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Practical Algorithms for a Family
of Waterfilling Solutions
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Abstract—Many engineering problems that can be formu-
lated as constrained optimization problems result in solutions
given by a waterfilling structure; the classical example is the
capacity-achieving solution for a frequency-selective channel.
For simple waterfilling solutions with a single waterlevel and a
single constraint (typically, a power constraint), some algorithms
have been proposed in the literature to compute the solutions
numerically. However, some other optimization problems result in
significantly more complicated waterfilling solutions that include
multiple waterlevels and multiple constraints. For such cases, it
may still be possible to obtain practical algorithms to evaluate the
solutions numerically but only after a painstaking inspection of
the specific waterfilling structure. In addition, a unified view of
the different types of waterfilling solutions and the corresponding
practical algorithms is missing.

The purpose of this paper is twofold. On the one hand, it
overviews the waterfilling results existing in the literature from a
unified viewpoint. On the other hand, it bridges the gap between
a wide family of waterfilling solutions and their efficient imple-
mentation in practice; to be more precise, it provides a practical
algorithm to evaluate numerically a general waterfilling solution,
which includes the currently existing waterfilling solutions and
others that may possibly appear in future problems.

Index Terms—Constrained optimization problems, MIMO
transceiver, parallel channels, practical algorithms, waterfilling,
waterpouring.

I. INTRODUCTION

THE well-known classical waterfilling solution solves the
problem of maximizing the mutual information between

the input and the output of a channel composed of several sub-
channels (such as a frequency-selective channel, a time-varying
channel, or a set of parallel subchannels arising from the use of
multiple antennas at both sides of the link) with a global power
constraint at the transmitter [1]–[3]. This capacity-achieving so-
lution has the visual interpretation of pouring water over a sur-
face given by the inverse of the subchannel gains, hence the
name waterfilling or waterpouring (cf. Section II).

The capacity-achieving waterfilling solution has been con-
sidered in many works to design efficient communication
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systems [4]–[6]. There are, however, other completely different
problems that result in similar waterfilling solutions. In par-
ticular, when the transmitter and receiver are jointly designed
for communications through multiple-input multiple-output
(MIMO) channels, these types of solutions typically appear [7].
Perhaps the most popular of such problems is the minimization
of the sum of the mean square errors (MSEs) (equivalently, the
trace of the MSE matrix) of the different subchannels existing
within a MIMO channel, resulting in a waterfilling solution
[6]–[12] (for frequency-selective single-input single-output
(SISO) channels, similar solutions were obtained already in the
1960s [13]). If, instead, the system is designed to minimize the
determinant of the MSE matrix, the classical capacity-achieving
waterfilling result is again obtained [12], [14] (this is due to
the direct relation between the determinant of the MSE matrix
and the mutual information [15]). The maximization of the
minimum signal to interference-plus-noise ratio (SINR) among
the subchannels also results in a waterfilling solution [7]. In
[16], the minimization of the average bit error rate (BER) over
a set of parallel subchannels was extensively treated obtaining
a waterfilling result. In [17], minimum BER solutions were
obtained for the case of imperfect channel knowledge at the
transmitter, with a waterfilling power allocation. Recently, the
problem of joint transmit-receive design to achieve minimum
average BER in MIMO channels (with equal constellations)
has been solved independently in [7] and [18], obtaining a
solution that includes the same waterfilling structure as in the
minimization of the trace of the MSE matrix.

The previous waterfilling solutions are very simple to eval-
uate because all of them have a single waterlevel and a power
constraint. As a consequence, it is quite straightforward to com-
pute them numerically in practice. Since the solution is param-
eterized with a single waterlevel, the problem reduces to ob-
taining the waterlevel such that the power constraint is satisfied
with equality. In order to find the exact value of the waterlevel,
different algorithms have been proposed that can be classified
into iterative algorithms and exact algorithms. The iterative al-
gorithms are trivially implemented in practice and get close to
the exact value as the number of iterations goes to infinity [10],
[13], [16], [19]. The exact algorithms give the exact value of
the solution in a finite number of loops or iterations [5], [11],
[20]–[22].

