
IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 12, DECEMBER 2005 4661

Convex Primal Decomposition for Multicarrier Linear
MIMO Transceivers

Daniel Pérez Palomar, Member, IEEE

Abstract—The design of linear transceivers for multiple-
input–multiple-output (MIMO) communication systems with
channel state information is particularly challenging for two main
reasons. First, since several substreams are established through
the MIMO channel, it is not even clear how the quality of the
system should be measured. Second, once a cost function has been
chosen to measure the quality, the optimization of the system
according to such criterion is generally difficult due to the non-
convexity of the problem. Recent results have solved the problem
for the wide family of Schur-concave/convex functions, resulting
in simple closed-form solutions when the system is modeled as
a single MIMO channel. However, with several MIMO channels
(such as in multi-antenna multicarrier systems), the solution is
generally more involved, leading in some cases to the need to
employ general-purpose interior-point methods. This problem is
specifically addressed in this paper by combining the closed-form
solutions for single MIMO channels with a primal decompo-
sition approach, resulting in a simple and efficient method for
multiple MIMO channels. The extension to functions that are
not Schur-concave/convex is also briefly considered, relating the
present work with a recently proposed method to minimize the
average bit error rate (BER) of the system.

Index Terms—Convex optimization theory, linear precoder, ma-
jorization theory, multicarrier transceiver, multiple-input–mul-
tiple-output (MIMO) channel, primal decomposition technique,
Schur convexity, waterfilling.

I. INTRODUCTION

MULTIPLE-input–multiple-output (MIMO) channels
provide a unified way to treat many different commu-

nication channels of diverse physical nature such as wireless
communications with multiples antennas at both sides of the
link [1]–[4] and digital subscriber line (DSL) systems [5].
MIMO channels can be conveniently and compactly rep-
resented by a channel matrix notation which is simple and
powerful.

When channel state information (CSI) is available at both the
transmitter and receiver, the system can adapt to each channel
realization to improve the quality of the communication and/or
the spectral efficiency. From an information-theoretic viewpoint,
the best design in terms of capacity is well known and is given by
the employment of ideal Gaussian codes [6], [1], [3], [7].

In practice, the ideal Gaussian codes are substituted with fi-
nite order constellations (such as QAM) and practical coding
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schemes. Furthermore, to simplify the design of such a system,
it is customary to divide it into an inner uncoded part, which
transmits symbols drawn from given constellations, and an outer
coded part that adds redundancy in order to include error cor-
rection capabilities. Although the ultimate system performance
depends on the combination of both parts (in fact, for some sys-
tems, such a division does not even apply), it is convenient, from
the mathematical tractability point of view, to consider the un-
coded and coded parts separately. This paper focuses on the un-
coded part of the system and, specifically, on the employment
of linear transceivers (commonly referred to as linear precoder
at the transmitter and linear equalizer at the receiver).

The design of linear MIMO transceivers was initially consid-
ered in the 1970s by optimizing simple measures of quality of
the system such as the sum of the mean square error (MSE) of
all channel substreams or, equivalently, the trace of the MSE
matrix [8]–[12] (see [13] for an extension to dispersive chan-
nels with arbitrary length, which allows to deal with overlapped
block transmissions). In [14], the determinant of the MSE ma-
trix was minimized instead. In [11], a maximum signal to in-
terference-plus-noise ratio (SINR) criterion with a zero-forcing
(ZF) constraint was also considered. The minimization of the
bit error rate (BER) averaged over the channel substreams was
treated in detail in [15], where a diagonal structure is imposed.
Recently, the minimum BER design without the diagonal struc-
ture assumption was independently solved in [16] and [17] (for
the case of equal constellations), obtaining an optimal nondiag-
onal structure. Similarly, the minimum BER design was consid-
ered in [18] for the class of orthogonal frequency division multi-
plexing (OFDM) transceivers with channel-independent unitary
precoders, including a detailed comparison of the optimality of
multicarrier and single-carrier approaches. The minimization of
the BER was also considered in [19] for finite impulse response
(FIR) MIMO channel and transceiver, where the transmitter and
receiver were alternatively optimized in an iterative fashion. The
joint design of the transceiver and constellations for a given
probability of error was derived under a perfect reconstruction
criterion in [20] and then extended to multiservice communica-
tions in [21], [22].

In [17], a general framework was developed to consider a
wide range of different design criteria; in particular, the optimal
design for Schur-concave and Schur-convex cost functions [23]
was obtained (cf. Section III-A). Summarizing, when the perfor-
mance of the system is measured by a Schur-concave/convex
function and the system is modeled as a single channel ma-
trix, then the solution admits a simple closed-form expression
[17] that can be readily implemented. If the cost function is
not Schur-concave/convex, the problem can still be optimally
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solved, although it is not as straightforward; an example is [24],
where the minimum BER solution was obtained for the gen-
eral case of different constellations. When the system is mod-
eled as multiple MIMO channels (e.g., a multi-antenna multi-
carrier system), the general solutions of [17] still apply to each
of the MIMO channels but the problem of allocating the total
power among the MIMO channels remains. The consequence
is that in some cases, instead of having a closed-form solution,
one has to resort to general-purpose iterative methods. For some
specific cases, it is still possible to devise a tailored algorithm
after a painstaking detailed analysis of the problem structure.
Hence, having multiple MIMO channels, as in multicarrier sys-
tems, may constitute a barrier for a simple and practical devel-
opment/implementation.

