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Abstract—In this two-part paper, we address the problem of
finding the optimal precoding/multiplexing scheme for a set of
noncooperative links sharing the same physical resources, e.g.,
time and bandwidth. We consider two alternative optimization
problems: P.1) the maximization of mutual information on each
link, given constraints on the transmit power and spectral mask;
and P.2) the maximization of the transmission rate on each link,
using finite-order constellations, under the same constraints as
in P.1, plus a constraint on the maximum average error prob-
ability on each link. Aiming at finding decentralized strategies,
we adopted as optimality criterion the achievement of a Nash
equilibrium and thus we formulated both problems P.1 and P.2
as strategic noncooperative (matrix-valued) games. In Part I of
this two-part paper, after deriving the optimal structure of the
linear transceivers for both games, we provided a unified set of
sufficient conditions that guarantee the uniqueness of the Nash
equilibrium. In this Part II of the paper, we focus on the achieve-
ment of the equilibrium and propose alternative distributed
iterative algorithms that solve both games. Specifically, the new
proposed algorithms are the following: 1) the sequential and si-
multaneous iterative waterfilling-based algorithms, incorporating
spectral mask constraints and 2) the sequential and simultaneous
gradient-projection-based algorithms, establishing an interesting
link with variational inequality problems. Our main contribution
is to provide sufficient conditions for the global convergence of all
the proposed algorithms which, although derived under stronger
constraints, incorporating for example spectral mask constraints,
have a broader validity than the convergence conditions known
in the current literature for the sequential iterative waterfilling
algorithm.

Index Terms—Competitive optimality, distributed algorithms,
game theory, iterative waterfilling.

I. INTRODUCTION AND MOTIVATION

THE goal of this two-part paper is to find the optimal pre-
coding/multiplexing schemes for a set of noncooperative

links sharing the same physical resources, e.g., time and band-
width. Two alternative optimization problems are considered
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[1]: P.1) the maximization of mutual information on each link,
given constraints on the transmit power and spectral emission
mask, imposed by radio spectrum regulatory bodies and P.2)
the maximization of the transmission rate on each link, using
finite-order constellations, under the same constraints as in P.1,
plus a constraint on the maximum average error probability on
each link. We focus on decentralized strategies to avoid co-
ordination among the separated links and the heavy signaling
required by a global controller that would need to collect all rel-
evant information from all the users. The search for decentral-
ized solutions motivated our formulation within the convenient
framework of game theory. We thus adopt as optimality crite-
rion the achievement of a Nash equilibrium (NE) [2], and we
cast both optimization problems P.1 and P.2 as strategic nonco-
operative (matrix-valued) games [1], where the goal of each user
is to optimize its own precoding/multiplexing matrix. In Part I
of this two-part paper [1, Theorem 1], we proved that there is no
performance loss in reducing both original matrix-valued games
into a unified vector-valued power control game, where the op-
timal strategy of each user corresponds to finding the power al-
location that maximizes its own (information) rate, treating the
multiuser interference due to the other users as additive colored
noise. We will refer to this power control game as rate-maxi-
mization game. In Part I of this paper, we proved that the solu-
tion set of the rate-maximization game is always nonempty and
derived (sufficient) conditions that guarantee the uniqueness of
the NE [1, Theorem 2]. In this Part II, we propose alternative
algorithms that reach the Nash equilibria of the unified vector
game, in a totally distributed manner.

All the distributed algorithms used to compute the Nash
equilibria of a (rational [2]) strategic noncooperative game are
based on a simple idea: Each player optimizes iteratively its
own payoff function following a prescribed updating schedule,
for example, simultaneously with the other users (i.e., according
to a Jacobi scheme [3]), or sequentially (i.e., according to a
Gauss–Seidel scheme [3]). Differently from the optimization
of a single-user system, where the optimal transceiver structure
can be obtained in a single shot (depending on the interference
scenario [4]–[6]), in a competitive multiuser context like a
game, it is necessary to adopt an iterative algorithm, as each
user’s choice affects the interference perceived by the other
users. However, the competitive nature of the multiuser system
does not guarantee in general the convergence of such an itera-
tive scheme, even if the payoff function of each player is strictly
concave (or strictly convex) in its own strategies and the NE
is unique. This issue motivated several works in the literature
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[7]–[11], [21]–[29], where alternative approaches have been
proposed to study the convergence of iterative algorithms in
strategic noncooperative games.