As opposed to the aforementioned simple waterfilling so-
lutions, other design criteria, such as the minimization of the
maximum of the BERs of the subchannels or the maximiza-
tion of the harmonic mean of the SINRs of the subchannels,
result in significantly more complicated waterfilling solutions
with multiple waterlevels and multiple constraints (not just a
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simple power constraint) [7]. The minimum power design in
an MIMO point-to-point communication system that satisfies a
set of quality-of-service requirements among the used subchan-
nels also results in a waterfilling solution with multiple water-
levels and multiple constraints [23]. In such cases, it is not clear
how to compute the numerical solution in practice—not even
by adopting an iterative method; however, after a painstaking
analysis of the specific structure of each waterfilling solution, it
is still possible to obtain practical algorithms that give the nu-
merical solution [24]. It is thus desirable to develop a general
approach to deal with these complicated waterfilling solutions,
as opposed to obtaining results tailored to each particular case.

This paper considers a general waterfilling solution (in-
cluding multiple waterlevels and multiple constraints) and
provides a general algorithm to compute numerically the so-
lution in practice. In other words, the paper bridges the gap
between a wide family of waterfilling solutions and their prac-
tical implementation. Such a framework not only encompasses
the currently existing waterfilling results and algorithms, but
it may also serve as a basis to obtain practical algorithms in
future problems with a similar structure. To be more precise,
as long as a waterfilling solution fits within the general model
considered in this paper, it suffices to use the general algorithm
(known to give the exact numerical solution) and particularize
it to the specific case at hand, as opposed to having to analyze
the structure of the specific waterfilling solution to obtain an
algorithm (and to prove that it gives the exact solution).

The paper is structured as follows. In Section II, the signal
model for the classical capacity-achieving waterfilling solu-
tion and for a completely general waterfilling solution are
introduced. Section III overviews the existing algorithms for
simple waterfilling solutions, and Section IV provides the main
result of the paper: an algorithm to evaluate numerically a
general multiwaterlevel, multiconstrained waterfilling solution.
Section V then considers the particularization of the general
algorithm to specific examples of practical interest. Finally, in
Section VI, the conclusions are drawn.

II. WATERFILLING SOLUTIONS

The classical capacity-achieving waterfilling result is the so-
lution to the following constrained optimization problem:

s.t.

(1)

given by

(2)

where is the number of subchannels,
is the gain of the th subchannel, and is the waterlevel chosen
to satisfy the power constraint with equality .

As can be seen in Fig. 1, this capacity-achieving solution
has the visual interpretation of pouring water over a surface (or

Fig. 1. Classical waterfilling power allocation x = (� � � ) with
x = P .

Fig. 2. General waterfilling power allocation x = (� � � ) with
x w = P .

curve) given by the inverse of the subchannel gains, hence, the
name waterfilling or waterpouring [1], [2]. More general water-
filling expressions such as , where the ’s and

’s are arbitrary positive numbers, also have the same visual
interpretation after the change of variables

and with a resulting weighted power constraint given by
, where are weights that can be visu-

ally interpreted as the width of each of the subchannels as can
be observed from Fig. 2.

As has been previously mentioned, there are many other con-
strained optimization problems that result in similar waterfilling
solutions, possibly with multiple waterlevels and multiple con-
straints. It would be of a great interest to deal simultaneously
with all these waterfilling problems by developing a general
framework that embraces a wide range of waterfilling solutions.