This paper proposes a primal decomposition approach
[25]–[28] that allows the employment of the general solu-
tions obtained in [17] for Schur-concave/convex functions to
multiple MIMO channels in a simple and efficient way. The
primal decomposition method is based on decomposing the
original complicated problem into several simple subproblems
controlled by a simple master problem. In a nutshell, a method-
ology is provided to extend the simple closed-form solutions
for Schur-concave/convex functions in a single MIMO channel
of [17] to multiple MIMO channels (e.g., multicarrier) in a
straightforward way. The idea of using a primal decomposition
to tackle an otherwise difficult problem was similarly used in
[24] for a different purpose. To be more specific, [24] dealt
with a non-Schur-concave/convex cost function via a primal
decomposition using as a fundamental building block the sub-
problem characterized in [29], consisting on the minimization
of the transmitted power subject to a set of quality-of-service
(QoS) requirements.

The paper is structured as follows. Section II describes the
system model and formulates the problem. The main contribu-
tion of the paper is given in Section III, where the subproblems
and the master problem are properly characterized. The pro-
posed approach is illustrated in Section IV with three interesting
examples. Section V briefly describes the extension to cost func-
tions that are not Schur-concave/convex (relating this paper with
[24]). Then, a numerical assessment of the theory developed is
given in Section VI with simulation results. Finally, Section VII
concludes with a summary of the results of this paper.

A. Notation

Boldface upper-case letters denote matrices, boldface lower-
case letters denote column vectors, and italics denote scalars. ,

, and denote the set of real, nonnegative real, and posi-
tive real numbers, respectively. The super-scripts , , and

denote transpose, complex conjugate, and Hermitian oper-
ations, respectively. denotes the ( th, th) element of ma-
trix and, for vectors, denotes the th element of . de-
notes the trace of a matrix and is a diagonal matrix
with diagonal elements given by the set . The projection on
the nonnegative orthant is denoted by . The
derivative of function is denoted by , the partial
derivative by , the gradient by , and the subdifferen-
tial (set of subgradients) by .

II. SYSTEM MODEL AND PROBLEM FORMULATION

A. System Model

This paper considers a general communication system com-
posed of a set of parallel and noninterfering MIMO channels
each with transmit and receive dimensions:

(1)

where is the channel index and, for each , is the trans-
mitted 1 vector, is the channel matrix,
is the received 1 vector, and is a zero-mean circularly
symmetric complex Gaussian interference-plus-noise 1
vector with arbitrary covariance matrix . All quantities
are assumed complex and the noise among different MIMO
channels is assumed independent. The most obvious example
of the system model in (1) is a multicarrier MIMO system,
where each carrier is modeled as a parallel channel. Typical
examples are multiantenna multicarrier systems [2], [3], [1],
[4] and wireline DSL systems [5].

Considering a linear processing approach, the transmitted
vector can be written as (see Fig. 1)

(2)

where, for each , is the transmit matrix (precoder)
and is the 1 data vector that contains the symbols to
be transmitted (zero-mean,1 normalized and uncorrelated, i.e.,

) drawn from a set of constellations. For the sake
of notation, it is assumed that . The total
average transmitted power (in units of energy per transmission)
is

(3)

Similarly, the estimated data vector at the receiver is (see Fig. 1)

(4)

where is the receive matrix (equalizer).
Focusing on the th MIMO channel and th substream, the

signal model is

(5)

where and are the th columns of and , re-
spectively, is the equivalent
noise seen by the th substream, with covariance matrix

.
Measures of Quality: The quality of the th established

substream or link in (5) can be conveniently measured, among
others, in terms of MSE, SINR, or BER, defined, respectively,
as

(6)

1If a constellation does not have zero mean, the receiver can always remove
the mean and then proceed as if the mean was zero. Indeed, the mean of the
signal does not carry any information and can always be set to zero saving power
at the transmitter; otherwise, there is a loss of transmitted power.
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Fig. 1. Scheme of linear MIMO transceivers for multiple MIMO channels
(muticarrier MIMO system).

desired component
undesired component

(7)

bits in error
transmitted bits

(8)

where is a function that relates the SINR to the BER at the
th substream. For most types of modulations, the BER can

indeed be analytically expressed as a function of the SINR when
the interference-plus-noise term follows a Gaussian distribution
[30], [31]; otherwise, it is an approximation (see [24] for a more
detailed discussion).

It will be notationally convenient to define the th MSE ma-
trix as

(9)

from which the MSE of the th link is obtained as the th diag-
onal element of , i.e., .

B. Problem Formulation

The problem considered in this paper is the design of the
linear transceivers, i.e., of the linear transmitters and re-
ceivers , to optimize some measure of quality of the system
subject to a power constraint (or vice versa). A general for-
mulation of problem can be adopted by expressing the global
performance of the system with the arbitrary cost function

, where each indicates the performance of
each MIMO channel (or carrier) which, in turn, is measured
by another arbitrary cost function that
depends on the MSEs of that particular MIMO channel.2

The mathematical formulation of the problem is then

(10)

where is the maximum global power and the optimization
variables are . The problem can be similarly for-
mulated as the minimization of the power subject to a global
quality (both formulations are in fact equivalent).

2Of course, it would be even more general to define the global cost function
directly as a function of all the MSEs instead of using the intermediate functions
f . The decomposition adopted, however, not only is very reasonable but also
provides the problem with a rich structure that can be conveniently exploited.

A more general problem formulation could be adopted by al-
lowing the cost functions to depend not just on the MSEs but
also on the SINRs and BERs. However, as will be shortly jus-
tified, any function of the SINRs or BERs can be equivalently
expressed as a function of the MSEs; hence, the formulation in
(10) is without loss of generality in this sense.

By definition of “cost function,” lower values are preferred
(lower cost) and correspond to better systems. Also, if a link is
evaluated in terms of MSE, it is clear (by definition) that lower
values of the MSE are more desirable. As a consequence, it is
completely reasonable to assume that all the cost functions
and are increasing in each argument.

