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Lautum Information
Daniel P. Palomar, Member, IEEE, and Sergio Verdú, Fellow, IEEE

Abstract—A popular way to measure the degree of dependence
between two random objects is by their mutual information, de-
fined as the divergence between the joint and product-of-marginal
distributions. We investigate an alternative measure of depen-
dence: the lautum information defined as the divergence between
the product-of-marginal and joint distributions, i.e., swapping
the arguments in the definition of mutual information. Some
operational characterizations and properties are provided for this
alternative measure of information.

Index Terms—Divergence, hypothesis testing, information mea-
sures, Kelly gambling, mutual information.

I. INTRODUCTION

ONE way to gauge the statistical dependence between two
random objects and is the mutual information de-

fined as the divergence between the joint and product-of-mar-
ginal distributions:1

(1)

(2)

Since the inception of information theory [1], mutual infor-
mation has proven to be a key measure of dependence with
meaningful operational characterizations, foremost among
which is its role in the capacity and rate–distortion function
of ergodic channels and sources. Mutual information has also
proven a popular measure of statistical dependence in many
experimental applications such as neurobiology [2], genetics
[3], machine learning [4], [5], medical imaging [6], linguistics
[7], artificial intelligence [8], authentication [9], and signal
processing [10].

The purpose of this paper is to provide several operational
characterizations and a number of useful properties for an alter-
native measure of dependence where the roles of the joint and
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1P denotes either a probability mass function (pmf) or a probability density
function (pdf) unless otherwise indicated.

Fig. 1. Geometric visualization of mutual information I (X;Y ) and lautum
information L (X;Y ).

product-of-marginal distributions are swapped. We define the
lautum information2 between and as

(3)

(4)

where the random variables are independent with the
same marginals as .

The difference between the definitions of mutual informa-
tion and lautum information is illustrated geometrically in Fig. 1
using the alternative expressions

(5)

(6)

As usual, general definitions that encompass the general
(nondiscrete, noncontinuous) case can be given by defining the
Radon–Nikodym derivative

(7)

Then

(8)

(9)

provided and the expectations exist, otherwise the corre-
sponding measure is equal to by convention.

Lautum information does not fall within the class of Shannon-
type information measures (i.e., measures that can be expressed
as a linear combination of joint entropies [11], [12]). To see that

cannot be written as a linear combination of ,
, and , simply note that when-

ever , whereas is finite for a finite alphabet.
Even before Kullback and Leibler introduced [13],3

Jeffreys [15] introduced the symmetrized form
. Mutual information is, arguably, the most important

2Lautum (“elegant” in Latin) is the reverse spelling of mutual.
3Originally used, but not defined, in [14].
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specialization of divergence, and the corresponding sym-
metrized form involves the sum of mutual and lautum informa-
tions. Both mutual and lautum informations are special cases of
Csiszár’s -divergence [16] between the product-of-marginals
and joint distributions for different convex functions .

The paper is organized as follows. Section II describes some
operational characterizations of lautum information. Section III
explores whether and how the familiar properties of mutual in-
formation find counterparts in lautum information. Sections IV
and V analyze in detail lautum information for the binary-sym-
metric channel (BSC) and in the Gaussian case, respectively.

II. OPERATIONAL CHARACTERIZATIONS OF

LAUTUM INFORMATION

A. Non-Bayesian Testing of Independence

1) Nonasymptotic Setting: Consider a random object
drawn from the distribution under hypothesis and
from under hypothesis . A simple application of the
divergence data processing theorem shows that any hypothesis
test that achieves

(10)

(11)

must satisfy [17, p. 74]4

(12)

(13)

where the binary divergence is denoted by

(14)

Suppose now that a joint distribution is specified with
marginals and . Testing whether are dependent
(according to the joint distribution ) or are independent
(with marginals and ) incurs in error probabilities (15)
and (16) shown at the bottom of the page, that must satisfy

