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Representation of Mutual Information Via
Input Estimates

Daniel P. Palomar, Member, IEEE, and Sergio Verdú, Fellow, IEEE

Abstract—A relationship between information theory and es-
timation theory was recently shown for the Gaussian channel,
relating the derivative of mutual information with the minimum
mean-square error. This paper generalizes the link between
information theory and estimation theory to arbitrary channels,
giving representations of the derivative of mutual information as a
function of the conditional marginal input distributions given the
outputs. We illustrate the use of this representation in the efficient
numerical computation of the mutual information achieved by
inputs such as specific codes or natural language.

Index Terms—Computation of mutual information, extrinsic
information, input estimation, low-density parity-check (LDPC)
codes, minimum mean square error (MMSE), mutual information,
soft channel decoding.

I. INTRODUCTION AND MOTIVATION

AFUNDAMENTAL relationship between estimation
theory and information theory was recently shown in [1]

for Gaussian channels; in particular, it was shown that, for the
scalar Gaussian channel

(1)

and regardless of the input distribution, the mutual information
and the minimum mean-square error (MMSE) are related (as-
suming complex-valued inputs/outputs) by

(2)
where the right-hand side is the MMSE corresponding to
the best estimation of upon the observation for a given
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signal-to-noise ratio (SNR) . It was also shown in [1] that
(2) extends to the linear vector Gaussian channel

(3)

as

(4)

where the right-hand side is the expected squared Euclidean
norm of the error in the estimation of . Similar results hold
in a continuous-time setting, i.e., the derivative of the mutual
information is equal to the noncausal MMSE. Other generaliza-
tions were also obtained in [1] such as when the input undergoes
an arbitrary random transformation before contamination by ad-
ditive Gaussian noise.

The previous results on the derivative of the mutual informa-
tion with respect to the SNR for Gaussian channels were later
generalized in [2] to embrace derivatives with respect to arbi-
trary parameters; in particular, the relation was compactly ex-
pressed for the linear vector Gaussian channel in terms of the
gradient of the mutual information with respect to the channel
matrix as

(5)

where

(6)

is the covariance matrix of the estimation error vector, also
known as the MMSE matrix. The derivative with respect to an
arbitrary parameter can be readily obtained from this gradient
via a chain rule for differentiation.

In addition to their intrinsic theoretical interest, these funda-
mental relations between mutual information and MMSE have
already found several applications: the mercury/waterfilling op-
timal power allocation over a set of parallel Gaussian channels
[3]; the numerical optimization of linear precoders for multiple-
input multiple-output (MIMO) channels [2]; a simple proof for
the entropy power inequality [4]; a simple proof of the mono-
tonicity of the non-Gaussianness of independent random vari-
ables [5]; and the study of extrinsic information of good codes
[6]. Interestingly, as has been recently shown in [7], the deriva-
tive of the conditional entropy of the input given the output (or,
equivalently, the mutual information) with respect to a channel
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parameter can be used as a generalization of the extrinsic infor-
mation transfer (EXIT) charts (called GEXIT charts) which has
very appealing properties as a tool for analyzing the behavior
of ensembles of codes using iterative decoding. Along the same
lines, [8] analyzed mean-square error (MSE) charts as opposed
to the traditional charts based on mutual information [9].

Counterparts of the fundamental relation have been explored
for other types of channels; namely, for Poisson channels [10],
for additive non-Gaussian channels [11], and for the discrete
memoryless channel (DMC) [7, Theorem 1]. As should be ex-
pected, the MMSE does not play a role in the representation of
mutual information for these channels.