C. Optimum Receiver

The receive matrices can be independently and easily op-
timized for given and fixed transmit matrices . Interestingly,
the minimization of each of the MSEs is decoupled and they can
all be minimized simultaneously without any tradeoff. There-
fore, the optimal receiver is independent of the particular choice
of the cost functions (for more details, the reader is referred to
[17], [29], and [32]). The simultaneous minimization of all the
MSEs is achieved by the well-known linear MMSE receiver,
also termed Wiener filter [33]. If the additional ZF constraint

is imposed to avoid crosstalk among the sub-
streams (which may happen with the MMSE receiver), then the
well-known ZF receiver is obtained. Interestingly, the MMSE
and ZF receivers are also optimum in the sense that they maxi-
mize simultaneously all SINRs and, consequently, minimize si-
multaneously all BERs (cf. [17] and [32]).

The MMSE and ZF receivers can be compactly written as

(11)

where the parameter is 1 for the MMSE receiver and 0 for the
ZF receiver. The MSE matrix (9) reduces then to the following
concentrated expression:

(12)

where is the squared whitened channel ma-
trix.

Relation Among Different Measures of Quality: It is conve-
nient now to relate the different measures of quality, namely,
MSE, SINR, and BER, to the concentrated MSE matrix in (12).
By definition, the individual MSEs are given by the diagonal el-
ements of the MSE matrix

(13)

It turns out that the SINRs and the MSEs are trivially related
when using the MMSE or ZF receivers as [31, Prob. 6.5], [17],
[29], [32]

(14)

Finally, the BERs can also be written as a function of the MSEs:

(15)



4664 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 12, DECEMBER 2005

where was defined in (8). Observe that, although not explic-
itly indicated, depends on .

It is important to remark that the BER functions are
convex increasing in the MSE for sufficiently small values of
the argument (cf. [17], [32]). As a rule of thumb, the BER as a
function of the MSE is convex for a BER less than 2 ,
which is a mild assumption; interestingly, for BPSK and QPSK
constellations the BER function is always convex [17], [32].

III. PRIMAL DECOMPOSITION FOR SCHUR-CONCAVE/CONVEX

FUNCTIONS

Many convex optimization problems stemming from real
applications have a large number of variables and constraints. In
principle, the existing general-purpose methods to solve convex
problems, e.g., interior-point methods [34] or cutting-plane
methods [28], are capable of handling such large problems. In
many cases, however, problems have a very particular structure
that allows simplification based on decomposing the original
problem into smaller and simpler subproblems, which can be
much more easily solved possibly in a parallel fashion [25].
For example, the problem may decouple into independent
subproblems when some of the optimization variables are
fixed. A master problem is then necessary to coordinate the
subproblems by means of the coupling variables [25], [28],
[27].

Most of the existing decomposition techniques can be
classified into primal decomposition and dual decomposition
methods. The former (also called decomposition by right-hand
side allocation or decomposition with respect to variables) is
based on decomposing the original primal problem, whereas
the latter (also termed Lagrangian relaxation of the coupling
constraints or decomposition with respect to constraints) is
based on decomposing the dual of the problem [26], [28]
(see [35] and [36] for two recent successful applications of
dual decomposition). Primal decomposition methods have the
interpretation that the master problem gives each subproblem
an amount of resources that it can use; the role of the master
problem is then to properly allocate the existing resources. Dual
decomposition methods have the interpretation that the master
problem sets the price for the resources to each subproblem,
which has to decide the amount of resources to be used de-
pending on the price; the role of the master problem is then to
obtain the best pricing strategy.

This section gives the main result of the paper: a simple
and efficient way to solve the problem (10) based on a
primal decomposition approach (see Fig. 2). In particular,
the proposed solution is based on the key fact that a problem
can be optimized by first optimizing over some variables
and then over the remaining ones [34, Sec. 4.1.3] (see also
[28, Sec. 6.4.2])

(16)

This is commonly called concentration in the literature of esti-
mation theory [33].

Fig. 2. Illustration of the decomposition of a large problem into several
subproblems controlled by a master problem.

To be more specific, the problem to be solved (10) assuming
the employment of the optimal linear ZF/MMSE receiver (11)
(i.e., using the MSEs in (13) from the concentrated MSE matrix
in (12)) can be written as

(17)

where the inequalities in the constraints are equiv-
alent to equalities since is increasing.

To successfully employ a primal decomposition approach,
problem (17) has to be decomposed in the right way so that
the subproblems and the master problem can be easily solved
(see Fig. 2). The subproblems are fully characterized in Sec-
tion III-A, which includes a closed-form expression of the so-
lution [(21) and (22) in Theorem 2, and (27), (28)] and an anal-
ysis of the differentiability and convexity, including a closed-
form expression of the subgradient (Propositions 1 and 2 ). The
master problem is considered in Section III-B, where a simple
solution is obtained (see (41) and Algorithms 1 and 2) because
the problem was properly formulated so that the feasible set of
the master problem is a simplex.

A. Characterization of the Subproblems

This section focuses on problem (17) for a single carrier
(the subindex is therefore safely omitted). The optimal

solution to the minimization of an arbitrary function sub-
ject to a power constraint was solved in [17] for the family
of Schur-concave/convex functions. We now restate this re-
sult with an extension to other cost functions not necessary
Schur-concave/convex.

Theorem 1: The following complicated nonconvex con-
strained optimization problem:

(18)

where is an arbitrary increasing function (mini-
mized when the arguments are sorted in decreasing order),3 is

3In practice, most cost functions are minimized when the arguments are in
a specific ordering (if not, one can always use instead the function ~f (x) =
min f (Px), where P is the set of all permutation matrices) and, hence,
the decreasing ordering can be taken without loss of generality.
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equivalent to the simple problem

(19)

where the ’s are largest eigenvalues of sorted in in-
creasing order and the ’s are the MSEs achieved
( ). Furthermore, if is a convex function, problem
(19) is convex and the ordering constraints can be
removed.