(17)

(18)

Notice that the observation can be a vector of dimension
and the upper bounds in (17)–(18) become then and

. Fig. 2 shows the region (17)–(18) for . As
grows, the region tends to a rectangle with corner point given

by .
2) Asymptotic Setting: The points in the region (17)–(18) that

can actually be achieved can be conveniently characterized in

4Unless the logarithm basis is indicated, it can be chosen arbitrarily as long
as both sides of the equation have the same units.

the asymptotic regime of . Chernoff’s result [18] (com-
monly referred to as Stein’s lemma) states that if we observe
independent and identically distributed (i.i.d.) realizations of
and design the best hypothesis test such that , then the
minimum satisfies

(19)

where it is assumed that .
If we now define hypothesis to denote a dependent joint

distribution and hypothesis to denote an
independent distribution , then for the best
hypothesis test upon observing i.i.d. realizations of
such that

(20)

provided that . Analogously, for the best hypoth-
esis test such that , we have (cf. [19, Example 11.5.3])

(21)

These two achievable exponents of the probabilities cor-
respond to the points and in the

plane of points as depicted in Fig. 2.

The corner point can also be achieved in
the sequential setting as outlined below.

The foregoing operational characterization serves to illus-
trate why the lautum information of a nondeterministic random
variable with itself is infinite. Consider the special case where

, i.e., the test between and . The test that
declares if both components of all the observed pairs co-
incide, and otherwise, achieves and .
Note that according to (20) this requires that .

The corner point of the region in
(17)–(18) is, in general, not achievable even asymptotically. It
can be achieved in the alternative setup of sequential hypothesis
testing introduced by Wald in his 1945 seminal paper [14],
where the number of observations is allowed to depend on
previous observations. In particular, [14] showed that the set of
possible pairs must satisfy

(22)

(23)

where denotes the average number of required
observations under hypothesis . In fact, (22)–(23) are
achieved with equality in the sequential asymptotic setting of
error probabilities going to zero as a direct consequence of
Berk’s result [20].

decide dependent are independent (15)

decide independent are dependent (16)
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Fig. 2. Region where � ; � must lie when the observation has dimension n = 8 for I (X;Y ) = 5 and L (X;Y ) = 10.

Theorem 1: Assuming that both divergences are nonzero and
finite, there exists a sequence of sequential hypothesis tests (in-
dexed by ) that achieve

a.s.

(24)

a.s.

(25)

where the random stopping time denotes the number of
required samples under hypothesis . Equations (24)–(25) also
hold replacing by its expectation .

Proof: See Appendix A.

Accordingly, the best sequential hypothesis tests of depen-
dence satisfy (a.s.)

(26)

(27)

Another large deviations result can be obtained from the
method of types [21, eq. (II.6)]:

(28)

where the approximation is up to a polynomial factor (cf. [21,
eq. (II.6)]) and is the set of sequences with “product
type” (finite input/output alphabets are assumed). Thus, lautum
information determines the exponential decay of the probability

that realizations of a dependent pair of random variables will
look independent.

B. Bayesian Testing of Independence

Consider the same setup as in the previous section where
a random variable is drawn from the distribution
under hypothesis and from under hypothesis .
A Bayesian decision with minimum probability of error takes
into account the priors of the hypotheses by comparing the
following log-ratio of the posteriors of the i.i.d. observations
to a threshold:

(29)

Then, for i.i.d. (cf. [22, Problem 3.6])

if is true
if is true

(30)
provided that both divergences are finite.

In the independence testing Bayesian setup, where hypoth-
esis denotes a dependent distribution and
hypothesis denotes an independent distribution

, it follows from the law of large numbers that

if
if .