Pursuing the connection between information theory and es-
timation theory found in [1] in the context of Gaussian channels,
the goal of this paper is to generalize that link to arbitrary chan-
nels. Generalizing the aforementioned approaches, our main re-
sult gives the derivative of mutual information with respect to a
channel parameter in terms of the input estimate given by the
posterior distribution as

(7)
where is an arbitrary random transformation and the ex-
pectation is with respect to the joint distribution . For
the particular case of a memoryless channel, the derivative is ex-
pressed in terms of the individual input estimates given by the
posterior marginals as

(8)

where the expectation is with respect to the joint distribution
. Observe that in this more general setup that em-

braces any arbitrary channel, the role of the conditional esti-
mator (which arises in the Gaussian channel) has
been generalized to the corresponding conditional distribution

.
In addition to the theoretical interest of this characterization,

it allows the efficient computation of the mutual information
achieved by a given code over a channel. In such

a case, is a distribution that puts equal mass on the code-
words and zero mass elsewhere. Indeed, the mutual informa-
tion achieved by a given code over a channel finds several ap-
plications, for example, in studying the concatenation of coding
schemes [12], in lower-bounding the size of a code to achieve
a desired block error rate or bit error rate, and in predicting the
convergence behavior of iterative decoding schemes using EXIT
charts [9].

Expressions for the capacity of coded systems over the bi-
nary symmetric channel (BSC) and the Gaussian channel were
obtained in [12]; however, a numerical evaluation is only pos-
sible for very small codes. In [13]–[15], the computation of
the information rate for finite-state Markov sources over chan-
nels with finite memory was efficiently obtained with a Monte
Carlo algorithm, based on the fact that can be computed

very efficiently in practice with the forward recursion of the
Bahl–Cocke–Jelinek–Raviv (BCJR) algorithm [16]. However,
in a more general setting where the source is not a Markov
process, the previous approaches cannot be used. Indeed, for
an arbitrary source, a direct computation of the mutual informa-
tion is a notoriously difficult task and infeasible in most realistic
cases since it requires an enumeration of the whole codebook for
the computation of the output probability or of the poste-
rior probability of the input conditioned on the output .

Based on (8), it is possible to obtain a numerical method
to compute the mutual information via its derivative which
requires the posterior marginals (instead of
or ) or, equivalently, the symbol-wise a posteriori prob-
abilities (APP) obtained by an optimum soft decoder. As is
well known, in some notable cases of interest, the APPs can be
computed or approximated very efficiently in practice by mes-
sage-passing algorithms. For example, for Markov sources (e.g.,
convolutional codes or trellis codes) the forward–backward
dynamic programming algorithm computes the exact posterior
marginals [16]. In other cases, the posterior marginals can only
be approximated such as in the turbo decoding for concatenated
codes (e.g., [17]), the soft decoding of Reed–Solomon codes
[18], and the sum-product algorithm for factor graphs (e.g.,
[19], [20]).

This paper is organized as follows. Section II first obtains the
relation between mutual information and the input estimates in
a general abstract setting which is then particularized for sev-
eral channels of interest including the BSC, the binary erasure
channel (BEC), the DMC, the scalar/vector Gaussian channel,
an arbitrary additive-noise channel, and the Poisson channel.
Section III considers practical issues of the computation of
mutual information via the derivative based on a Monte Carlo
method. Section IV provides numerical results by computing
the mutual information achieved by low-density parity-check
(LDPC) codes over the BSC and the Gaussian channel, and
also by computing the information received by the reader of a
novel with typos.

II. DERIVATIVE OF MUTUAL INFORMATION

We first give a general representation for arbitrary random
transformations, memoryless channels, and finite-state Markov
channels and then particularize the results for specific types of
channels such as the BSC, BEC, DMC, scalar/vector Gaussian
channel, arbitrary additive-noise channel, and Poisson channel.

A. General Representation

We start with some notation that will allow us to express our
results compactly and in full generality. Let the functions
and denote the Radon–Nikodym derivatives of the proba-
bility measures and with respect to arbitrary mea-
sures and such that and .1

The results in this paper require some mild “regularity condi-
tions” about the interchange of the order of differentiation and
integration (expectation) which are satisfied in most cases of in-
terest. These conditions are explicitly stated in Appendix A and

1In the continuous/discrete cases, f and f are simply probability den-
sity/mass functions.
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will be implicitly assumed to be satisfied wherever necessary in
the subsequent statement of the results.

The following intermediate result is key in the proof of the
main result of the paper and is reminiscent of the regularity con-
dition commonly invoked in estimation theory for the proof of
the Cramer–Rao lower bound [21], [22].2

Lemma 1: Consider a random transformation , which is
differentiable as a function of the real-valued parameter , and
a random input with distribution (independent of ). Then

i)

(9)

where the expectation is with respect to , and
ii)

(10)

where the expectation is with respect to .
Proof: See Appendix B.