More specifically, the optimal solution to problem (18) is
given by

(20)

where is an (semi-)unitary matrix that has as
columns the eigenvectors of corresponding to the largest
eigenvalues in increasing order, is an

real diagonal matrix with the optimal power allocation
obtained as the solution to problem (19), and is an
unitary matrix such that for

(see [37, Sec. IV-A] and [32, Alg. 3.2] for a practical
algorithm to obtain ).

Proof: The key simplification from (18) to (19) is based on
an appropriate change of variable based on majorization theory
[23]. A sketch of the proof is given in Appendix A (see [17] and
[32] for details).

It is possible to further particularize the previous result to the
case of Schur-concave/convex functions [23, 3.A.1]. In plain
words, a function is Schur-concave if it increases as the el-
ements of the vector become more uniform or less spread (for
a given total sum of all its elements).4 Similarly, a function
is Schur-convex if is Schur-concave, i.e., if the opposite
happens. It is important to remark that most useful cost func-
tions happen to fall within the family of Schur-concave/convex
functions [17].

Theorem 2: The optimal solution (20) of Theorem 1 can be
further characterized for two particular cases of cost functions
(convexity is not required).

• If is Schur-concave, then an optimal solution is

(21)

• If is Schur-convex, then an optimal solution is

(22)

where is a unitary matrix such that
has identical diagonal ele-

4A function f is Schur-concave if x � y ) f (x) � f (y), where the
majorization relation x � y means that x � y for 1 � k �

n � 1 and x = y (the elements of x and y are assumed in
decreasing order) [23, 3.A.1].

ments, i.e., the system has identical MSEs in all
substreams. This “rotation” matrix can be obtained
as any unitary matrix that satisfies ,

such as the DFT matrix or the Hadamard
matrix (when the dimensions are appropriate such as
a power of two [31, p. 66]).

Proof: The proof is based on the definition of Schur-con-
cavity/convexity within the context of the problem (see Ap-
pendix B).

In the following two subsections, the previous result is further
studied for the class of Schur-concave/convex functions, which
happen to be easily solved in practice as required for the primal
decomposition approach. To be more precise, the minimum cost
value of (18) as a function of the power , denoted (with some
abuse of notation) by , is characterized, as well as a corre-
sponding gradient/subgradient.

1) Schur-Concave Functions: If is Schur-concave
[17] and increasing, Theorem 2 can be invoked to show that the
MSEs are given (from (13) and (21)) by

(23)

where is a diagonal matrix that con-
tains the largest eigenvalues of in increasing order. If,
in addition, is convex, then is also convex (since

is convex in ) [34, Sec. 3.2.4] and the
problem (18) can be formulated in convex form as

(24)

The optimal solution to problem (24) clearly depends on
the particular choice of and can be characterized from the
Karush–Kuhn–Tucker (KKT) optimality conditions [28], [34]
as follows (differentiability of is assumed here for the sake of
notation).

• For the ZF receiver ( ), the solution of (24) is the
solution to the equations

(25)

• For the MMSE receiver ( ), the solution of (24) is
the solution to the equations

if

otherwise
(26)

In both cases, the optimal solution is parameterized by the
Lagrange multiplier , commonly termed waterlevel, that has
to be chosen such that .

For illustrative purposes, we now particularize the general ex-
pressions (25)–(26) to a couple of Schur-concave functions [17]
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(see [32] for other examples such as the minimization of the
weighted sum/product of the MSEs and the maximization of the
weighted sum/product of the SINRs).

• Sum of MSEs: . The solution is

(27)

where the waterlevel is readily given in the ZF case

by and (27) simplifies then to

.
• Product of MSEs: . The solution is

(28)

where the waterlevel is readily given in the ZF case by
and denotes the cost function evalu-

ated at the optimal solution (28) (note that the optimal
solution in the ZF case is simply a uniform power al-
location ).

The previous particularized closed-form solutions (27)–(28)
can be compared to those obtained in [17], [32]. When the solu-
tion is given by a waterfilling expression such as (27) and (28)
(with the MMSE receiver), the waterlevel cannot be directly
found and it is then necessary to use either an iterative approach
or a hypothesis testing algorithm, which is still very simple in
practice (cf. [38]).

Keeping in mind that problem (24) will constitute a sub-
problem in the primal decomposition approach, it is necessary
to characterize its corresponding gradient or, if not differ-
entiable, the subdifferential (set of subgradients) or simply
one subgradient.

Proposition 1: Let denote a function defined as the
optimal cost value of the problem (24) when the power is con-
strained by . Then, the following hold.

a) The function is convex on (recall that
is assumed convex).

b) A subgradient of at is given by , where is
an optimal Lagrange multiplier of problem (24) asso-
ciated to the power constraint (which is
implicitly obtained when is evaluated or, equiv-
alently, when (24) is solved).

c) The function is differentiable on if is
differentiable (and then ).

Proof: See Appendix C.
2) Schur-Convex Functions: If is Schur-convex [17]

and increasing, Theorem 2 can be invoked to show that the
MSEs are equal and given [from (13) and (22)] by

(29)

If, in addition, is convex, the problem can be formulated
in convex form as

(30)

or, equivalently, as

(31)

which is convex even if is nonconvex.
Surprisingly, this simplified convex problem for Schur-

convex functions does not depend on the cost function . The
reason is that all the MSEs are equal and is increasing in
each argument; consequently, minimizing the cost function is
equivalent to minimizing the equal arguments given by (29).

At this point, problem (31) is nothing else than a particular
case of (24) with cost function and the solution is given
by (27).