A very general multiwaterlevel multiconstrained waterfilling
result can be defined as any solution of the form

(3)

subject to a set of arbitrary equality (inequality) constraints

(4)

where the ’s are the multiple waterlevels, the ’s are the
variables (there are variables associated with the same water-
level ), the ’s and the ’s are given constant values, and
the ’s are arbitrary functions that constrain the waterlevels
[note that constraints on the ’s can be readily expressed as
constraints on the ’s simply by using the relation in (3)]. We
denote by the total number of subchannels.
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The numerical evaluation of the general waterfilling solution
in (3) and (4) may be of a high complexity. In order to make the
problem more tractable, we consider a less-general waterfilling
solution by introducing an additional structure in the constraints.
To be more precise, we consider constraints of the
form

(5)

where the ’s are monotonic functions that constrain each wa-
terlevel independently, is a monotonic function that constrains
all the waterlevels jointly, and is an additional auxiliary vari-
able introduced for generality. It is important to remark that a
waterfilling solution with constraints as in (5) is still very gen-
eral and, in fact, includes all the waterfilling solutions previously
considered in the literature (to the authors’ knowledge). Note
that it is not difficult to generalize the constraints considered in
(5), at the expense of a more involved notation, to include more
equality constraints at each , inequality constraints at each ,
a nonmonotonic global constraint , more global equality con-
straints, and global inequality constraints. (The assumption of
the ’s being monotonic functions is necessary to reduce the
complexity of the algorithm and make it practical.)

III. PRACTICAL ALGORITHMS FOR SIMPLE

WATERFILLING SOLUTIONS

For the simple case of single-waterlevel single-constrained
waterfilling solutions, it is straightforward to obtain both iter-
ative and exact algorithms. Iterative algorithms approach the
exact solution as the number of iterations goes to infinity (in
practice, of course, it suffices to stop iterating when the error
is below a certain tolerance threshold). Exact algorithms give
the exact result in a finite (and small) number of loops or it-
erations (with a worst-case complexity linear in the number of
subchannels). The algorithms are based on the obvious fact that
the solution is readily obtained once the waterlevel is known;
therefore, the problem reduces to obtaining the waterlevel such
that the constraint (typically, a power constraint) is satisfied.

Iterative algorithms can be straightforwardly obtained simply
by fixing the waterlevel to some value and then adjusting it
iteratively until the constraint is satisfied [19], [10], [16] (in
[13], a parametric approach was proposed to obtain the curve
of power versus performance, which also reduces to an itera-
tive method when having to meet a specific power constraint).
This is nothing more than the well-known problem of finding
the root of a function (see Fig. 3), which happens to be nonlinear
and nondifferentiable (a power constraint, for example, would
correspond to the constraint function ,
where the dependence of the ’s on the waterlevel has been
made explicit). This can be done, for example, by modifying the
waterlevel with small and (possibly) decreasing steps [10], [16]
or by bisection until the error is below some tolerance threshold.

Exact algorithms can also be easily derived based on hypoth-
esis testing. The underlying idea is to form a hypothesis of the
active and inactive subchannels and check
whether a consistent solution can be found conditioned on the

Fig. 3. Illustration of the waterlevel determination as a problem of finding the
root of the constraint function g(�) = x (�) � P , where x = (� �
� ) , and the � ’s are in decreasing order.

hypothesis. In principle, such an approach has an exponential
worst-case complexity of , where is the number of sub-
channels; a careful inspection of the structure of the problem,
however, reveals that it is possible to obtain a linear worst-case
complexity of . In [20, ch. 4] (see also [21, ch. 7]) and [5,
Alg. 1], an exact algorithm was obtained for the classical ca-
pacity-achieving solution. In [11], a similar algorithm was also
derived for the minimization of the weighted sum of the MSEs
of the subchannels. In a first attempt to unify the waterfilling so-
lutions and their corresponding algorithms, practical algorithms
were proposed in [22] for general waterfilling solutions with a
single waterlevel and a power constraint (single constraint).

The following section is devoted to obtaining an exact unified
algorithm for more general multiwaterlevel multiconstrained
waterfilling solutions.

