIMINARIES

This section contains some preliminary results that are
required before attempting to solve the problem in (9). First,
we describe the main ingredient to solve it, borrowed from
optimization theory. Then, the minimum mean-squared error
(MMSE) and ZF receivers are described as optimal linear
receivers. Finally, the BER of the system is analytically char-
acterized.

A. Decomposition Techniques in Optimization Theory

Many optimization problems stemming from real appli-
cations have a large number of variables and constraints. In
principle, the existing general-purpose methods to solve convex
problems, e.g., interior-point methods [25] or cutting-plane
methods [22], are capable of handling such large problems.
In many cases, however, problems have a very particular
structure that allows simplification based on decomposing the
original problem into smaller and simpler subproblems [20].
For example, the problem may decouple into independent
subproblems when some of the optimization variables are
fixed. A master problem is then necessary to coordinate the
subproblems by means of the coupling variables or constraints
(see Fig. 2) [20], [22], [27].

Decomposition approaches are particularly efficient and
useful if the structure of each subproblem permits the use of
special, simple, and fast solution methods. In addition, such
decompositions allow practical parallel implementations very
appealing in hardware implementations or parallel-computation
platforms. Regarding the master problem, it may, in general, be
a nondifferentiable problem for which cutting-plane methods
and simple subgradient methods have been developed [21],
[22].

Most of the existing techniques to decompose problems can
be classified into primal decomposition and dual decomposition
methods. The former (also called decomposition by right-hand
side allocation or decomposition with respect to variables) is
based on decomposing the original primal problem, whereas the
latter (also termed Lagrangian relaxation of the coupling con-
straints or decomposition with respect to constraints) is based on
decomposing the dual of the problem [21], [22]. Primal decom-
position methods have the interpretation that the master problem
gives each subproblem an amount of resources that it can use;
the role of the master problem is then to properly allocate the
existing resources. In dual decomposition methods, the master

problem sets the price for the resources to each subproblem that
has to decide the amount of resources to be used depending on
the price; the role of the master problem is then to obtain the best
pricing strategy (see [28] for an example of dual decomposition
for simultaneous routing and resource allocation in wireless data
networks).

This paper uses a primal decomposition approach to simplify
and solve the minimum BER problem. It is based on the key and
simple fact that a problem can be optimized by first optimizing
over some variables and then over the remaining ones [25, Sec.
4.1.3] (see also [22, Sec. 6.4.2])

(10)

This is commonly called concentration in the literature of esti-
mation theory [29].

B. Optimal MMSE and ZF Linear Receivers

The linear MMSE receiver, also termed Wiener filter, is ob-
tained as the optimal solution that minimizes simultaneously all
MSEs [29], which are given by the diagonal elements of the
MSE matrix defined as

(11)

i.e., MSE . The ZF receiver is the unbiased version
of the MMSE receiver. It can be similarly obtained with the
additional ZF constraint , which is desirable to
avoid crosstalk among the different links established through the

th MIMO channel. Due to the ZF constraint, the ZF receiver
is only defined for rank or (as opposed to
the MMSE receiver, which is always well defined).

For a given transmit matrix , the MMSE and ZF receivers
can be compactly written as [15], [23], [26], [29]

(12)

where is a parameter defined as

for the MMSE receiver
for the ZF receiver

and is the squared whitened channel
matrix. The MSE matrix reduces then to

, and the MSEs are given by

MSE (13)

Interestingly, the MMSE and ZF receivers are also optimum
in the sense that they maximize simultaneously all SINRs
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Fig. 3. Independent detection of the substreams.

[15], [23], [30, Prob. 6.5], which are then nicely related to the
MSEs by

SINR
MSE

(14)

As a consequence of the relation between the BER and the
SINR in (8) through a decreasing function (c.f. Section III-C),
the MMSE and ZF receivers are optimum (for linear receiver
structures) in the sense that they minimize simultaneously all
BERs as well.

C. Characterization of the BER Function

To characterize the BER of the MIMO system under consid-
eration, we assume that the different links are independently de-
tected after the joint linear processing with the receive matrices

(see Fig. 3). This reduces the complexity drastically com-
pared to a joint maximum likelihood (ML) decoding.

For most types of modulations, the BER of a communication
link can be analytically expressed as a function of the SINR [as
in (8)] when the interference-plus-noise term follows a Gaussian
distribution [30], [31] (see, for example, [32] for exact BER
expressions of amplitude modulations).3 Using (14), the BER
can also be expressed as a function of the MSE:

BER MSE SINR MSE (15)

In the rest of paper, we will just denote the BER as a function
of the MSE by , keeping in mind that the function depends
on [recall that the MSE also depends on (13)].