The characterization of the gradient of the optimal cost value
of (31) is just a particular case of Proposition 1. However, it is
the optimal cost value of (30) that has to be characterized for the
primal decomposition approach.

Proposition 2: Let denote a function defined as the
optimal cost value of the problem (30) when the power is con-
strained by . Then, the following hold.

a) The function is convex on (recall that
is assumed convex).

b) A subgradient of at can be readily obtained
from the optimal Lagrange multiplier of the simpli-
fied problem (31) associated to the power constraint

(which is implicitly obtained when
is evaluated or, equivalently, when (31) is

solved). For example, if is differentiable, then
.

c) The function is differentiable on if is
differentiable.

Proof: Properties a) and c) are as in Proposition
1. Property b) follows from the chain rule

, where by
applying Proposition 1 to the simplified problem (31).

For illustrative purposes, we now consider some examples of
Schur-convex functions [17] [with solution given by (27)] and
obtain a subgradient [according to Proposition 2 (b)] recalling
that, at an optimal point, for all .
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• Maximum of MSEs: , which is not
differentiable. Interestingly, the function is
differentiable with gradient

(32)

• Harmonic mean of SINRs: The function to be
minimized (inverse of the harmonic mean) is

. The function
is differentiable and the gradient is

(33)

• Average BER (assuming equal constellations, i.e.,
for all ): where

is a convex (differentiable) function defined in (15)
and (6). The function is differentiable
with gradient

(34)

B. Characterization of the Master Problem

Now that the subproblems have been properly characterized,
we are ready to decompose problem (17) in a very convenient
way (see Fig. 2).

Theorem 3: The power-constrained problem in (17), where
and each are assumed to be

arbitrary convex and increasing functions, can be equivalently
written in a decomposed and simplified way as the following
convex (master) problem:

(35)

where and
each corresponds to the minimum cost value of the
subproblem (as considered in Section III-A)

(36)

Proof: The proof follows easily by rewriting the original
problem (17) with the additional variables and using (16):

(37)

It is then clear that for a given set of ’s, the inner min-
imization can be done in a decoupled way for each , which

corresponds to the subproblem treated in detail in Section III-A
and denoted here by . The simplified problem (35) fol-
lows then by realizing that can be rewritten as an
equality (since is increasing). The convexity of (35) fol-
lows from the convexity of and each , and from
the increasingness of [34, Sec. 3.2.4].

Theorem 3 says that the original problem (17) can be
efficiently solved in practice by repeatedly evaluating

and adjusting the power allocation
according to the master problem (35) (see Fig. 2). As

previously mentioned, decomposing a problem only makes
sense when the subproblems and the master problem can be
easily solved. In this case, the subproblems (36) are trivially
solved for Schur-concave/convex functions (cf. Section III-A)
and the master problem (35) can also be easily solved with a
simple subgradient algorithm (as described in the following
subsection) due to the simple structure of the feasible set in
(35): A simplex (the reason is that the master algorithm requires
a projection on the feasible set, which is straightforward for a
simplex).

If instead the original problem (17) is formulated as the mini-
mization of the total power subject to a global quality constraint,
the resulting simplified problem is

(38)

where the cost function is easily characterized as in Sec-
tion III-A. This alternative formulation, however, may have an
additional difficulty arising from the structure of the feasible
set which is determined by , as opposed to the
simplex obtained in (35).

For the implementation of the master algorithm, it will be
necessary to compute a subgradient of the cost function in the
master problem (36). If each is differentiable, the gra-
dient of is easily obtained (since
for ) from

(39)

where each is readily obtained from Propositions 1
and 2 (e.g., (32)–(34)).

As a final comment, it is worth pointing out the possibility of
including additional constraints in the form of spectral masks,
i.e., constraining some carriers independently in
addition to the global power constraint. This type of constraint
can be readily included in the problem considered in Theorem
3 without affecting the simplicity of the decomposition and the
solvability (cf. Section VI). Note that this constraint is not the
same as the peak-power constraint per antenna considered in
[39], [40], where each transmit dimension within a channel ma-
trix is constrained as opposed to constraining the total power
used on each channel matrix or carrier (cf. [32]).

1) Practical Algorithm for the Master Problem: The master
problem obtained in the decomposition of Theorem 3, i.e., (35),
is generally a nondifferentiable problem and, hence, many of
the existing general-purpose methods to solve smooth optimiza-



4668 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 53, NO. 12, DECEMBER 2005

tion problems, such as interior-point methods [34] cannot be
used. Cutting-plane [41], [28], ellipsoid [41], and subgradient
[26], [28] methods arise then as excellent approaches to solve
nondifferentiable problems: they simply require the value of
the function and a subgradient (both available
in this case). Subgradient methods are distinguished by their
simplicity of implementation [26], [28], which is precisely the
main interest in this paper. An extensive account of subgradient
methods can be found in [26], [28].

Consider for the moment the following general convex mini-
mization problem:

(40)

The subgradient method generates a sequence of feasible points
(here denotes the iteration) as [28, Sec. 6.3.1]

(41)

where is a subgradient of at , denotes projection
on the feasible convex set , and is a positive scalar stepsize.
Such an iteration looks like a gradient projection method except
that a subgradient is used instead of the gradient (which may
not exist). However, there is a fundamental difference: each new
iteration may not improve the objective value as happens with a
gradient method. What makes the subgradient method work is
that for sufficiently small stepsize , the distance of the current
solution to the optimal solution decreases.