IV. UNIFIED PRACTICAL ALGORITHM FOR A FAMILY OF

WATERFILLING SOLUTIONS

This section provides the main result of the paper: an exact
algorithm for the numerical evaluation of a general waterfilling
solution with multiple waterlevels and multiple constraints, as
defined in (3) and (5). The interest of the following general al-
gorithm is twofold. Not only it is able to evaluate numerically
a wide family of waterfilling solutions, but it is also an exact
algorithm as opposed to iterative methods that approach the de-
sired solution as the number of iterations goes to infinity (cf.
Section III).

Proposition 1: Suppose that a constrained optimization
problem has a waterfilling solution of the form

(6)

subject to the constraints

(7)

(8)

where the ’s are the multiple waterlevels, the ’s are
the variables (there are variables associated with the same
waterlevel ), is an auxiliary variable, the ’s and ’s
are given positive1 constant values, and the functions ’s and

1The values a ’s and b ’s are assumed positive for simplicity of exposi-
tion. However, other cases can be similarly considered.
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are strictly increasing (the monotonicity can be nonstrict in the
range of ’s corresponding to all equal to zero for some

). Then, the waterfilling solution can be numerically evaluated
in practice with Algorithm 1 with a worst-case complexity of

iterations, i.e., a linear complexity in the total
number of subchannels.

Algorithm 1—Practical algorithm for the family of wa-
terfilling solutions with multiple waterlevels and multiple
constraints, as described in Proposition 1:

Input: Set of pairs and constraint functions
and .

Output: Numerical solution and set of waterlevels
.

0. Set for and (if necessary) sort
the set of pairs such that
are in decreasing order for
each (define ).

1. Compute

and

(denote the maximizing by ).
2. If and , where

,2 then accept the hypothesis, and go to step 3.
Otherwise, reject the hypothesis, form a new one by
setting , and go to step 1.

3. Find , obtain the wa-
terlevels and the numerical solution as

undo the sorting done at step 0 (if any), and finish.
Note that the algorithm requires the sequences and

properly sorted. The complexity of the best sorting algorithm
is [25], where denotes the length of the se-
quences; however, in many applications, such sequences are al-
ready sorted. This is because they come from the eigenvalues of
a matrix and many of the algorithms to compute the eigenvalues
and eigenvectors already produce the eigenvalues sorted [25],
[26]. In any case, the complexity of sorting the eigenvalues is
insignificant compared with the complexity to compute
the eigenvectors so that we can always assume the eigenvalues
sorted.

Note also that, strictly speaking, we can only claim that the
algorithm obtains the exact numerical solution when the equa-
tion in the last step can be solved for in an
exact way, e.g., when it can be solved in closed-form. Otherwise,
some iterative method has to be used. In practice, however, this
is not a problem since it is just a one-dimensional search that

2As stated in Proposition 1, the functions f need not be strictly monotone
for the range of � in which all x are zero for a given k. In such a case, we
define the inverse as f (t) inff� : f (� ) = tg (this choice guarantees
the minimum value of the function g).

is done just once (after the algorithm has obtained the optimum
hypothesis). Therefore, such cases are also contemplated (see,
for example, Algorithm 3 in Section V-B1).

Proof of Proposition 1: Algorithm 1 is based on hypoth-
esis testing. First, it makes the hypothesis that all subchannels
are active and checks whether there is such
a solution that satisfies all the constraints. If not, the hypoth-
esis is rejected, a new hypothesis is made (properly chosen),
and so forth. In principle, the total number of hypotheses is
(since each subchannel can be either active or inactive

), which implies an exponential worst-case complexity
in the total number of subchannels. However, after a careful in-
spection of the problem structure, it turns out that the worst-case
complexity can be made linear.

For each hypothesis, there is a set of possible values for
the auxiliary variable and, correspondingly, a set of possible
values for the waterlevel ’s. The problem is then to find the
optimal hypothesis such that the waterlevels can be chosen to
satisfy all the constraints. Interestingly, it is possible to obtain
the exact way in which the hypotheses should be made such
that the worst-case complexity is linear, starting from the hy-
pothesis of all subchannels active and successively deactivating
subchannels.