The following result characterizes the derivative of the mutual
information for an arbitrary random transformation with arbi-
trary input and output alphabets.

Theorem 1: Consider a random transformation , which
is differentiable with respect to , and a random input with distri-
bution (independent of ). Then, the derivative of the mutual
information with respect to can be written in terms
of the posterior distribution as3

(11)

where the expectation is with respect to the joint distribution
.

Proof: Choose an arbitrary . First decompose
the mutual information as

(12)

Then, since neither nor depend on

2In fact, (10) is exactly the regularity condition appearing in the proof of the
Cramer–Rao lower bound in classical estimation theory that implies that the
“score function” has zero mean [21], [22].

3Unless the logarithm basis is indicated, it can be chosen arbitrarily as long
as both sides of the equation have the same units.

(13)

where the regularity condition RC3 in Appendix A has been
used for the interchange of the order of differentiation and inte-
gral and Lemma 1 has been invoked.

The following result gives an alternative expression for the
derivative of the mutual information which applies to many pa-
rameterizations of interest in applications.

Theorem 2: Consider the setup of Theorem 1 and further
assume that the output alphabet is continuous and that the
derivative of the random transformation, with probability den-
sity function (pdf) , factorizes as

for a.e. (14)

Then

(15)

Proof: From Theorem 1 and the factorization in (14), we
have

(16)

where we have integrated by parts:

(17)
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and the following result, whose proof we omit, has been used:

(18)

Observe that the factorization in (14) holds, for example, for
the additive-noise channel (cf. Section II-G). In the sequel, we
will exhibit the utility of the alternative expressions given by
Theorems 1 and 2. For example, in terms of numerical compu-
tation, the expression in Theorem 1 seems to be preferable (cf.
Sections III and IV), whereas in terms of relating the mutual
information with well-known concepts in estimation theory,the
expression in Theorem 2 turns out to be more convenient (cf.
Section II-E).

Theorem 1 can be readily particularized to the case of an ar-
bitrary channel with transition probability , where de-
notes the number of uses of the channel and the input and output
alphabets are -dimensional Cartesian products, and input dis-
tribution . For the case of a memoryless channel (with pos-
sibly dependent inputs), Theorem 1 simplifies as follows.

Theorem 3: Consider a memoryless channel with transition
probability , where is differen-
tiable as a function of the parameter (and independent of
for ), and a random input with distribution (indepen-
dent of for all ). Then, the derivative of the mutual informa-
tion with respect to can be written in terms of the
posterior marginal distribution as

(19)

where the expectation is with respect to the joint distribution
.

Proof: First, observe that, due to the memoryless assump-
tion

(20)

Now, from Theorem 1,4 we have (21) at the bottom of the page,
where we have used

(22)
from which the same relation follows for the Radon–Nikodym
derivatives. The final result follows by noting that the last term is
zero (using the memoryless property of the channel) as shown in
(23) at the bottom of the page, where we have invoked Lemma 1
to obtain

Observe that if the channel is time invariant (i.e., if
for all ), then, by simply applying the chain rule for dif-

ferentiation with for all , we get

(24)

An alternative expression of the derivative for the memoryless
channel can be given, similarly to Theorem 2, as

(25)
The key relation (2), derived in [1], can be found as the particu-
larization of (25) to the Gaussian channel (cf. Section II-E).

An interesting application of Theorem 3 is the computation
of the derivative of the mutual information of a given and fixed

code used over a memoryless channel, where and
are the block length and the rate of the code, respectively.

This is easily done by defining the input distribution as the
one induced by the code (typically under an equiprobable choice
of codewords). Indeed, the practical relevance of Theorem 3
for numerical computation is remarkable since, as already men-
tioned, the symbolwise APP obtained by an optimum

4We denote by x the sequence x = (x ; . . . ; x ) except the element
x .