There are many results on convergence of the subgradient
method [26], [28], [42]. For constant stepsize , the sub-
gradient algorithm is guaranteed to converge to within some
range of the optimal value (assuming bounded subgradients)
[42] in other words, the subgradient method finds an -subop-
timal point within a finite number of steps. Note that for a differ-
entiable function , the gradient method with constant stepsize
converges to the optimal value provided that the stepsize is suffi-
ciently small (assuming that the gradient is Lipschitz [28]). For
the diminishing step size rule

(42)

where is the initial stepsize and is a fixed positive
integer, the algorithm is guaranteed to converge to the optimal
value [42]. The additional factor , where

is an approximate value of the optimal value ,
can be included in (42) [28, Sec. 6.3.1].

In order to successfully apply the subgradient method in (41)
to solve the master problem (35), the projection on the feasible
set must be easy. As the following result shows, a projection on
a simplex is indeed trivial.

Lemma 1: Consider the projection of an -dimensional
complex point on a simplex
described by the following convex optimization problem:

The optimal solution is unique and is given by

(43)

where is chosen as the minimum nonnegative value such that
(note that if , then ). In addition,

such a solution can be obtained very efficiently in practice with
Algorithm 1.

Proof: The proof of the solution follows easily from the
KKT optimality conditions of the convex problem. The proof
that the algorithm indeed gives the optimal solution follows
from [38].

Algorithm 1 Practical algorithm to obtain
the projection on a simplex as described
in Lemma 1.
Input: Original point and constraining
value .
Output: Projection .
1. First try : if , then

and finish.
2. Obtain such that as fol-
lows.
2.0 Reorder in decreasing order

(define ) and set .
2.1 If and

then accept hypoth-
esis and go to step 2.2. Otherwise, reject
hypothesis, form a new one by setting

, and go to step 2.1.
2.2 Set , obtain the

optimal solution as , undo the
reordering done at step 2.1, and finish.

If the cost function is differentiable, it is possible to
use a gradient method with better convergence properties than
subgradient methods. In particular, if we consider feasible di-
rection methods, the update in (41) becomes

(44)

where is a feasible direction (assuming
) that satisfies (provided that is not

stationary). A very simple way to obtain the feasible direction
or, equivalently, is by the conditional gradient method

[28]

(45)

which can be efficiently obtained in this case with Algorithm
2 (this was obtained in [24, Alg. 2] and is reproduced here for
convenience). Interestingly, it is straightforward to define a ter-
mination criterion since we can easily compute the following
bounds on the optimal value:

(46)
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Algorithm 2 Practical algorithm to obtain
an optimal solution to the problem

Input: Bounds of the feasible set ,
weights , and .
Output: Optimal solution .
0. Set .
1. If or ,

then finish.
2. Set for

and go to step
1.

IV. SOME RELEVANT EXAMPLES

To illustrate the potential of the result obtained in Section III,
we now consider three interesting examples and show how the
general result in Theorem 3 particularizes.

A. Minimization of the Maximum MSE

Consider the minimization of . The cost
function can be decomposed as required in Theorem 3, with

and , and
the problem is then

(47)

which is usually referred to as a finite minimax problem [43].
Now, invoking Theorem 3, the problem reduces to

(48)

Since each is a Schur-convex function [17], the re-
sults of Section III-A-2 can be applied. To be more precise,
each can be evaluated by solving the problem (30) or
the equivalent problem (31) with solution given by [cf. (27)]

(49)

where the waterlevel chosen such that . In
addition, the gradient is given by [cf. (32)]

(50)

Thus, the evaluation of
is straightforward after

each has been independently evaluated and its
subdifferential is the convex hull of the active gradients [26],
[43]

(51)

where denotes convex hull,
is the set of sub-

problems that achieve the maximum value (active
subproblems), and is the th canonical vector (all-zero
vector with a one in the th element). One possible subgradient
is then

(52)

B. Maximization of the Harmonic Mean of the SINRs

The maximization of the harmonic mean of the SINRs can
be formulated as the minimization of . The cost
function can be decomposed as required by Theorem 3, with

and [note
that the ’s are convex in the region of interest ],
and the problem reduces to

(53)

Since each is a Schur-convex function [17], the
results of Section III-A-2 can be applied (see discussion in
Section IV-A). Thus, the evaluation of

is straightforward after each has been
independently evaluated and the gradient in this case is obtained
[using (33) and (39)] from

C. Minimization of the Average BER

Consider the minimization of the average BER:
. The cost func-

tion can be decomposed as required by The-
orem 3, with and
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, and the problem
reduces to

(54)

Further assuming that equal constellations are used at each
( ), it follows that each is a Schur-convex
function [17] and the results of Section III-A-2 can be applied
(see discussion in Section IV-A). Thus, the evaluation of

is straightforward
after each has been independently evaluated and the
gradient in this case is obtained [using (34) and (39)] from

(55)

For completeness, an explicit approximate expression for
and is given below for -ary QAM constellations

(assuming that a Gray encoding is used to map the bits into the
constellation points and that the interference-plus-noise can be
approximated by a Gaussian term) [44], [30], [45]

where is defined as [44],
[31],5 and are parameters
that depend on the constellation size.

V. EXTENSION OF PRIMAL DECOMPOSITION TO

NON-SCHUR-CONCAVE/CONVEX FUNCTIONS

This section briefly considers the case of functions that are
not Schur-concave/convex (as opposed to Section III), linking
this work with [24]. In principle, Theorem 3 can still be applied
and the simplified problem (35) is still obtained. However, the
difference with respect to Section III is that the subproblems
(36) are not easily solved anymore [the simplest known refor-
mulation is as in (19)], as opposed to the simple reformulations
for problems with Schur-concave and Schur-convex functions
in (24) and (30) as discussed in Section III-A.

We now describe an alternative approach by decomposing the
problem in a different way, yielding a different form for the sub-
problems which still can be easily solved. This approach was
successfully adopted in [24] to minimize the average BER with
arbitrary (not necessarily equal) constellations (such a cost func-
tion is Schur-convex only if the constellations are equal [17]).