See the Appendix for a detailed proof.
Since many optimization problems result in waterfilling so-

lutions with a single waterlevel and a single constraint, it is in-
teresting to particularize the previous result to this case.

Corollary 1: Suppose that a constrained optimization
problem has a waterfilling solution of the form

(9)

subject to the constraint

(10)

where is the waterlevel, the ’s are the variables, the ’s
and ’s are given positive constant values, and the function
is strictly increasing (the monotonicity can be nonstrict in the
range of corresponding to all equal to zero). Then, the wa-
terfilling solution can be numerically evaluated in practice with
Algorithm 2 with a worst-case complexity of iterations, i.e.,
a linear complexity in the number of subchannels.3

Algorithm 2—Practical algorithm for the family of single-
level waterfilling solutions, as described in Corollary 1:

Input: Set of pairs and constraint function .
Output: Numerical solution and waterlevel .

0. Set , and (if necessary) sort the set of pairs
such that are in decreasing order

(define ).
1. If and , then ac-

cept the hypothesis, and go to step 2.
Otherwise, reject the hypothesis, form a new one by
setting , and go to step 1.

3It is also possible to find the correct hypothesis following a bisection ap-
proach with a complexity of log (L).
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2. Find the waterlevel
, obtain the numerical solution as

undo the sorting done at step 0 (if any), and finish.

Proof of Corollary 1: The proof follows directly from
Proposition 1 and Algorithm 1 by introducing the innocuous
constraint given by the function , from which we ob-
tain and . Note that Algorithm 2
reduces to that obtained in [22] for the particular case of having
a power constraint .

Summarizing, we can say that for any constrained optimiza-
tion problem with a solution that fits into the general waterfilling
structure as defined in Proposition 1 (or Corollary 1), it is not
necessary to struggle to obtain heuristic and iterative methods to
compute the solution numerically in practice. It suffices to par-
ticularize Algorithm 1 (or Algorithm 2) with the guaranty that
it will give the exact numerical solution with a linear worst-case
complexity in the number of subchannels.

V. PARTICULARIZATION TO DIFFERENT EXAMPLES OF

WATERFILLING SOLUTIONS

In this section, we show how the general algorithms obtained
in Section IV for a wide family of waterfilling solutions can be
readily particularized to several cases of interest in the design
of communication systems.

A. Waterfilling Solutions With a Single Waterlevel

To start with, we consider some examples of simple water-
filling solutions with a single waterlevel and a single constraint
and show how Algorithm 2 can be easily particularized.

1) Maximization of the Mutual Information Subject to a
Power Constraint: In communication systems, the maximiza-
tion of the mutual information is a problem of a great interest
since it gives the solution that achieves the channel capacity
[1]–[5]. Such a capacity-achieving solution has a waterfilling
form given by

(11)

subject to the power constraint

(12)

where is the power allocated to the th subchannel, with gain
, and is the power available for transmission.
To obtain a practical algorithm, it suffices to use Algorithm

2 (single waterlevel and single constraint) introducing the fol-
lowing particularizations:

The comparison reduces to

, and is obtained as

.
2) Minimization of the Sum of the MSEs Subject to a Power

Constraint: When the transmitter and receiver of a MIMO
communication system are jointly designed to minimize the
sum of the MSEs of the different subchannels (equivalently, the
trace of the MSE matrix), the following waterfilling solution
arises in the determination of the power distribution over the
subchannels at the transmitter [6]–[11][19]:

(13)

subject to the power constraint

(14)

where is the power allocated to the th subchannel, with gain
, and is the power available for transmission.
To obtain a practical algorithm, it suffices to use Algorithm

2 (single waterlevel and single constraint) introducing the fol-
lowing particularizations:

The comparison reduces to

, and is obtained as

.
3) Minimization of the Transmit Power Subject to Equal MSE

Constraints: Similarly to Section V-A2, the joint design of the
transmitter and receiver of a MIMO communication system to
minimize the transmit power subject to equal MSE constraints
for the different subchannels yields a waterfilling power alloca-
tion over the subchannels at the transmitter [23] given by