For the case of a ZF receiver, each of the established links
contains only Gaussian noise and, therefore, the analytical BER
characterization can be exact. For the case of an MMSE re-
ceiver, however, there is crosstalk among the established links
with a non-Gaussian distribution. The computation of the BER
involves then a summation over all the possible values of the
interfering signals, which is exponential in the size of the con-
stellations. In order to reduce the complexity of evaluating these
expressions, it is customary to obtain an approximate statistical
model for the crosstalk. In fact, the central limit theorem can be
invoked to show that the distribution converges almost surely
to a Gaussian distribution as the number of interfering signals
increases (c.f. [33], where several asymptotic scenarios are con-
sidered). Therefore, the analytical BER characterization of (15)
can be used to obtain approximate results with an increasing ac-
curacy in the number of established links (even when the central

3Note that the BER function is valid for the MMSE receiver only when the
decision regions of the detector are scaled to account for the bias in the MMSE
receiver [24, Part I].

limit theorem cannot be invoked, it is, in general, possible to ob-
tain some approximate expression for the BER as a function of
the SINR [24, Part I, Sec. III.B]).

In the sequel, we will use the following properties of the BER
function for a given constellation :

P1 ) is strictly increasing and .
P2 ) is strictly convex on the interval 4 (for mathe-

matical convenience, is defined elsewhere5). In
addition, for .

P3 ) and for .
It is important to remark that the properties P1-P3 are indeed

very natural for any reasonable family of constellations. The
increasingness of is clear since a higher MSE must always be
worse than a lower MSE. The convexity of is a natural result
for the range in which the MSE as a function of the SINR (which
is a convex function) is approximately linear (this follows since
we expect a system to have a BER at some SINR smaller than
(or at least equal to) the average BER that would be achieved by
a time-division approach using two different SINRs satisfying
SINR SINR SINR ). Clearly, must be

satisfied for ; otherwise, we could transmit more bits
at a lower BER, which does not make any sense. In addition,

is a natural result since it simply means that
larger constellations (normalized with unit energy) are expected
to have a higher sensitivity with respect to changes in the MSE,
which is an expected result because higher constellations have
a smaller minimum distance.

The analytical characterization of the minimum BER
problem in Section IV is valid only for systems that work in
the convex region, i.e., with a sufficiently small MSE at each
established substream. This is a mild restriction because, if the
gain of a substream is too low, it may be better not to use it at
all and to decrease the total number of transmitted symbols (in
[18], it is shown that if the bit allocation is properly done, then
the BER function operates in the convex regime). Nevertheless,
it is worth mentioning that, in practice, the method proposed in
Section IV also works in the nonconvex region.

The following result will prove extremely useful in the sequel.
Lemma 1: Let and be two BER functions corre-

sponding to the constellations and , respectively, with
and satisfying properties P1-P3. Then

for (16)

(17)

In addition, if , then (16) is satisfied with strict in-
equality [provided that ].

Proof: See Appendix A.
Important Example: QAM Constellations
To illustrate the previous characterization of the BER, we now

consider a particular example of a great interest: QAM constel-
lations. As previously mentioned, for QAM constellations under

4The value of u can be obtained by analyzing the convexity properties of the
function g [see, for example, (20) and (21) for QAM constellations].

5Property P1 is then satisfied only on the interval [0; u].
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Fig. 4. BER as a function of the MSE for different QAM constellations.

Gaussian noise, the BER can be analytically expressed in an
exact way [32]. However, for simplicity of exposition, we ap-
proximate the expression with the most significative term.

The BER corresponding to an -ary QAM constellation (as-
suming that a Gray encoding is used to map the bits into the
constellation points) is [31], [32]

BER SINR SINR (18)

where is defined as [30],6

, and are parameters that depend
on the constellation size.7 It is sometimes convenient to use the
Chernoff upper bound of the tail of the Gaussian distribution
function [30] to approximate the BER
(which becomes a reasonable approximation for high values of
the SINR) as

BER SINR SINR (19)

(see [34] for better approximations for M-QAM and M-PSK
constellations based on curve fitting and [35] for approxima-
tions in the neighborhood of some nominal point).

As can be seen from Fig. 4 (and can also be proved analyti-
cally), the BER as a function of the MSE satisfies the expected
properties P1-P3. In fact, the range of MSE for which the func-
tion is convex for an MMSE receiver, as shown in (20) at the
bottom of the page [15], [23], and for a ZF receiver is [23]

MSE
for Q-function approximation
for Chernoff approximation.

(21)

The same results hold for the exact BER expression as given in
[32].

As a rule of thumb, the BER function is convex for BER
, which is a reasonable and mild assumption for com-

munication systems with CSI at the transmitter.

6The Q-function and the commonly used complementary error function
“erfc” are related as erfc(x) = 2Q(p2x) [30].

7For I � J rectangular constellations, the parameters are � = 2(((I �
1)=I) + ((J � 1)=J)) and � = 6=(I + J � 2) [32].

IV. PRIMAL DECOMPOSITION FOR

MINIMUM BER TRANSCEIVERS

In this section, we propose a simple and efficient way
to optimally solve the original problem (9) by means of a
primal decomposition approach as described in Section III-A.
Using the optimal MMSE and ZF receive matrices obtained
in Section III-B and the characterization of the BER function
BER MSE of Section III-C, problem (9) can be written as

Tr

s.t.