(21)

(23)
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soft decoder can be efficiently computed in practice with a mes-
sage-passing algorithm such as the BCJR, sum-product, or be-
lief-propagation algorithms [19], [20]. The expectation over
and can be numerically approximated with a Monte Carlo
approach by averaging over many realizations of and . Al-
ternatively, one can consider the numerical approximation of the
expectation only over and then obtain the inner expectation
over conditioned on through (cf. Section III);
then, for a finite input alphabet, (24) becomes (26), shown at
the bottom of the page.

Using a similar proof, the result in Theorem 3 for a memo-
ryless channel can be easily extended to a finite-state Markov
channel as follows.

Theorem 4: Consider a finite-state Markov channel of
memory with transition probability

where is differentiable as a function of the parameter

(and independent of for ), and a random input with
distribution (independent of for all ). Then

(27)
where the expectation is with respect to the joint distribution

.

The following is a convenient result that relates the posterior
marginals given all the observations with the poste-
rior marginals given all observations but the th one

(sometimes known as extrinsic information).

Lemma 2: Consider a memoryless channel

and an arbitrary input . Then, the posterior marginals
and are related as follows:

i)

(28)

ii)

(29)

Proof: Both follow from

(30)

B. Binary Symmetric Channel (BSC)

The derivative of the mutual information of an arbitrary input
over a BSC can be computed in practice by generating real-
izations of and to approximate the expectation in The-
orem 3 particularized to

(31)

where is the channel crossover probability and denotes the
XOR operation or sum in modulo . However, to speed up the
convergence of such an approximation, the expectation can be
partially carried out analytically over as in (26). The fol-
lowing result refines Theorem 3 for the BSC by carrying out
analytically the expectation over both and .

Theorem 5: Consider a BSC with crossover probability
and input distribution . Then,5 we get (32) at the

bottom of the page, where

(33)

and

(34)

Proof: See Appendix C.

5The base of the exponential operator exp (�) in (32) and similar expressions
can be chosen arbitrarily as long as both sides of the equation have the same
units.

(26)

(32)
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Using Lemma 2, the log-likelihood ratio in (33) can be
rewritten as

(35)

The following result particularizes Theorem 5 to the case of
independent and identically distributed (i.i.d.) inputs, which al-
ternatively can be easily obtained from direct computation of
the mutual information.

Corollary 1: Consider i.i.d. inputs with distribution over
a BSC with crossover probability . Then

(36)

C. Binary Erasure Channel (BEC)

The following result refines Theorem 3 for the BEC by car-
rying out analytically the expectation over both and .

Theorem 6: Consider a BEC with erasure probability
and input distribution . Then, we get the equation at

the bottom of the page, where

(37)

Proof: Similar to the proof of Theorem 5 (also a straight-
forward particularization of the more general result for the DMC
in Theorem 7 combined with (42)).

The following result particularizes Theorem 6 to the case of
i.i.d. inputs.

Corollary 2: Consider i.i.d. inputs with distribution over
a BEC with erasure probability . Then

(38)

where is the binary en-
tropy function.

D. Discrete Memoryless Channel (DMC)

Consider a DMC with arbitrary finite input alphabet
, arbitrary finite output alphabet

, and arbitrary time-invariant memory-
less channel transition probability

The channel transition probability can be compactly described
by the channel transition matrix with th element defined
as .

The expectation in Theorem 3 particularizes for the DMC
(using Lemma 2) to

(39)

An equivalent form of (39) was independently obtained in [7,
Theorem 1] where the conditioning is with respect to an ex-
trinsic information random variable (sufficient statistic of

). The convergence analysis of the decoding of LDPC code
ensembles is carried out in [7] by the GEXIT of the code en-
semble (a generalization of the EXIT which is defined as the
negative of the derivative of mutual information averaged over
the code ensemble).

The following result refines Theorem 3 for the DMC by car-
rying out analytically the expectation over both and .

Theorem 7: Consider a DMC with channel transition matrix
and input distribution . Then, provided that 6

(40)

where

(41)

Proof: See Appendix D.

The usefulness of the gradient in Theorem 7 is as an interme-
diate step in the computation of the derivative with respect to an
arbitrary parameter via the chain rule for differentiation

(42)

where only the elements of the gradient that are
multiplied by nonzero elements of need to be computed.