(15)

subject to the constraint

(16)

where is the power allocated to the th subchannel, with gain
, and is the MSE required at each subchannel.
To obtain a practical algorithm, it suffices to use Algorithm

2 (single waterlevel and single constraint) introducing the fol-
lowing particularizations:
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Note the additional sign in the definition of function
to make it increasing with respect to , as required in
Corollary 1. The comparison reduces to

, and is

obtained as .
4) Minimization of the Average BER Subject to a Power Con-

straint: Since the BER is the ultimate performance measure of
digital communications (rather than the MSE or SINR), the min-
imization of the BER is perhaps the most reasonable criterion
to design a communication system. In [27], an OFDM system
was optimized to minimize the BER averaged over the carriers;
to be more precise, the waterfilling solution

was obtained for the case with only statistic channel
knowledge (following a Nakagami- pdf) and

for perfect channel knowledge. Similarly, in [16],
a parallel multiantenna MIMO system with minimum average
BER was also considered with perfect channel knowledge and
with additional constraints to guarantee a minimum BER per
subchannel, obtaining a waterfilling solution with multiple wa-
terlevels and multiple constraints, which is briefly considered
in Section V-B3. However, after approximating the BER func-
tion with the Chernoff upper bound, the solution reduces to the
following simple waterfilling solution, which we now further
develop for illustration purposes (after an appropriate change of
notation with respect to [16, (28)]):

(17)
subject to

(18)

where the term denotes the power allocated to the
th subchannel, with gain is the the minimum SINR re-

quired on the th subchannel (to guarantee a minimum BER),
and is the power available for transmission.

To obtain a practical algorithm, it suffices to use Algorithm
2 (single waterlevel and single constraint), introducing the fol-
lowing particularizations:4

B. Waterfilling Solutions With Multiple Waterlevels

We now turn into more complicated waterfilling solutions
with multiple waterlevels and multiple constraints and show
how Algorithm 1 can be easily particularized.

1) Minimization of the Maximum of the MSEs Subject to a
Power Constraint: The joint design of the transmitter and re-
ceiver to minimize the maximum of the MSEs of a communi-
cation through a multicarrier multiantenna MIMO channel has

4To be exact, we have to add a constant value to each term c �log� to make
sure that the b ’s are positive values. Such an approach, however, simplifies to
the given expressions.

been shown to be an excellent criterion in terms of global per-
formance since it guarantees the performance of the worst of the
subchannels [7]. The corresponding waterfilling solution is

(19)

subject to the constraints

(20)

(21)

where and denote the carrier and the spatial eigenmode, re-
spectively, is the number of carriers, is the number of used
spatial eigenmodes at the th carrier, is the power allocated
to the th subchannel, with gain , the ’s are given
values, is an auxiliary variable to be determined, and is the
power available for transmission (see [7] for details).

Since the waterfilling solution has multiple waterlevels and
multiple constraints, Algorithm 1 can be used to obtain a prac-
tical algorithm with the following particularizations:

Note the additional sign in the definition of the ’s to make
them increasing with respect to the ’s as required in Proposi-
tion 1. From , it follows that

and then

The general algorithm then reduces to the following one (in [24],
a similar algorithm was derived for this specific problem).

Algorithm 3—Practical algorithm for the minimization of the
maximum of the MSEs subject to a power constraint:

Input: Set of subchannel gains and maximum power
.

Output: Numerical solution and set of waterlevels
.

0. Set for and (if necessary)
sort the set of gains such that are
in decreasing order for each (define

).
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1. Compute

and

(denote the minimizing by ).
2. If and

, then accept
the hypothesis, and go to step 3.
Otherwise, reject the hypothesis, form a new one by
setting , and go to step 1.