5The Q-function and the commonly used complementary error function
“erfc” are related as erfc (x) = 2Q p

2x [31].

The new decomposition hinges on the problem solved in [29]
(see also [24] for a more general formulation):

(56)

which is the minimization of the power subject to a set of
QoS constraints. This subproblem does not have a simple
closed-form solution as the subproblems considered in Sec-
tion III; however, it can still be easily solved in practice with
the multilevel waterfilling algorithm given in [29] (see also
[24]). We proceed similarly to Section III-A by defining
as the minimum cost value of (56) for the given set of QoS
requirement , which happens to be a convex function with a
subgradient implicitly obtained in the evaluation of (cf.
[24]).

The original problem (17) can be rewritten as

(57)

It is now straightforward to recognize the structure of the sub-
problem (56) in (57), which can then be rewritten as the simple
convex problem

(58)

where . Note that
the problem could have been similarly formulated as the min-
imization of the total power subject to a global quality and a
simplified problem like (58) would have been obtained but with
the roles of the cost function and constraint function reversed
(cf. [24]).

As explained in full detail in [24], to go from (57) to (58)
it is necessary to assume that the functions ’s are minimized
when the arguments are in decreasing ordering and then include
in (57) the constraints , as required in (56). At that
point, the problem can be relaxed by removing again these con-
straints. Realizing then that any solution to the relaxed problem
will also satisfy these constraints, the equivalent (not relaxed)
problem (58) is obtained.

With the new subproblem defined in (56), we have been able
to decompose an arbitrary problem with not necessarily Schur-
concave/convex functions. However, there is still one issue that
should be addressed for the decomposition to make sense: the
simplicity of solving the master problem. In Section III-B, the
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proposed subgradient method was indeed extremely simple due
to the simple structure of the feasible set of the master problem
(35), which is a simplex (the subgradient method requires a pro-
jection on the feasible set at each iteration). However, in the
master problem (58), there is no such a simple structure. There
are two possibilities to tackle this problem: i) to use another
method for the master problem, and ii) to consider the opposite
problem formulation (swapping the cost and constraint func-
tions) whenever the set is simple enough;
this is indeed the case in [24], where the feasible set is a trun-
cated simplex.

VI. NUMERICAL RESULTS

This section provides a numerical evaluation of the tools de-
veloped for the design of multicarrier linear MIMO transceivers,
i.e., the subgradient/gradient method for the master problem (cf.
Section III-B1) combined with the closed-form solutions for the
subproblems (cf. Section III-A).

In particular, four different Schur-concave/convex cost func-
tions have been chosen in the optimization process (with an
MMSE receiver): The minimization of the sum of the MSEs
(SUM-MSE) (cf. (27)), the minimization of the maximum of
the MSEs (MAX-MSE) (Section IV-A), the maximization of the
harmonic mean of the SINR’s (HARM-SINR) (Section IV-B),
and the minimization of the average BER (AVE-BER) (Sec-
tion IV-C).

The SUM-MSE can be directly solved with a single water-
filling, so the decomposition approach does not really make
sense for this example. Both the MAX-MSE and the HARM-
SINR approaches were studied in detail in [32] and specific
exact algorithms were developed (see also [38]); for these two
cases, the decomposition approach is a convenient and simple
option. Regarding the AVE-BER criterion, no closed-form so-
lution or simple implementation has been given so far (except
by means of a general purpose interior-point method as in [17],
[32]) and, hence, the simple decomposition approach proposed
in this paper blossoms in all respects. For other methods, the
decomposition approach is always an easy and simple way to
obtain optimal solutions.

A simple model was used to randomly generate different re-
alizations of the MIMO channel.6 In particular, a system with

multiple MIMO channels (e.g., multicarrier) was con-
sidered where each channel matrix was generated from a
complex Gaussian distribution with i.i.d. zero-mean unit-vari-
ance elements, and the noise was modeled as white ,
where is the noise power. The SNR is defined as

, which is essentially a measure of the transmitted power
normalized with respect to the noise. An obvious initial point
for the master problem is for all , i.e., a uniform
power allocation.

The convergence of the master problem is illustrated with one
representative realization in Figs. 3 and 4 for the MAX-MSE
method with a subgradient algorithm and for the HARM-SINR

6For the purposes of this paper, it is not necessary to resort to more real-
istic channel models (the interested reader is referred to [17], [29], and [32] for
related simulations with more realistic wireless multiantenna channel models
including spatial and frequency correlation).

Fig. 3. Convergence of the subgradient method for the MAX-MSE design
(along with the optimal value) in a 4� 4 MIMO multicarrier channel (N =
16 carriers) with L = 3, SNR = 16 dB=carrier and parameters of the
gradient method: � = 200 (which also accounts for the additional term jf̂ �
f (x ) j= ks k ) and m = 6.

Fig. 4. Convergence of the gradient method for the HARM-SINR design
(along with the lower bound in (46) and the optimal value) in a 4� 4 MIMO
multicarrier channel (N = 16 carriers) with L = 3, SNR = 16 dB=carrier
and parameters of the gradient method: � = 0:01 and m = 10.

method with a gradient algorithm, respectively. In both cases,
the algorithm has essentially converged after 20–40 iterations.
A simple stopping criterion based on the derivative of the curve
can be used (for the gradient method, one can also employ a
stopping criterion based on the difference between the curve and
the lower bound in (46), but that may be too conservative since
the lower bound is not too tight). Interestingly, the initial point
(uniform power allocation) seems to be reasonably close to the
optimal and, hence, it may be a good candidate for a suboptimal
solution (this behavior has been observed in all the realizations).