BER (22)

where the ’s are additional variables introduced for conve-
nience that represent the BER on each link.

The successful application of a decomposition technique to
problem (22) presents the following challenges: 1) problem (22)
has to be reformulated in convex form [see (35) in the proof
of Theorem 2]; after this step, it is clear that the problem can
be optimally solved with some general-purpose method; 2) the
problem has to be decomposed in the right way so that the sub-
problems behave well and the master problem can be easily
solved [see (28) in Theorem 2]; 3) the subproblems have to be
fully characterized, which includes obtaining a simple method
to solve them (Theorem 1 and Algorithm 1) and analyzing the
differentiability and convexity (Proposition 1); and 4) the master
problem has to be easy to solve, which holds in this case because
the problem was properly formulated so that the feasible set of
the master problem is essentially a simplex [see (30) and Algo-
rithm 2].

A. Characterization of the Subproblems: Quality-of-Service
(QoS)-Constrained Systems

The problem of designing the minimum-power transmit
matrices , subject to a set of QoS requirements MSE

, was optimally solved in [26] for the case of an
MMSE receiver. In this section, we first extend such a result to
more general constraints of the form MSE
and to include the case of a ZF receiver as well, obtaining an
efficient and optimal way to solve the problem in practice;
then, we characterize the optimal objective value as a function
of the QoS constraints, showing its convexity and differentia-
bility, which are key properties for the success of the primal
decomposition approach.

Theorem 1: Consider the following nonconvex power mini-
mization problem subject to BER QoS constraints [assumed

MSE
for Q-function approximation

for Chernoff approximation
(20)
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bounded by and ordered without loss of generality
(w.l.o.g.) such that ]:

Tr

s.t.

(23)

where each is a BER function satisfying property P1.
If feasible, the optimal solution to problem (23) satisfies all

QoS constraints with equality and is given by

(24)

where has as columns the eigenvectors of
corresponding to the largest eigenvalues in increasing

order , diag has zero
elements except along the right-most main diagonal (assumed
real w.l.o.g.), and is a unitary matrix such that

for (see [36, Sec. IV-A]
for a practical algorithm to obtain ). The squared diagonal el-
ements of matrix , denoted by , can be easily
obtained as the solution to the following convex problem:

s.t.

(25)

where

(26)

and .8 The problem is feasible if and only if
. If feasible, problem (25) has a unique

solution.
Proof: The proof is similar to that of [26, Th. 2] (see also

[23, Th. 6.2]) and is sketched in Appendix B.
The following result characterizes the optimal value of the

problem considered in Theorem 1.
Proposition 1: The optimal objective value of the problem

(25) as a function of the BER QoS requirements (for any or-
dering of the ’s and ’s), denoted by , satisfies the fol-
lowing (it is further assumed that each BER function satisfies
property P2 as well as P1):

a) The function is strictly convex on
( is the feasible set

such that each operates in the strictly convex regime)
and convex everywhere.

8The function g denotes the inverse function of g such that g (g (�)) =
�.

Fig. 5. Some random examples of the function P (p) between two random
points p and p (6 � 6 MIMO channel with L = 5 substreams using QPSK
and 16-QAM constellations).

b) A subgradient of at some feasible is given by
with components

where the are the Lagrange multipliers of (25)
(which can be readily obtained by squaring the water
levels obtained by Algorithm 1) and
for .9

c) The function is differentiable on .
Proof: See Appendix C.

In Fig. 5, several examples of the function are plotted
between two random points and in the set , from
which the strict convexity and the differentiability can be easily
observed.

Interestingly, the convex problem (25) obtained in Theorem 1
can be easily solved in practice with Algorithm 1 (which works
for any ordering on and ). The algorithm always produces
the optimal solution (provided that the problem is feasible) as
proved in [26, Prop. 2] [the proof of the optimality of the algo-
rithm is based on showing that the obtained solution satisfies the
KKT optimality conditions of the problem (25)].

Algorithm 1 Practical multilevel waterfilling algorithm to
solve the convex problem (25).

Input: Dimension of the problem , set of positive eigen-
values , and set of upper bounds .

Output: Set of allocated powers and set of water-
levels .

9For completeness, we give a closed-form expression of
g(�) and g (�) for QAM constellations according to (15) and
(18) g(�) = (�= log M)Q( �(� � �)) and g (�) =

(�= log M) �=(8�)e (� � �� ) . The derivative of
the inverse function of g(�) on (0, u) can be readily obtained using the relation
(g ) (p) = 1=g (�), where p = g(�) [note that g (�) > 0 on (0, u)] [37,
p. 114].
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0) Set and .
1) Solve the waterfilling for

with the constraint
[see (27) for and [26, Alg. 1] for ]

and then set for .
2) If all intermediate constraints are satisfied (

for ) then, if , finish
and, if , set , , and go to step 1.