(31)
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where is the information density (e.g.,
[23]) of the observations :

(32)

In the simplest version of the random coding proof of the
channel capacity theorem, the decoder compares the normal-
ized information density achieved by each possible codeword
to a threshold which is slightly below the mutual information;
a message is declared if and only if it is the only one whose
information density is above the threshold. According to (31),
for the transmitted codeword the normalized information den-
sity converges to the mutual information, whereas for all the
other codewords the normalized information density converges
to minus the lautum information.

In the context of an authentication problem, where signatures
are tested to decide whether they come from the same source, a
more general independence hypothesis testing setup is analyzed
in [9], where the signatures whose dependence/independence is
tested are allowed to have memory. In that setting, the lautum
information rate is defined as the natural counterpart to the mu-
tual information rate, i.e., the limit of normalized lautum infor-
mations. The generalization of information density (32) to the
setup with memory is shown in [9] to converge almost surely
(normalized by ) to the corresponding information rates for a
certain class of ergodic stationary processes.

C. Capacity Per Unit Cost of the Dependence-Test Channel

The capacity per unit cost [24] is defined similarly to the con-
ventional capacity, except that the ratio of the logarithm of the
number of codewords to their block length (rate) is replaced by
the ratio of the logarithm of the number of codewords to their
cost (rate per unit cost). The capacity per unit cost can be com-
puted from the capacity–cost function , where denotes
the cost, by finding or, alternatively, as

(33)

where is the cost function. In the important case where the
input alphabet contains a zero-cost symbol (labeled as “ ”) the
capacity per unit cost is given by [24]

(34)

where the supremum is over the input alphabet.
As an application of this result, consider now the binary-input

dependence-test channel defined as a channel with binary input
with cost and output such that

for and for . The capacity
per unit cost (34) is then equal to the lautum information:

(35)

Note that we can think of this setup as one in which it costs
no “energy” to send dependent realizations of random variables
while it takes some given expenditure to make them indepen-
dent. An illustrative application is the case where and are

the input/output of a BSC. At the expense of an increase in the
noisiness of the channel, we can (covertly) communicate infor-
mation to a third party who observes both and by switching
off the link (and therefore making and independent) at cer-
tain times dependent on the covert message.

D. Description Length Penalty in Optimal Data Compression

Consider a source that generates i.i.d. symbols
drawn from the distribution . The minimum expected code-
word length to describe a symbol generated by the source with
a binary prefix code is achieved by a Huffman code and is equal
to bits plus at most 1 bit (e.g., [19]). If the Huffman
code is obtained for the distribution instead of , there
is a penalty in the expected codeword length approximately
equal to [19, Theorem 5.4.3].

In light of this result, it follows that if we have an optimum
code designed for dependent symbols , but the
true source generates instead independent symbols

, then the extra codeword length per symbol is

(36)

E. Doubling Rate Penalty in Kelly Gambling

Kelly’s operational characterization of mutual information
[19] states that in the problem of gambling on the outcomes of
a roulette (or horse racing) , the increase in the doubling rate
of wealth due to optimal use of side information is equal
to . If that optimum scheme is applied to the wrong
roulette (whose outcomes are independent of the side informa-
tion), then there is a penalty in doubling rate with respect to the
gambling scheme that uses no side information. The penalty is
equal to . In other words, mutual information (resp.,
lautum information) quantifies the gain (resp., the loss) that ac-
crues by assuming correctly (resp., incorrectly) that the side in-
formation is useful.

The previous observation for horse racing can be extended
to the general stock market setup [19]. In that case, however,
one can only obtain upper bounds in the increase/decrease of
doubling rate.

III. PROPERTIES OF LAUTUM INFORMATION

A. Basic Properties

Lautum information is indeed a bone fide measure of depen-
dence. As an immediate consequence of its definition we have
the following.

Theorem 2: (Nonnegativity of lautum information):

(37)

with equality if and only if and are independent.
Proof: with equality if and only if .

Nonnegativity also holds for the conditional version:

(38)
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with equality if and only if the random variables form the
Markov chain .