3. Obtain , the waterlevels, and the numerical solution
as

and

undo the sorting done at step 0 (if any), and finish.
2) Maximization of the Harmonic Mean of the SINRs Subject

to a Power Constraint: Similarly to Section V-B1, if the trans-
mitter and receiver are jointly designed to maximize the har-
monic mean of the SINRs of a communication through a MIMO
channel, the following waterfilling solution is obtained [7]:

(22)

subject to the constraints

(23)

(24)

where the notation is as in (19)–(21).
The waterfilling solution has multiple waterlevels and mul-

tiple constraints, and therefore, Algorithm 1 can be used to ob-
tain a practical algorithm with the following particularizations:

From , it follows that

and then

The general algorithm reduces then to the following one (in [24],
a similar algorithm was derived for this specific problem).

Algorithm 4—Practical algorithm for the maximization of the
harmonic mean of the SINRs subject to a power constraint:

Input: Set of subchannel gains and maximum power
.

Output: Numerical solution and set of waterlevels
.

0. Set for , and (if necessary)
sort the set of gains such that are
in decreasing order for each (define

).
1. Compute

and

(denote the maximizing by ).
2. If and

,
then accept the hypothesis, and go to step 3.
Otherwise reject the hypothesis, form a new one by
setting , and go to step 1.

3. Obtain , the waterlevels, and the numerical solution
as

and

undo the sorting done at step 0 (if any), and finish.
3) Minimization of the Average BER Subject to a Power Con-

straint: As previously mentioned in Section V-A4, the mini-
mization of the BER averaged over the parallel subchannels ex-
isting within a MIMO channel results in a waterfilling solution
with multiple waterlevels and multiple constraints [16] given by
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Fig. 4. Illustration of the partition of the allowable waterlevels as a function of the hypothesis for a given index k.

(after an appropriate change of notation with respect to [16, (25)
and (26)])

(25)

subject to the constraints

(26)

(27)

where the notation is as in (17) and (18), and is an auxiliary
variable to be determined.

This waterfilling solution, although including multiple water-
levels, is still simple to solve in practice since each waterlevel

has a single associated variable , i.e., . As proposed
in [16], the numerical computation is straightforward simply by
iteratively updating the auxiliary variable (from which the wa-
terlevels ’s and then the solution can be readily obtained)
until the power constraint is satisfied (cf. Section III). Alterna-
tively, we can use the general result of Section IV, i.e., Proposi-
tion 1 and Algorithm 1, to first obtain the optimum hypothesis
and then the auxiliary variable

using an iterative approach, as described above. Therefore,
for this particular waterfilling solution, the use of Algorithm 1
(properly particularized) is useful only to obtain the optimum
hypothesis and a small initial interval known to con-
tain the optimum to start the iterative search.

VI. CONCLUSION

Many different constrained optimization problems result in
waterfilling solutions for which some algorithms have been pro-
posed in the literature to compute the numerical solution in prac-
tice.

This paper, instead of dealing with each specific waterfilling
result, has considered a general waterfilling formulation with
multiple waterlevels and multiple constraints, which embraces
a wide family of cases and has obtained an algorithm that pro-
vides the numerical solution with a linear worst-case complexity
in the number of subchannels. In order to obtain an algorithm
to evaluate a specific waterfilling solution, it suffices to particu-
larize the general algorithm obtained in this paper to the problem
at hand without having to prove that such an algorithm indeed
gives the desired solution with a linear worst-case complexity.
In this sense, this paper bridges the gap between a wide family
of waterfilling solutions and their efficient practical implemen-
tation.

APPENDIX

PROOF OF PROPOSITION 1

As previously mentioned in the overview of the proof, the
total number of hypotheses is, in principle, . However, as
shown next, the worst-case complexity can be made linear. The
first step in this simplification is obtained by sorting the set of
pairs such that are in decreasing
order for each (i.e., ). With this or-
dering and since , a hypothesis
is completely described by the set of active subchannels
(such that for and zero
otherwise). The total number of hypotheses has been reduced to

(since there are only possibilities for each
), which can be seen to be smaller than the initial exponential

complexity by rewriting it as and noting
that . In the following, this complexity will
be further reduced to by using the fact that the hypotheses
of the different ’s are coupled.