Otherwise, set

and go to step 1.

The worst-case number of iterations in Algorithm 1 is
[26]. However, each iteration requires the computation of the
simple waterfilling solution with

. For the ZF receiver , the water-
filling trivially simplifies to

(27)

For the MMSE, the waterfilling over substreams can be
easily evaluated in practice with an algorithm with a worst-case
number of basic iterations [26, Alg. 1]; the worst-case total
number of basic iterations is then .

B. Characterization of the Master Problem

In this subsection, the BER-constrained problem in (22) is
solved first in a suboptimal way and then in an optimal way
using a primal decomposition approach and characterizing the
master problem.

1) Heuristic and Suboptimal Solution: A very simple solu-
tion to (22) is obtained by imposing the same BER on each of
the substreams, i.e., BER (equal-BER solution),
and then using the results of Section IV-A (Theorem 1 and Al-
gorithm 1). In other words, the heuristic solution is obtained by
evaluating at BER for , where
is a vector of ones.

In principle, this solution is not necessarily the optimum.
However, for the particular case in which the constellations used
at some are equal, i.e., , then the optimal solution
happens to have equal BERs within that , i.e., ,
as was shown in [15] [see also Proposition 2(c)]. As a conse-
quence, if the system is modeled with a single MIMO channel

and all the constellations are equal, then the proposed
equal-BER solution is the optimum. On the other hand, if the
system is modeled with multiple MIMO channels each
with equal constellations, then the equal-BER solution will be
close to the optimum if the different MIMO channels are suf-
ficiently correlated. Interestingly, for the case of different con-
stellations, the performance of the equal-BER solution happens
to be remarkably close to the optimum, as obtained in the nu-
merical results of Section VI.

2) Optimal Solution: In this section, problem (22) is opti-
mally solved by optimizing the ’s as well. In principle, it is
possible to rewrite problem (22) in convex form and then solve it
directly using a general-purpose method. However, the problem

can be solved much more efficiently with very simple algo-
rithms by decomposing the original problem into several sub-
problems controlled by a convex and simple master problem.

Theorem 2: Consider the nonconvex (and complicated)
power minimization problem subject to a global average
BER constraint in (22), where the constellations are as-
sumed w.l.o.g. ordered with increasing size for each , i.e.,

, and each satisfies the properties P1-P3.
Then, the optimal solution satisfies the BER constraint

with equality (provided that BER is sufficiently small such
that each operates in the convex regime) and is given by

, where all the terms are defined as in
Theorem 1 for each , and the optimal diagonal elements of

are implicitly obtained by solving the following convex
master problem:

s.t. BER

(28)

where and is the optimal value of the
th subproblem, which corresponds to the problem considered

in Theorem 1. The problem may be unfeasible only if
for some (this depends on the value of BER ).

Proof: See Appendix D.
Theorem 2 says that the minimum BER problem can be effi-

ciently solved in practice by repeatedly evaluating and
adjusting by the master program [as opposed to the pre-
vious heuristic solution based on evaluating just
once]. In the following subsection, a simple gradient algorithm
guaranteed to converge to the global optimum is proposed to up-
date the variables . We now state some interesting properties
of the solution to the minimum BER problem.

Proposition 2: The convex problem (28) satisfies the fol-
lowing properties:

a) If feasible, it has a unique solution.
b) Higher constellations have smaller MSE at an optimal

point, or in other words, .
c) Equal constellations have equal MSE at an optimal point,

or in other words, if .
Proof: See Appendix E.

Practical Algorithm for the Master Problem
The master problem obtained in the decomposition of The-

orem 2, i.e., (28), is, in general, nondifferentiable and can be
optimally solved, for example, with a cutting-plane method or
a subgradient method [21], [22], which simply require being
able to evaluate and to obtain a subgradient (both
available in this case). Subgradient methods are extremely
simple to implement, and the update at each iteration is similar
to a gradient method, where a subgradient is used in lieu of the
gradient (the choice of the setp size follows different guide-
lines than for gradient methods) [22, Sec. 6.3.1]. However,
the objective function in (28) is differentiable, provided that

[by Prop. 1(c)] and, under that mild
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condition (which is always satisfied for the common situation
with rank ), other methods for differentiable
functions can be used instead of the subgradient method.
Since our interest is in simple methods that can be readily
implemented in any platform, we will focus on a very simple
gradient method, called the conditional gradient method, which
is guaranteed to converge to a global solution [22] and has a
very good performance for the problem at hand.