Lautum information, however, does not satisfy the same chain
rule as mutual information. For example, for the joint pmf on

if
otherwise

(39)

where is a small positive parameter, it follows that (see Ap-
pendix B)

(40)

A sufficient condition for the chain rule

(41)

is that and be unconditionally independent. However, this
condition is not necessary. For example, for a Markov chain, the
chain rule is satisfied

(42)

(43)

If the Markov chain is stationary with transition probabilities
, and stationary distribution de-

noted by , then

(44)

(45)

For a memoryless channel, the joint input–output mutual in-
formation is upper-bounded as (e.g., [19, Lemma 7.9.2])

(46)

Similarly, for a memoryless source, the mutual information is
lower bounded as

(47)

The lautum information between the inputs and outputs of a
memoryless channel satisfies the counterpart of (47) (instead of
(46)).

Theorem 3: (Lower bound on lautum information for a mem-
oryless channel): If , then

(48)

with equality if and only if are independent.
Proof:

(49)

When the inputs (or outputs) are independent, we can
find channels with memory for which (48) is satisfied with
strict inequality and also channels for which (48) does not
hold. For example, (48) is satisfied with strict inequality by
choosing such that it vanishes at a single mass point

as this would make whereas
since none of the marginals

would vanish. An example for which (48) does not hold is
given by the following binary-input binary-output channel
under i.i.d. equiprobable inputs for (see Appendix C):

if
otherwise.

(50)

The data processing inequality for a Markov chain
states that and

(e.g., [19]). Interestingly, the same
result holds for lautum information.

Theorem 4: (Data processing inequality): If , then

(51)

with equality if and only if .
Proof: We can expand the lautum information in two dif-

ferent ways:

(52)

(53)

Using , we have which implies
. Thus, (51) follows. Equality

in (51) is satisfied if and only if
, i.e., if .

In fact, the data processing inequality of mutual and lautum
informations can be obtained as particular cases of a more gen-
eral version based on the -divergence. The -divergence is de-
fined as [16]

(54)

where is an arbitrary convex function. We can then define the
-information as

(55)

(56)

Observe that mutual and lautum informations are particular
cases of -informations with convex functions defined on the
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positive real line and , respec-
tively: and .
Theorem 4 is a special case of the following result.

Theorem 5: [16] (Generalized data processing inequality): If
, then

(57)

with equality if and only if .

A consequence of the data processing inequality in The-
orem 4 is that lautum information, like mutual information, is
impervious to deterministic one-to-one transformations. For
example, does not depend on the mean of the
input.

Theorem 6: The lautum information is: i) a concave
function of for fixed , and ii) a convex function of

for fixed .
Proof: The following shows the convexity in :

(58)

which is convex in by convexity of divergence
in .

The concavity in can be shown as follows. Let

w.p.
w.p. ,

(59)

and be two independent random variables, and note that
.

Consider the Markov chain . By the
data processing theorem we have

(60)

Theorem 7: Consider a discrete memoryless channel with ad-
ditive noise, i.e.,

(61)

where is an i.i.d. noise process with marginal distribution
and the addition is that of a finite field defined on the fi-

nite input/output alphabet . Let stand for the equiprobable
distribution on . Then

(62)

(63)

(64)

where the maximizing distribution in (62)–(63) is and in
(64) is a distribution with marginals equal to such that

with probability one.
Proof: The capacity result in (62) is well known and usu-

ally written as .
To show (63), note that any two input distributions related

by a cyclic shift achieve the same lautum information. Fix now
a distribution that maximizes lautum information, and take a
mixture with equal weights of all its cyclic shifts. By
the concavity result in Theorem 6, the mixture input distribu-
tion (which is equiprobable) cannot attain lower lautum infor-
mation than the one we started with. Finally, since the output
distribution corresponding to equiprobable input symbols is also
equiprobable, (63) readily follows from the definition of lautum
information.