6The gradient with respect to a matrix r f is defined as [r f ]
@f=@ [M] .
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Using Lemma 2, the log-likelihood ratio in (41) can be
rewritten as

(43)

where is such that .
The following result particularizes Theorem 7 to the case of

i.i.d. inputs.

Corollary 3: Consider i.i.d. inputs with distribution over
a DMC with channel transition matrix . Then, provided that

,

(44)

E. Scalar Gaussian Channel

Consider the Gaussian channel signal model in (1) for the
real-valued case (with a standard Gaussian noise). This channel
has the following transition probability:

(45)

Particularizing Theorem 2 to the memoryless real-valued
Gaussian channel with arbitrary input with distribution
(with finite second-order moments) we recover the result in [1]

(46)

As an illustration, which is useful in Section IV, the binary
input distribution yields (either as a particularization

of (46) or of Theorem 3) (47) at the bottom of the page, where

(48)

and (49), also at the bottom of the page.
Using Lemma 2, the log-likelihood ratio in (48) can be

rewritten as

(50)

F. Linear Vector Gaussian Channel

Consider now the following signal model corresponding to
a linear vector Gaussian channel with transmit dimensions
and receive dimensions

(51)

where all quantities are complex-valued, is the -dimen-
sional transmitted vector, is the matrix that de-
notes the linear transformation undergone by the signal, is the

-dimensional received vector, and is an -dimensional
proper complex Gaussian noise vector independent of . The
input and the noise are assumed to have zero mean and covari-
ance matrices denoted by and , respectively. Observe that
the signal model in (51) is a generalization of (1).

We particularize Theorem 2 for the complex-valued memo-
ryless linear vector Gaussian channel with arbitrary input with
distribution (with finite second-order moments) to recover
the result in [2] 7

(52)

where

(53)

G. Additive-Noise Channel

Consider the following signal model corresponding to an ar-
bitrary additive-noise (not necessarily Gaussian) channel:

(54)

where is an arbitrarily distributed noise with pdf and
is a deterministic signaling function of the input depen-

dent on the parameter . The corresponding channel transition
probability is

(55)

7For complex-valued variables, the gradient with respect to a ma-
trix r f is defined as [r f ] @f=@ [M ] , where df=dx
(@f=@Re fxg+ j@f=@Im fxg) =2.

(47)

(49)
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We can now invoke Theorem 3:

(56)

Also, noting that

(57)

we can invoke Theorem 2:

(58)
This result is further refined in the next theorem.

Theorem 8: Consider an additive-noise channel with the tran-
sition probability in (55) and a random input with distribution

. Then

(59)

Proof: See Appendix E.

For i.i.d. inputs, Theorem 8 particularizes to the result ob-
tained in [11].

H. Poisson Channel

The canonical Poisson random transformation with mean
is the probability mass function

(60)

where and . A general Poisson
channel is similarly defined by a transformation whose output
is a Poisson random variable conditioned on the input with
its mean equal to with , i.e., scaled by
plus a “dark current”

(61)

The partial derivatives of this random transformation with re-
spect to the parameters and are

(62)

(63)

So the direct application of Theorem 3 gives

(64)

(65)

The next result further refines these expressions.

Theorem 9: Consider a Poisson channel with the channel
transition probability in (61) and a random input with distribu-
tion . Then

(66)

(67)

Proof: See Appendix F.

For i.i.d. inputs, Theorem 9 particularizes to the results ob-
tained in [10].

III. COMPUTATION OF MUTUAL INFORMATION

A. Direct Computation of Mutual Information

The mutual information for an arbitrary channel under an ar-
bitrary finite input alphabet can be directly approximated as

(68)

where the realizations are drawn independently
from . However, the computation of

requires the enumeration of the whole input alphabet (or code-
book in case of codes) for each realization , which
grows exponentially with the size of the input vector . This is
clearly infeasible but for very short block lengths.

If instead we express the mutual information in terms of the
posterior distribution , the problem does not become
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easier due to the difficulty of computing the posterior distribu-
tion. Hence, the direct computation of the mutual information is
generally infeasible.