Consider the following general convex minimization problem
[which includes (28) as a particular case]:

s.t. (29)

To solve the problem (29) and for simplicity, we consider a fea-
sible direction method that obtains a sequence of feasible points

(here, denotes the iteration) as [22, Secs. 2.2 and 2.3]

(30)

where is a step size, and is a feasible
direction (assuming ), which is also a descent direction,
i.e., (provided that is not stationary). A
very simple way to obtain the feasible direction or, equiva-
lently, is by the conditional gradient method [22, Sec. 2.2.2]:

, which can be efficiently ob-

tained in this case with Algorithm 2 because the set is ba-
sically a simplex. Interestingly, it is straightforward to define a
termination criterion since we can easily compute the following
bounds on the optimal value:

(31)

To obtain the step sizes in a simple way, we can opt for
a fixed value or for a diminishing rule that satisfies

and [21], [22], for example,
, where is the initial step size,

and is a fixed positive integer (see [22, Sec. 2.2] for other
choices of step size rules).

Algorithm 2 Practical algorithm to obtain an optimal solution
to

s.t.

Input: Bounds of the feasible set , weights , and .
Output: Optimal solution .

0) Set .
1) If or , then finish.

2) Set for
and go to step 1.

As a final practical note, it is worth pointing out that although
the result obtained in Theorem 2 only holds when each func-
tion operates in the convex regime (typically for BERs no
higher than ), it is possible to relax such constraints in
practice without loss of optimality. For example, we can set the
upper bounds in the master problem of (28) to as is
done in the simulations of Section VI (in such a case, however,
the gradient algorithm is only guaranteed to converge to a local
minimum due to the nonconvexity of the master problem).

V. SUMMARY OF THE TRANSCEIVER DESIGN

The following is a summary of all the steps necessary to de-
sign the transmit and receive matrices:

1) Choose the constellations to be used at each substream
(e.g., simply using the same constellation in all sub-
streams or optimizing the constellations by means of a bit
allocation based on the gap approximation [24, Part II]).

2) Make a choice between an MMSE receiver or a
ZF receiver .

3) Obtain from the eigendecomposition of the
squared channel matrix for each
(there are efficient methods to obtain eigendecomposi-
tions in practice [38]).

4) Obtain for each using
• the heuristic solution: evaluating (with Algo-

rithm 1) only once at BER .
• the optimal solution: evaluating (with Algo-

rithm 1) several times updating with the conditional
gradient method proposed in Section IV-B-2 [(30) and
Algorithm 2].

5) Obtain the optimal rotation to satisfy the BERs in
for each using the practical algorithm in [36, Sec. IV-A]
(see also [23, Alg. 3.2]).

6) Finally, obtain the optimal transmitters as
and the optimal receivers as

for each .

VI. SIMULATION RESULTS

For the numerical simulations, we consider a wireless com-
munication system with multiple antennas at both sides of the
link (in particular 4 4) with perfect CSI. The MIMO channels
were generated using the parameters of the European standard
for Wireless Local Area Networks (WLANs) HIPERLAN/2
[39], which is based on the multicarrier modulation OFDM (64
carriers were used in the simulations), including the frequency
selectivity and the spatial correlation as measured in real sce-
narios. The frequency selectivity of the channel was modeled
using the power delay profile type C for HIPERLAN/2, as spec-
ified in [40], which corresponds to a typical large open-space
indoor environment for nonline-of-sight conditions with 150
ns average r.m.s. delay spread and 1050 ns maximum delay
(the sampling period is 50 ns [39]). The spatial correlation
of the MIMO channel was modeled according to the Nokia
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Fig. 6. Convergence of the conditional gradient method for the master problem
for a multicarrier 4 � 4 MIMO channel (carrier-cooperative approach) with
L = 3 (QPSK, 256-QAM, and 512-QAM constellations).

model defined in [41], which corresponds to a conference hall
or a shopping galleria scenario, as specified by the correlation
matrices of the envelope of the channel fading at the transmit
and receive side. The matrix channel generated was normalized
so that .

Three methods are compared in the numerical results of this
section. First, we consider a benchmark based on imposing a
diagonal structure on the MSE matrix and the same BER on
all links (called diag. structure + equal BER), which basically
means that the transmitter is given by [note
that this expression lacks the rotation that appears in the
optimal solution (see Theorem 1)]. Then, we consider the
two approaches proposed in this paper: the heuristic solution
obtained in Section IV-B1 (termed nondiag. structure + equal
BER) and the optimal solution obtained in Section IV-B2
(called nondiag. structure + nonequal BER). The multicarrier
MIMO channel is modeled in two different ways: as a set of

parallel MIMO channels with an independent processing
per carrier (carrier-noncooperative approach) and also as a big
MIMO channel with a joint processing over all carriers (car-
rier-cooperative approach). Thus, the total number of methods
evaluated and compared is six. Unless otherwise stated, the
MMSE receiver is employed.

The results are given in terms of required transmit power
versus BER. To be more specific, we plot the transmitted power
normalized with the noise spectral density : Tr

, where is the number of carriers.
Convergence of the Conditional Gradient Method: We first

consider the convergence of the conditional gradient method
with a diminishing step-size rule for the master problem as pro-
posed in Section IV-B2. In Fig. 6, the upper and lower bounds
on the transmitted power [see (31)] are plotted as a function
of the iterations for a random example with (QPSK,
256-QAM, and 512-QAM). In all the numerical simulations, the
heuristic solution of Section IV-B1 is used as the initial point of
the gradient method and the parameters of the step-size rule are

Fig. 7. Outage normalized transmit power versus BER for a multicarrier
4 � 4 MIMO channel with L = 3 (equal QPSK constellations).