To show (64), recall that in the proof of Theorem 3 we used
the memorylessness of the channel to show that any dimen-
sional input distribution satisfies

(65)

(66)

(67)

(68)

(69)

On the other hand, let us consider the –dimensional input dis-
tribution whose marginals are equiprobable and such that

with probability one. This distribution achieves

(70)

(71)

(72)

(73)

B. Variational Characterizations of Lautum Information

It is well known that mutual information satisfies the varia-
tional relations

(74)

(75)

The counterpart for lautum information would obtain
as the infimum of over
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. However, this is not true as shown by the following coun-
terexample: choose such that it vanishes only at a single
mass point (this implies positive marginals) and
such that ; this leads to
while . Regarding a possible counter-
part to (75) note that .

Lautum information satisfies the following variational
characterization:

(76)
where stands for the joint distribution

. Equation (76) follows from

(77)

Other useful identities in the context of lautum information
are

(78)

and

(79)

C. Bounds on Information Measures

Since both mutual information and lautum information
are defined as divergences, they inherit the properties and
bounds known for divergence (e.g., [17], [19], [25]–[27], and
references therein). In particular the Csiszár–Pinsker–Kem-
perman inequality [25, p. 58], [19, Lemma 11.6.1],

, where ,
implies

(80)

where is the variational distance between the distri-
butions and , defined as the -norm:

(81)

An account of alternative lower bounds on divergence is given
in [27].

An inequality relating mutual information and expectation
was given in [28, Lemma 4.4] (with an improvement in a scaling
factor in [29]). The following result extends the inequality also
to lautum information with a much simpler proof.

Theorem 8: Let be random variables with taking
discrete values in the unit interval . Then5

(82)

where is a deterministic function.

5In [28], [29], Y is additionally assumed to be discrete.

Proof: From the Csiszár–Pinsker–Kemperman inequality
and , we have that

(83)

Particularizing (83) to and ,
where is, for now, an arbitrary random variable, we get

(84)

Taking now expectation with respect to , we
obtain

(85)

(86)

where the second inequality follows from Jensen’s inequality.
Defining leads to (82). The proof for mutual infor-
mation follows identical steps.

Regarding the comparison between both measures of infor-
mation, it turns out that lautum information is larger than or
equal to mutual information for many cases of interest such as
the input/output of the BSC and the Gaussian channel. In gen-
eral, however, this is not true as shown by the following coun-
terexample with joint distribution given by

(87)

which corresponds to a lautum information smaller than the mu-
tual information: and

Both mutual information and lautum information are mea-
sures of the dependence between random variables. However,
in cases where the distributions are unknown and their infor-
mation measures are estimated through a universal estimator
[30], lautum information may provide a more useful gauge of
dependence than mutual information. For example, if any of the
random variables has a small entropy, mutual information will
also be small and may be indistinguishable from the estimation
noise whereas lautum information need not be small (as it is not
upper-bounded by the entropy). The following example illus-
trates the different sensitivities of lautum/mutual information to
parameters in the joint distribution.

Example 1: Consider a binary-symmetric Markov chain
with transition probability through a BSC with
crossover probability . The following table quantifies the
values of lautum and mutual informations (computed with the
method in [31] and references therein):

(88)
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D. Lower Bounds on Error Probability

Fano’s inequality lower-bounds the mutual information be-
tween random variables that take values on the same finite set
with cardinality as follows (e.g., [32]):

(89)

which holds as long as either or is equiprobable, where
is the binary entropy function. A stronger lower bound

on the mutual information between random variables that take
values on the same set is [32, Theorem 3]

(90)

where the binary divergence function is defined in (14).
A similar lower bound for the lautum information is given

next.

Theorem 9: If and take values on the same set, then

(91)

where and are independent and have the same marginal
distributions as and , respectively.

Proof: Application of the data processing theorem for di-
vergence (“processing reduces divergence”) to a processor that
takes as input and outputs under the different
input distributions and .