Fig. 5 shows steady-state results (i.e., after convergence)
for the four methods previously described. The performance is
plotted in terms of BER averaged over the substreams; to be
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Fig. 5. Outage BER (P = 5%) versus the SNR/carrier in a 4� 4 MIMO
multicarrier channel (N = 16 carriers) with L = 3, for the methods:
SUM-MSE, MAX-MSE, HARM-SINR, and AVE-BER.

more precise, the outage BER7 (over independent realiza-
tions of the channel) is considered since it is a more realistic
measure than the average BER.8 As previously mentioned, the
novelty in these curves is in the way they have been obtained:
With a simple subgradient/gradient method as opposed, for
example, to an interior-point method. The comparison among
the different methods and with other existing methods is out of
the scope of the paper and the interested reader is referred to
[17] and [32].

Finally, in Fig. 6, the design with additional spectral mask
constraints of the form has been considered.
The upper plot gives the power allocation without peak con-
straints (only the average constraint), whereas the lower plot
includes the same peak constraint in all carriers. It can be
observed how the peak-power constrained design, as expected,
satisfies the maximum power constraint. The resulting perfor-
mance is without peak constraints and

with peak constraints.
For numerical simulations corresponding to non-Schur-con-

cave/convex functions, as treated in Section V, the reader is re-
ferred to [24], where the particular case of minimizing the av-
erage BER with arbitrary constellations is treated in full detail.

VII. CONCLUSION

This paper has extended the simple closed-form solutions for
Schur-concave/convex cost functions in a single MIMO channel
to the more general case of multiple MIMO channels such as in
multi-antenna multicarrier systems. The extension is based on a
primal decomposition approach that divides the original compli-
cated problem into several simple subproblems controlled by a
simple master problem. The subproblems are easily solved with

7The outage BER is the BER that is attained with some given probability
(when it is not satisfied, an outage event is declared).

8The average BER only makes sense when the system does not have delay
constraints and the duration of the transmission is sufficiently long such that the
fading statistics of the channel can be averaged out.

Fig. 6. Power distribution for the AVE-BER method in a 4� 4 MIMO
multicarrier channel (N = 16 carriers) with L = 3 (one realization), without
and with peak power constraints [maximum average power 12 dB/carrier (total
of 25.36) and maximum peak power 14 dB (2.51)].

closed-form solutions and the master problem with a subgra-
dient/gradient algorithm. Hence, the problem can now be effi-
ciently and optimally solved in practice with a very simple im-
plementation. The method has also been extended to the case
of functions that are not Schur-concave/convex. The approach
has been illustrated by three examples of interest and numer-
ical results have been provided to support and complement the
mathematical development.

APPENDIX I
SKETCH OF THE PROOF OF THEOREM 1

The proof hinges on majorization theory; the interested reader
is referred to [23] for definitions and basic results on majoriza-
tion theory (see also [32] for a brief overview) and to [32], [17],
and [29] for details overlooked in this sketch of the proof.

To start with, the problem (18) can be written as

(59)

which can always be done since is increasing in each ar-
gument. Also, since is minimized when and
can always include any desired permutation such that the diag-
onal elements of are in decreasing order,
the constraint can be explicitly included without af-
fecting the problem.
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The first main simplification comes by rewriting the problem
as [29, Th. 2]

diagonal increasing diag. elements

(60)

where denotes the weakly majorization relation9 [23] and
denotes the diagonal elements of matrix (similarly,
is used for the eigenvalues). The second constraint

guarantees the existence of a unitary matrix such that
[23, 9.B.2 and 5.A.9.a] or,

in other words, such that with

.
The second main simplification comes from the fact that
can be assumed without loss of optimality of the form

, as described in the theorem, since is
diagonal with diagonal elements in increasing order (cf. [17,
Lem. 12], [32, Lem. 5.11], and [29, Lem. 7]).

Problem (19) follows then by plugging the expression of
into (60), denoting (which implies the need for
the additional constraints ), and by rewriting the weakly
majorization constraint explicitly [23]. Note also that the con-
straints (to guarantee that the diagonal ele-
ments of are in increasing order) are not necessary
since any optimal solution must necessarily satisfy them (cf.
[29, Lem. 7] and [32, Lem. 5.11]). If is convex, the constraints

are not necessary since an optimal solution cannot
have (because the problem would have a lower cost
value by using instead , cf. [24]).

APPENDIX II
PROOF OF THEOREM 2

To obtain the additional simplification for Schur-con-
cave/convex cost functions, rewrite the MSE constraints of (59)
(since they are satisfied with equality at an optimal point) as

(61)

Now it suffices to use the definition of Schur-concavity/con-
vexity to obtain the desired result. In particular, if is Schur-
concave, it follows from the definition of Schur-concavity [23]
(the diagonal elements and eigenvalues are assumed here in de-
creasing order) that

(62)

which means that is minimum when in (61) (since
is already diagonal with diagonal elements

9The weakly majorization relation y � x is defined as y �

x for 1 � i � n, where the elements of y and x are assumed in
decreasing order [23].

in decreasing order by definition). If is Schur-convex, the
opposite happens

(63)

where denotes the all-one vector. This means that is
minimum when is such that has equal elements in (61), i.e.,
when has equal diagonal elements.

APPENDIX III
PROOF OF PROPOSITION 1

To show property a) it suffices to note that the function

,

otherwise

is jointly convex in and . Then, since ,
it follows that is convex in [34, Sec. 3.2.5],
[28, Sec. 5.4.4]. Property (b) follows from a standard result
[28, Sec. 5.4.4]. Property (c), i.e., the differentiability of
can be proved by showing that it has a unique subgradient at
each [28, Prop. B.24]. Since there is a one-to-one mapping
between subgradients and optimal Lagrange multipliers [28,
Sec. 5.4.4], it suffices to show the uniqueness of the Lagrange
multiplier . This is indeed the case for [see (25) and
(26)].
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