B. Computation of Mutual Information Via its Derivative

The key point of using the derivative of mutual information
as an intermediate step is the fact that it only depends on the
channel transition probability and the posterior distribution of
the input given the output. For memoryless channels, only the
posterior marginals appear in the expression of the derivative
even if the inputs are dependent (see Theorem 3), as in the case
of the evaluation of the mutual information achieved by a code.
Interestingly, the posterior marginals can be computed very ef-
ficiently in practice with a message-passing algorithm. Thus,
thanks to the representation of the derivative of mutual infor-
mation as a function of the posterior marginals it is possible to
approximate the mutual information achieved by a code using a
soft decoding algorithm.

From Theorem 3, the derivative of mutual information for a
memoryless channel is shown in

(69)

where the realizations are drawn indepen-
dently from . To compute the mutual information

, we just need to know its value at some reference point
and then integrate

(70)

In practice, the integral in (70) will be computed as a sum over
a grid of ’s. It is worth mentioning that the samples drawn to
compute at some given can be reused to compute
around a neighborhood of using a change of measure (this is,
in fact, the underlying idea of importance sampling [23])

(71)

where the realizations are drawn independently
from and the weight is the correction term
or change of measure given by

(72)

Notice that the combination of computation of derivative and
integration in (70) can be performed in a multitude of ways. Not
only can one choose a different parameter over which to in-
tegrate, but the range of values in the integration can be conve-
niently chosen such that the mutual information at the reference
point is easily computed. For example, for a BSC one can
only choose as the crossover probability and a convenient
reference point would be either or . When
we use the gradient of the mutual information with respect to a
vector (or a matrix) parameter, the same approach can be fol-
lowed using a line integral of the gradient.8

The main disadvantage of computing the mutual information
through the derivative as in (70) is the fact that in a practical
situation the knowledge of the derivative is noisy. In that
respect, it is important to be able to compute in a robust
way from noisy measurements of . This can be easily done
as described in Appendix G.

C. Practical Aspects

Theorem 3 gives a closed-form expression for the derivative
of mutual information. As mentioned earlier, when the input
distribution has no particular structure, the expectation has to
be approximated using a Monte Carlo approach as in (69). If
the conditional distribution is available, it is advantageous to
partially carry out the expectation in a semi-analytical way, for
example, the expectation over conditioned on , as in (26),
or even the joint expectation over and conditioned on

. A partial analytical expectation will make the estimation
more accurate or, equivalently, will require fewer samples for
the same accuracy.

We now illustrate four different levels in the computation of
the derivative of the mutual information for the BSC:

1. Via the joint posterior distribution as in the general result
for a random transformation in Theorem 1. For the BSC,
the expression becomes as shown in (73) at the bottom of
the page, where denotes the Hamming dis-
tance between the sequences and .

8The line integral of a gradient r'd��� = ' (��� (t))��� (t) dt is inde-
pendent of the path ��� (t) in any open connected set in which the gradient is
continuous [24] and then r'd��� = ' (b) � ' (a).

(73)
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Fig. 1. Estimation of the mutual information of different codes of rate 1=2 over a BSC.

2. Via the posterior marginal distributions as in Theorem 3.
For the BSC, the expression is

(74)

3. Via the posterior marginal distributions but further taking
the analytical expectation over conditioned on (as
in (26)).

4. Via the posterior marginal distributions but further taking
the analytical expectation over both and conditioned
on . In other words, via the log likelihood of the pos-
terior marginal distributions as in Theorem 5 for the BSC.

The first method is infeasible but for very small (as it
requires the evaluation of the joint posterior), whereas the
last three are feasible because they are based on the posterior
marginals. Taking the analytical expectation over , as in
method 3, is not just desirable but extremely important9 (taking
also the expectation over , as in method 4, is simply an option
to improve the convergence).

9The savings in the number of Monte Carlo samples required for a given ac-
curacy of method 3 over 2 are measured in orders of magnitude.

IV. APPLICATIONS

A. Computation of Mutual Information of LDPC Codes

We consider the computation of mutual information achieved
by LDPC codes over the BSC and the Gaussian channel via the
computation of its derivative, which can be efficiently done by
estimating the posterior marginals for the LDPC codes with the
sum-product algorithm.10 For the BSC, the computation of the
derivative of mutual information with respect to the crossover
probability based on the belief propagation algorithm has been
shown in [7] to underestimate the true value. Similarly, for the
Gaussian channel, the derivative with respect to the SNR can
be shown to overestimate the true value. This means that the
computation based on the belief propagation algorithm provides
upper and lower bounds on the mutual information depending
on the reference point used in the integration in (70). We will use
the robust formulation in (120) (Appendix G) to obtain a reliable
estimation of the mutual information from the noisy knowledge
of the derivative.