In the special case in which either or is equiprobable on
a finite set of cardinality , Theorem 9 becomes

(92)

The bound in (92) leads to the following upper bound on
the reliability function (evaluated for the BSC at the end of
Section IV).

Theorem 10: Consider the transmission of a code with
block length and rate over a channel . Let

be the minimum error probability for any such code
and denote the channel reliability function (cf. [33], [34]) by

(93)

Then

(94)

Proof: From the following Markov chain denoting the
communication process over the channel

letting , and (92) we have

(95)

(96)

Since this is true for any code, it also holds for the best code
with minimum error probability :

(97)
Using now the data processing inequality for lautum informa-
tion (Theorem 4) we have

(98)

and the result follows.

The upper bound in (94) need not be tight as is illustrated in
Section IV for the BSC.

IV. LAUTUM INFORMATION FOR THE BSC

Theorem 11: The input/output lautum information for the
BSC with crossover probability and is

(99)

where .
Proof: First note that and

Then

(100)

and (99) follows from

(101)
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Theorem 12: For the BSC, .
Proof: The proof is equivalent to the recent refinement of

Pinsker’s inequality in [35, Theorem 2.1] particularized to the
binary case (see Appendix D).

Particularizing Theorem 7 we obtain that equiprobable inputs
maximize the lautum information for the BSC.6

Theorem 13: The maximal lautum information for the BSC
satisfies

(102)

(103)

The expression on the right-hand side of (102) has appeared
in a number of problems in the literature, e.g., as the error ex-
ponent at channel capacity of a particular transmission system
over the BSC with feedback [36] and as the exponent in an upper
bound on the error probability for linear block codes over the
BSC [37, Sec. 2.9].

The bound in Theorem 10 is loose for the BSC. The channel
reliability function for the BSC with crossover probability is
[33, Sec. 5.8], [34, Problem 10.13]

(104)

whereas the right-hand side of (94) is given by (103) which is
strictly larger except for .

V. THE GAUSSIAN CASE

A. Lautum Information for the Gaussian Channel

Consider a general discrete-time linear vector Gaussian
channel represented by the following vector signal model with

transmit dimensions and receive dimensions:

(105)

where all quantities are complex-valued, is the -dimen-
sional transmitted vector arbitrarily distributed (not necessarily
Gaussian), is the matrix that denotes the linear
transformation undergone by the signal, is the -dimen-
sional received vector, and is an -dimensional proper com-
plex Gaussian noise vector independent of . The input and the
noise covariance matrices are

and

respectively.

6The particularization of (99) to equiprobable inputs appears in [9].

Theorem 14: Consider the Gaussian signal model in (105)
where is arbitrarily distributed with zero mean.7 Then, the
mutual information and lautum information are given by8

(106)

(107)

Proof: For mutual information, the proof is straightforward

(108)

and the application of the divergence between two proper com-
plex Gaussian distributions [38]

(109)

For lautum information, the proof is slightly more involved
and one needs to resort to the fact that both and are
Gaussian distributed with the same covariance matrix and
means and (the results obtained hold verbatim for an
arbitrary noise mean), respectively:

(110)

(111)

(112)

(113)

Theorem 15: For the Gaussian channel,
.

Proof: According to Theorem 14, the difference is a diver-
gence .

For Gaussian noise, it is well known that mutual information
is maximized, under a second-order moment constraint, when
the input is Gaussian. In the case of lautum information, the
opposite happens in light of the relation

(114)

which, according to Theorem 14, holds for any (not neces-
sarily Gaussian) with covariance .

7If [XXX] 6= 0, the term D (P k P ) appearing in (106) and (107) must
be replaced by D (P k P ) = D (P k P )� � H [XXX] , where
~YYY = YYY �H [XXX] which has the same distribution as YYY but with the mean of
XXX removed.