Fig. 8. Outage normalized transmit power versus BER for a multicarrier 4� 4
MIMO channel with L = 3 (QPSK, 512-QAM, and 512-QAM constellations).

and . It can be observed that after 10–20 iter-
ations, most of the gain has already been achieved.

Equal Constellations: In Fig. 7, steady-state results are
plotted for a multicarrier 4 4 MIMO channel with
using equal QPSK constellations. It can be observed that the
heuristic and optimal solutions have the same performance for
the carrier-cooperative approach (as predicted by theory) and
an almost indistinguishable performance for the carrier-nonco-
operative case (c.f. Section IV-B1). For this particular scenario,
the gain of the proposed schemes with respect to the benchmark
imposing diagonality is of 2–3 dB. This difference is due to
the strong suboptimality of the diagonal structure for equal
constellations [26, Lem. 6].

Different Constellations: In Fig. 8, steady-state results are
shown for a multicarrier 4 4 MIMO channel with
using QPSK, 512-QAM, and 512-QAM constellations. In this
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Fig. 9. Outage normalized transmit power versus BER for a multicarrier
4� 4 MIMO channel with L = 4 (QPSK, 16-QAM, 16-QAM, and 512-QAM
constellations).

case, the performance of the heuristic solution is distinguishable
from the optimal performance, although it is still very close to it
(less than 1 dB). The suboptimality of the benchmark is smaller
in this case because with different constellations, the diagonal
structure is less suboptimal than with equal constellations. In
fact, the more different the constellations are, the less subop-
timal the diagonal structure is.

In Fig. 9, similar results are obtained with using QPSK,
16-QAM, 16-QAM, and 512-QAM constellations. In this case,
the loss in performance of the heuristic solution is between 1–2
dB for the carrier-noncooperative approach and less than 1 dB
for the carrier-cooperative case. The benchmark works quite
poorly in this case because the diagonal structure forces one
symbol to be transmitted directly through the worst-channel
eigenvalue, which may require a significant amount of power
to be equalized.

ZF Receiver: The plots corresponding to the ZF receiver
are not included for space limitations and because they can be
easily summarized as follows. For , 2, 3, the performance
with the ZF receiver is almost indistinguishable with that of the
MMSE receiver (especially for BERs lower than ), and
for , the difference is still insignificant (less than 0.5 dB).

VII. CONCLUSION

This paper has dealt with the design of linear transceivers
for MIMO channels in terms of minimum BER averaged over
the established links. After reformulating the originally com-
plicated and nonconvex problem as a convex problem, a simple
heuristic suboptimal solution and the optimal solution have been
derived. The simple heuristic solution happens to perform ex-
tremely well in practice, becoming a very attractive choice. The
optimal solution is also easily computed in practice due to the
structure of the problem that allows the decomposition of the
original problem into several simple subproblems controlled by
a master problem. Such a decomposition is very useful because

the subproblems, as well as the master problem, can be easily
solved in practice with the simple algorithms that have been
proposed.

APPENDIX A
PROOF OF LEMMA 1

Assume ; otherwise, (16) is readily verified
from property P2. Since , it follows from property
P3 that , and as a consequence,

. Using now , (16) is
obtained. In the case that [and that

], the result holds with strict inequality since
by property P3.

To prove (17), define the function
. Then, for

where the first inequality follows from the strict convexity of
(property P2) and the second from the fact that

[this is just a restatement of (16)]. Particularizing
for , (17) is obtained.

APPENDIX B
PROOF OF THEOREM 1

This proof is similar to that of [26, Th. 2] (see also [23, Th.
6.2]), and most details are omitted. We prove the theorem in
three steps. First, we eliminate the functions to simplify the
notation; then, we show the equivalence between the original
complicated problem and a simpler problem; and finally, we
solve the simple problem. The two last steps are identical to
those in [26, Th. 2].

First of all, since is strictly increasing, we can rewrite
each constraint as

, and problem (23) can be
written as

Tr

s.t. (32)

which is the problem considered in [26, Th. 2].
It follows from [26, Th. 2] that problem (32) (problem P1) is

equivalent to the following problem (problem P2):

Tr

s.t. diagonal increasing diag elements

where denotes the weakly majorization relation [19]
(the proof of this equivalence hinges on fundamental re-
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sults of majorization theory [19]). The second constraint
guarantees the existence of a unitary matrix such that

( refers to the ele-
ment-wise relation ) [19, 9.B.2 and 5.A.9.a] or, in other
words, such that with
[As can be observed from (23) and is later formally proved,
these QoS constraints are satisfied with equality at an optimal
point].