First of all, let us analyze in detail the waterlevels ’s. Con-
sider a hypothesis given by . The waterlevels for such a
hypothesis must be such that the considered subchannels are
indeed active while the rest remain inactive:

(28)

where and
(for convenience of notation, we de-

fine and ). Therefore, simply because
of the nature of the waterfilling solution, the waterlevels are
lower and upper bounded for a given hypothesis. Noting that

, it follows that the different hypotheses
partition the set of waterlevels for a given (see Fig. 4):

(29)

Since functions ’s are strictly increasing, it follows from
(28) that5

(30)

5We make an abuse of notation since the left inequality is nonstrict for ~L =
0, i.e., f (� (0)) � f (� ) � f (� (0)) for 1 � k � N .
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In addition, due to the constraints for ,
the following bounds on are obtained:

(31)

where , and .
Note that the partition on the waterlevels of (29) (see Fig. 4)
translates into a partition on for each . More compactly, the
previous set of bounds on can be rewritten as

(32)

where (denote the maxi-
mizing by ), and .

For a given hypothesis, we have bounded the set of possible
values for and, correspondingly, for the waterlevels based on
the form of the waterfilling solution
and on the constraints . To finally decide whether
the hypothesis is accepted or rejected, we still have to check
whether there is a set of waterlevels within the bounded
set such that . It is convenient to rewrite as a
function of (note that ) as

(33)

which is an increasing function since and each
are all increasing. The problem now is to check whether

exists such that . Since is
increasing, it suffices to check whether and

.
We are now ready to derive a practical algorithm, which starts

with the largest possible value of (largest values of the ’s)
and then decreases it until all constraints are satisfied. In more
detail, Algorithm 1 first reorders the subchannels as previously
described to reduce the number of hypothesis to be checked and
then sets for to obtain the initial hy-
pothesis. At this point, if all constraints can be satisfied, i.e., if

and , the hypothesis is ac-
cepted. Otherwise, it is rejected, and a new hypothesis has to be
considered.

If a hypothesis is accepted, the optimal , waterlevels ,
and solution are readily obtained as

such that (34)

(35)

(36)

If a hypothesis is rejected, a new one has to be made. We now
show by induction how to do it in an efficient way such that
the total number of hypotheses is reduced from
to . Assume that hypothesis has been
rejected and that the optimal hypothesis (the one that contains
the optimal ) is known not to contain larger values for any
of the ’s (this clearly holds for the initial hypothesis since

the values of the ’s are chosen as the highest possible).
As a consequence, a new hypothesis can be made only by
decreasing some of the ’s. Noting that if any of the ’s
is decreased to some value , then ,
and also that (by definition of ),
it follows that . This means that if
a new hypothesis is made by decreasing some of the ’s for

, then the range of possible values for will be empty
since .
Thus, we can guarantee that the optimal hypothesis must have
a lower value for of at most , which is taken as
the next hypothesis to evaluate. Since it was assumed that the
optimal hypothesis was known not to contain higher values for
any of the ’s of the original hypothesis, the new hypothesis
also satisfies this condition (since it only differs in , and
we have just shown that the optimal hypothesis has a value of

of at most ). Therefore, by induction (recall
that the initial hypothesis also satisfies this condition), the pre-
vious mechanism to generate new hypotheses can be repeatedly
applied.

By the nature of the algorithm, the maximum number of iter-
ations (worst-case complexity) is

.
As a final remark, when evaluating a given hypothesis, note

that the condition is always satisfied in the
initial hypothesis, and it is sufficient to check only the condition

. In the subsequent hypotheses, it is again
sufficient to check only this condition since the other condition

is always satisfied as well (because it was
implicitly evaluated in some previous rejected hypothesis).
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