8For the case of real-valued random variables, (106)–(107) require a factor
1=2 in front of the term with the trace.
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An interesting property of mutual information is the saddle-
point characterization of the Gaussian distribution9

(115)

where and are Gaussian and independent, and and
follow arbitrary distributions with the same second-order mo-
ments as the Gaussian counterparts. Lautum information does
not admit a similar saddle-point characterization. As previously
argued, Gaussian inputs minimize lautum information:

(116)

However, the other required inequality for the saddle-point char-
acterization is not satisfied; simply by choosing vanishing at
some set of nonzero measure we obtain

. For some other examples, however, the inequality is satis-
fied such as with a Laplacian noise (with sufficiently small noise
power).

Theorem 16: Consider the Gaussian signal model in (105)
where is Gaussian distributed. Then, the mutual information
and lautum information are given by

(117)

(118)

Proof: Particularize Theorem 14 using from (109)

(119)

B. Lautum Information for Jointly Gaussian Random Variables

This subsection evaluates the mutual information and the
lautum information between two proper complex vector
Gaussian random variables: and

.
The joint and the product distributions and can

be respectively encompassed in the random variables and
obtained by stacking the vectors and such that

and where the covariance
matrices are given by

and (120)

Assuming nonsingularity of the covariance matrices, the mu-
tual information can be easily evaluated as [40]

(121)

The lautum information can be similarly evaluated.

9Mutual information also admits a saddle-point characterization of the expo-
nential distribution [39]; lautum information, again, does not share such a char-
acterization (observe that with an additive exponential noise, L (XXX;YYY ) = 1
for any nondeterministic input).

Theorem 17: Let be two vector joint Gaussian
random variables with covariance matrix

(assuming and ). Then

(122)

Proof: The proof follows from the application of the diver-
gence between two proper complex Gaussian distributions (109)
and some additional algebraic manipulations. Alternatively, the
proof follows easily from Theorem 16 for the signal model

by properly choosing the channel as
and the noise covariance matrix as .

Particularizing Theorem 17 to Toeplitz matrices and using
standard asymptotic results [41], it follows that

(123)

where is the frequency-dependent normalized covariance
given by

(124)

Another particular case of Theorem 17 was given in [9] for
the signal model

(125)

Theorem 18: If are jointly Gaussian random vectors,
then .

Proof: It follows from Theorem 14, by noting that
any jointly Gaussian vectors and admit the formula

with independent of .

APPENDIX

A. Proof of Theorem 1

Achievability is shown with the sequential probability ratio
test (SPRT) [14]. Denoting the upper and lower thresholds
and , respectively, it follows that the result can be shown
by letting be an increasing sequence
going to infinity. From [20, Theorem 2.1],

(126)

(127)
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and, from [20, Theorem 2.2]

(128)

Therefore

(129)

(130)

(131)

and similarly for (25).

B. Counterexample of the Chain Rule for Lautum Information

From the joint distribution defined in (39), the following
marginals and conditionals easily follow:

, ,

if
otherwise,

(132)

if
otherwise,

(133)

and

if
if
otherwise.

(134)

Then, the following approximation can be obtained for suffi-
ciently small :

(135)

(136)

C. Example of With
Independent Inputs

From the problem setup, it follows that
, , and

if
otherwise.

(137)

It is then straightforward to evaluate

(138)

and

(139)

The following inequality can then be verified for :

(140)

In fact, it can be checked that the left-hand side of (140) grows
linearly with , as .

D. Proof of Theorem 12

From Theorem 11 and using and

we have after some algebra

(141)

which is positive from a direct application of Lemma 2 below
with and .

Lemma 1: [35, Theorem 2.1] (Lower bound on the binary
divergence)

(142)

Lemma 2: (Upper bound on the binary divergence)

(143)
Proof: First, note the identity

(144)
Then, from Lemma 1

(145)

or equivalently

(146)

which reduces to (143) after rearranging terms and inter-
changing and .
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