Now that problems P1 and P2 have been shown to be equiv-
alent, we focus on solving problem P2, which is much simpler
than problem P1. Since in problem P2, the matrix is
diagonal with diagonal elements in increasing order, it follows
that can be assumed without loss of optimality of the form

(c.f. [15, Lem. 12] and [23, Lem. 5.11], where
has as columns the eigenvectors of cor-

responding to the rank largest eigenvalues
in increasing order, and diag has
zero elements except along the right-most main diagonal (as-
sumed real w.l.o.g.). Writing the weakly majorization constraint
of problem P2 explicitly, defining , and denoting with
the set the largest eigenvalues of in increasing
order, the problem reduces to

s.t.

The desired problem formulation of (25) follows by noting that,
since , the constraints for (in case that

) imply and are implied by the constraint for :
.

The constraints can be satisfied for sufficiently large values
of (equivalently, the problem is feasible) if and only if

for (always satisfied because )

and .

It is straightforward to see that

must be satisfied with equality at an optimal
point. Otherwise, could be decreased until it is satisfied with
equality or becomes zero (in which case, the same reasoning
applies to and so forth). This means that an optimal solution
to problem P2 must satisfy , which
in turn implies that .

The uniqueness of the solution of (25) follows easily from the
strict convexity of each function (recall that is
positive), since we could otherwise form a convex combination
of two different optimal solutions, resulting in

, which means that a strictly better
solution could be obtained.

APPENDIX C
PROOF OF PROPOSITION 1

We now prove the three properties stated in Proposition 1.
It is important to realize that we can use
instead of in the problems (23) and (25) without affecting the
solution. For convenience of notation, we define the following
set:

and with some abuse of notation, we also define

and , where is given by (26)
and . Note that all previous sets are convex in

. Similarly, we will refer to and as the minimum
required power among in the sets , , and

, respectively [recall that ].

1) The function is strictly convex on and convex
everywhere.

Let
otherwise

, and recall that

is the optimal value of (25) for a
given , which is achieved at a unique point by
Theorem 1 [if is not empty]. It follows that is
convex in because is jointly convex in and
[25, Sec. 3.2.5], [22, Sec. 5.4.4] [in fact, is linear

on the feasible set ].
We now show that it is indeed strictly convex on due

to the strict concavity of each on [which
follows since is strictly convex and increasing on

]. For (both in ) and , we have

where the second equality follows from the linearity of
on the convex set , and the strict inequality

follows from the strict concavity of each (since some
constraints would be satisfied with strict inequality and
some could be decreased).

2) A subgradient of at .
First, recall that the Lagrangian corresponding to

problem (25) is
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and the dual function is . Sup-

pose for the moment that and . Then,
by strong duality (Slater’s condition is satisfied), we have
(see [22, Sec. 5.4.4] for a similar approach)

where , and the last inequality fol-
lows from the concavity of on (note that
strict convexity of is not required for this result) and the
relation [note that ]. Now, if
is feasible but for some , then
and the two last inequalities hold with re-
placed by 0. Thus, ,
where is defined as in Proposition 1.

3) The function is differentiable on .
To prove the differentiability of , it suffices to

show that is differentiable, since function is
a composition of functions and , and is
differentiable on [ is given in
(26) and ] [37, Th. 9.15].

We will prove differentiability of by showing that
it has a unique subgradient at each [22, Prop. B.24].
Instead of proving the uniqueness of the subgradient
directly, we will do so by first showing that there is a
one-to-one mapping between subgradients and optimal
Lagrange multipliers and then showing the uniqueness of
the latter (the constraint is needed
to avoid and ensure the existence of op-
timal Lagrange multipliers). We have already seen that
an optimal Lagrange multiplier determines uniquely a
subgradient [see Property (b) with ]. It remains
to show the opposite, i.e., that a subgradient uniquely
determines an optimal Lagrange multiplier.

Suppose that is a subgradient of at :

First of all, note that since is nonincreasing in each
component of , it follows that (otherwise,

the RHS of the previous inequality would be unbounded
below). Since , we can equiv-
alently write

Therefore

where , and is the dual
function corresponding to problem (25). However, from
weak duality, . Thus,

, and is an optimal Lagrange multiplier.
We now prove the uniqueness of the optimal Lagrange

multipliers of problem (25). From Theorem 1, we know
that the optimal value is achieved at a unique point .
Then, it suffices to show that the Lagrange multipliers
that satisfy the following simplified KKT conditions cor-
responding to (25) (c.f. [26, Prop. 2]]) jointly with
are unique:

(33)

This is clearly true for the Lagrange multipliers corre-
sponding to since they are uniquely determined
by . For , it follows from the following lemma
that , where is uniquely determined by

.
Lemma 2: The optimal solution of problem (25) satisfies

, and the Lagrange multipliers satisfy

for .
Proof: For , all must be positive at any feasible

point, and the result is trivial. We next focus on the case .
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From , , and , it
follows that . In other words, if , then

, and conversely, if , then . We can then
find as , and the first part of the result
is proved. To prove the second part, note that the constraints

can be rewritten as

Since at an optimal point and
, it follows that

and, from the complementary slackness conditions in (33), that
for .