Fig. 1 shows the mutual information of different codes of rate
over a BSC computed via Theorem 5. In particular, two

LDPC codes with block lengths and are
considered as well as a simple repetition code. Naturally, for

all codes achieve a mutual information equal to the code

10The sum-product algorithm must not be terminated when a valid codeword
has been found (as is done for decoding purposes) but when the estimations of
the posterior marginals have converged.
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Fig. 2. Estimation of the mutual information of different binary codes of rate 1=2 over an antipodal Gaussian channel.

rate. What is important is until what value of the code can
still achieve that value of mutual information. Ideally, we know
from the capacity curve that a rate of can be achieved up to a
value of . The repetition code is clearly not a good code
for any rate since its mutual information decreases considerably
as soon as increases. The LDPC codes, on the other hand, are
good codes since they do not suffer an appreciable decrease in
mutual information up to a certain value ; in particular, for
the LDPC code with we have , whereas
for the LDPC code with , . Interestingly,
for larger values of , both LDPC codes achieve essentially the
same mutual information; this means that, in that regime, using
a long LDPC code is essentially equivalent to using a short one
combined with an outer code (a similar observation was made
in [25] for small codes with a sufficiently good decoder).

Fig. 2 shows the mutual information of the same codes over a
Gaussian channel computed via (47). Similar observations hold
as in the BSC: ideally, a rate can be achieved for SNRs
above , the LDPC code with does not suffer
an appreciable decrease in mutual information down to

, whereas for the LDPC code with , .

B. Universal Estimation of the Derivative of Mutual
Information

Another application of our results is the estimation of the
derivative of the mutual information achieved by inputs which
are neither accessible nor statistically known (hence the term

universal), as is frequently the case when dealing with text, im-
ages, etc. Assuming that the channel is discrete memoryless and
known (with full-rank transition probability matrix), it is pos-
sible to estimate the derivative of the mutual information by
simply observing the output. To that end, we use one of the uni-
versal algorithms recently developed to estimate the posterior
marginals (e.g., [26], [27]) and then we apply The-
orem 7 for the DMC.

To compute the mutual information by integrating the deriva-
tive, we must have access to the outputs corresponding to a grid
of channels with a range of qualities starting from a perfect
channel.

To be more specific, the universal algorithms in [26], [27] first
estimate . Then follows straightforwardly as

...

... (75)

which requires the channel transition probability matrix to be
full column-rank (thus, it is assumed that ).

The input (assumed to be stationary ergodic) is neither acces-
sible nor statistically known and is only observed after passing
through the channel. Theorem 7 (combined with (42)) can be
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Fig. 3. Input–output mutual information of Don Quixote de La Mancha over the typewritter channel as a function of the symbol error probability.

more conveniently rewritten (due to the stationarity and ergod-
icity) as

(76)

where

(77)

(78)

and the sequence is obtained by passing an (unknown) se-
quence through the channel.

As an illustration of the previous approach, we compute the
amount of information about the source received by a reader of
the novel Don Quixote de La Mancha 11 (in English translation)
with typos. We model this channel by assuming that each letter
is independently flipped, with some symbol error rate (SER)
equal to , equiprobably into one of its nearest neighbors in
the QWERTY keyboard. Fig. 3 shows the mutual information

11By Miguel de Cervantes Saavedra (1547–1616).

obtained by integrating the derivative from the point of reference
. For , the mutual information equals the entropy

of Don Quixote de La Mancha which is 2.17 bits/symbol as
computed with the algorithm in [28].

APPENDIX A
REGULARITY CONDITIONS

The following are the “regularity conditions” about the inter-
change of the order of differentiation and integration (expecta-
tion) that are required for some results in the paper.