APPENDIX D
PROOF OF THEOREM 2

The proof is straightforward by noting that problem (22) de-
couples naturally into several subproblems like problem (23)
if the are fixed. We can then invoke (10) to minimize the
problem with respect to the for fixed and then with re-
spect to the . The original nonconvex problem (22) can be
rewritten as

s.t. BER

Now, since each of the subproblems is unfeasible if
for some and having does not

decrease the required power (from property P2), we can explic-
itly write such constraints without affecting the problem, and
then (28) is obtained, which is strictly convex.

There is, however, a small hidden detail: Problem (23) as-
sumes that the are ordered such that ,
and this may not be the case when evaluating the subproblems

. In the following, we take care of this detail, which hap-
pens to be irrelevant as long as the constellations are ordered
with increasing size .

The problem (22) can be rewritten as

Tr

s.t.

BER (34)

where we have introduced the additional variables . We
can now make the problem convex exactly as was done in
Theorem 1, obtaining

s.t.

BER (35)

where denotes the elements in decreasing order
. Note that at an optimal point, it must

be that and

by Theorem 1.
In the first two sets of constraints in (35), we require

in decreasing order, which is denoted by the notation . In
principle, this is not a problem, since such a constraint is still
convex, as can be seen from the following relation [25]:

(36)

where the RHS is clearly a concave function since it is the point-
wise minimum of concave (affine) functions. Nevertheless, it is
simpler in practice to deal with unordered . If we simply
remove the ordering constraint, the problem relaxes, and there-
fore, it may not be equivalent to the original one. However, by
Proposition 2(b), we know that any optimal solution of the re-
laxed problem has in decreasing order for each (due to the
assumed ordering of the constellations). As a consequence, we
can safely remove the ordering constraints on the , and the
resulting problem is equivalent. The decomposition principle of
(10) can then be applied to the relaxed version of (35) using (25)
as a subproblem, obtaining (28).

APPENDIX E
PROOF OF PROPOSITION 2

1) If feasible, the convex problem (28) has a unique solution.
By Proposition 1(a), each is strictly convex on
, and so is the objective function . It fol-

lows then that, if feasible, the problem can only have one
solution (for, if there were two optimal solutions, a convex
combination of them would give a strictly lower objective
value, which cannot be).
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In fact, the convex problem (35) (and also the relaxed
version) prior to the decomposition (this problem not only
has as variables but also and ) has a unique
solution as well since the solution to each of the subprob-
lems is unique by Theorem 1.

2) Higher constellations have smaller MSE at an optimal
point of (28) or, equivalently, of the relaxed version of the
problem (35). In other words, .

Suppose that for some . We next show
that this cannot be since the problem would have a strictly
smaller objective value using instead and

, where is a
positive value.

Consider the relaxed version of the problem (35). The
only constraints that are affected by using and
instead of and are

for (37)

and

BER (38)

where we have made use of the fact that
at an optimal point. If we consider instead problem (35)
with the ordering constraints, the only constraint affected
is (38).

By Lemma 1, the term is
strictly decreased when using and . This
means that we could increase both and until
the average BER constraint (38) was satisfied with
equality, which would require strictly less power and
would lead to a lower objective value.

We now show that the required power to satisfy (37)
when using and is not increased. If ,
then (37) is not affected. If , then (37) is a
loose constraint [recall that the problem has the addi-
tional tighter constraint

], and we can di-
rectly use and without affecting it (this
is because the amount in which is decreased
satisfies ).
We can then consider the case . Defining

, (37) can be rewritten as

where
. We can focus on the case in which

; otherwise, we can decrease
(and increase by the same amount) either

until it is satisfied or until , in which case,

the proof is complete. Then, we can write (37) and the
constraint corresponding to as

from which we can readily obtain that
.

Recalling that and are achieved with some
power allocation and (simply from
the definition of ), we just have to show that

and (corresponding to the con-
straints involving and ) can be achieved with
strictly less power and .

Recalling and noting that
, it follows that

. After some manip-
ulations and using , it can
be shown that

Thus, we have proved that at an optimal
point of the relaxed version of the problem (28) and of the
problem (35). This shows the equivalence between these
two problems in the sense that the set of optimal solutions
of one problem equals the set of optimal solutions of the
other one.

3) Equal constellations have equal MSE at an optimal point:
if .

From result 2), we know that at an optimal point, we
must have . We now show that if

, then . Suppose .
We could then swap and without increasing
the objective value [the BER constraint (38) would not
be affected, and the MSE constraint (37) would be re-
laxed, which could lead to an improvement of the objec-
tive value]. Then, we would have two solutions, which
cannot be true from result 1).
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