RC1:

(79)

RC2:

(80)

RC3:

(81)

Conditions RC1-RC3 are mild properties satisfied in most
cases of interest such as for finite alphabets.
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(86)

APPENDIX B
PROOF OF LEMMA 1

We first prove the second result

(82)

where we have used the regularity condition RC1.
To prove the first result, we could follow exactly the same

approach, but it would require the regularity condition

(83)

which is in terms of the posterior and hence difficult to
verify. Next, we provide an alternative proof that relies on a
regularity condition on instead.

Using and

(84)

where we have used the regularity condition

(85)
which follows from RC2.

APPENDIX C
PROOF OF THEOREM 5 (BSC)

Invoke Theorem 3 with and particularize the result
as shown in (86) at the top of the page (using

and (28)).
The term inside the expectation can be rewritten in terms of

the log-likelihood ratios (as defined in (33)–(34)) for as

(87)

and for as

(88)

where we have used

(89)

(90)
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(91)

Therefore, we get (91) at the top of the following page, where
we have used the relation

(92)

APPENDIX D
PROOF OF THEOREM 7 (DMC)

First, observe that

(93)

Then, invoke Theorem 3 with and use
and (28) to particularize the result as shown in

(94) at the bottom of the page. The desired result follows by
noting that

APPENDIX E
PROOF OF THEOREM 8 (ADDITIVE-NOISE CHANNEL)

Theorem 2 gives

(95)
Now, using , we have

(96)

(94)
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The contribution of the first term inside the expectation is zero

(97)

and the second term can be rewritten as

(98)

Finally, we can write

(99)

APPENDIX F
PROOF OF THEOREM 9 (POISSON CHANNEL)

To start with we obtain an intermediate result that will prove
very useful.

Lemma 3: Let be a random variable with distribution
and a time-invariant memoryless Poisson channel

with given by (61). Then

(100)

(101)

and

(102)

Also observe that the mean and variance for the Poisson
channel are given by

(103)

(104)

Now, using , we can
write the expectation in (64) as

(105)

where the first and third terms vanish because of (103). The
second term is

(106)

where the second term becomes from (103)-
(104) and the last term vanishes. Putting everything together, we
finally have

(107)

where the last term becomes (invoking Lemma 3)
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(110)

(108)

Proceeding in the same with the derivative with respect to ,
we can write the expectation in (65) as

(109)

where the last term is (invoking Lemma 3) as in (110) at the top
of the page.

Proof of Lemma 3: First note from (61) that

(111)

(112)

Then, using ,

(113)

(114)

and
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(115)

APPENDIX G
ROBUST COMPUTATION OF A FUNCTION FROM ITS

NOISY DERIVATIVE

As previously described, obtaining a function from its deriva-
tive and a reference point is straightforward: simply integrating.
However, in practice the knowledge of the derivative will be
noisy and one may have additional knowledge about the func-
tion (e.g., other reference points, monotonicity, convexity, etc.).
Hence, it is desirable to have a robust approach to compute the
function from the noisy derivative properly using all the avail-
able information.

Consider a discrete setting where the values of the function
and of its derivative are collected in

the vectors and , respectively. They are related by

(116)

where is the derivative matrix defined as a Toeplitz matrix
with first row equal to .

In the ideal case of a perfect knowledge of the derivative, the
problem formulation would be

(117)

where is the known reference value at the origin of the func-
tion . The solution to this problem is unique and given by

...
. . . (118)

which coincides with a discretized version of the integral of the
derivative starting at the reference point.

In a real situation, the knowledge of the derivative will be
noisy given by

(119)

where is the noise or error. A robust formulation of the esti-
mation of the function would be

(120)

where the ’s denote all the available reference points. This
problem is convex (all the constraints are linear and the objec-
tive is a norm) and, hence, global solutions can be readily ob-
tained [29]. In particular, for the -norm (Euclidean norm) the
problem is quadratic, and for the -norm and -norm (Cheby-
shev norm) the problem is linear. It is straightforward to add
additional constraints to incorporate, for example, the mono-
tonicity of the function, , the concavity of the func-
tion, (where denotes the second derivative in ma-
trix form), or knowledge about the error such as the nonnega-
tiveness, (e.g., if the noisy knowledge of the derivative
is known to be an overestimation of the actual value ).
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