A traditional approach comes from classical scalar power
control problems in flat-fading CDMA (or TDMA/FDMA)
wireless networks (either cellular or ad-hoc) [7]–[16],1 where
each user has only one variable to optimize: its transmit power.
This kind of problems can be elegantly recast as convex op-
timization problems (see, e.g., [18]–[20]) or as the so-called
“standard” problems (in the sense of [9]–[11]), for which
distributed (either synchronous or asynchronous) algorithms
along with their convergence properties are available [7]–[16],
[20]. The rate-maximization game proposed in this paper is
more involved, as it falls in the class of vector power control
problems, where each player has a vector to optimize (i.e., its
power allocation across frequency bins) and the best-response
function of each user (the waterfilling mapping) is not a stan-
dard function (in the sense of [9]–[11]). Hence, the classical
framework of [7]–[11] cannot be successfully applied to our
game theoretical formulation.

A special case of the rate-maximization game proposed in
this paper was studied in [21] in the absence of spectral mask
constraints, where the authors formulated the vector power con-
trol problem for a digital subscriber line (DSL) system, mod-
eled as a Gaussian frequency-selective interference channel, as
a two-person strategic noncooperative game. To reach the Nash
equilibria of the game, the authors proposed the sequential it-
erative waterfilling algorithm (IWFA), which is an instance of
the Gauss–Seidel scheme [3]: The users maximize their own in-
formation rates sequentially (one after the other), according to
a fixed updating order. Each user performs the single-user wa-
terfilling solution given the interference generated by the others
as additive (colored) noise. The most appealing features of the
sequential IWFA are its low-complexity and its distributed na-
ture. In fact, to compute the waterfilling solution, each user
only needs to measure the noise-plus-interference power spec-
tral density (PSD), without requiring specific knowledge of the
power allocations and the channel transfer functions of the other
users. The convergence of the sequential IWFA has been studied
in a number of works [22]–[28], each time obtaining milder
conditions that guarantee convergence. However, despite its ap-
pealing properties, the sequential IWFA suffers from slow con-
vergence if the number of users in the network is large, because
of the sequential updating strategy. In addition, the algorithm
requires some form of central scheduling to determine the order
in which users update their strategy.

The original contributions of this paper with respect to the
current literature on vector games [21]–[26] are listed next.
First, to compute the Nash equilibria of both games P.1 and
P.2 (introduced in Part I [1]), we generalize the sequential
IWFA of [21], including the spectral mask constraint and a
possible memory in the updating process. Then, to overcome
the potential slow convergence rate of the sequential IWFA, we
propose a new iterative algorithm, called simultaneous IWFA.

1Note that, even though some of these papers do not contain any explicit ref-
erence to game theory, the problems therein can be naturally reformulated as a
strategic noncooperative game, where the Nash equilibria are the fixed points of
proper best response correspondences.

The simultaneous IWFA is an instance of the Jacobi scheme
[3]: At each iteration, all users update their own strategies
simultaneously, still according to the single-user waterfilling
solution, but using the interference generated by the others in
the previous iteration. We provide results on the convergence
speed of both algorithms, showing that the simultaneous IWFA
is faster than the sequential IWFA, still keeping the desired
properties of the sequential IWFA, i.e., its distributed nature
and low complexity. The second important contribution of the
paper is to provide a unified set of sufficient conditions ensuring
the global convergence of both algorithms. Our conditions are
proved to have broader validity than those given in [21]–[25],
[26] (obtained without mask constraints) and, more recently, in
[27] (obtained including mask constraints) for the sequential
IWFA. Moreover, they show that the range of applicability with
guaranteed convergence of both sequential and simultaneous
IWFAs includes scenarios where the interfering users may be
rather close to each other. Finally, exploring the link between
the Nash equilibria of our game theoretical formulation and
the solutions to the so-called variational inequality problems
[30]–[32], we propose, as alternative to the IWFAs, two
novel gradient projection based iterative algorithms, namely
the sequential and simultaneous iterative gradient projection
algorithms (IGPAs) and provide conditions for their global
convergence.

Throughout the paper, there is a common thread relating the
algorithms and the derivation of their convergence conditions:
The interpretation of the waterfilling operator as the Euclidean
projector of a vector onto a convex set. In the single-user case,
this provides an alternative perspective of the well-known wa-
terfilling solution, that dates back to Shannon in 1949 [33]. In-
terestingly, in the multiuser case, this interpretation plays a key
role in proving the convergence of the proposed algorithms.

The paper is organized as follows. After briefly reviewing, in
Section II, the game theoretic formulation addressed in Part I of
the paper [1, Theorem 2], Section III provides the interpretation
of the waterfilling operator as a projector. Section IV contains
the main contribution of the paper: A variety of distributed algo-
rithms for the computation of the Nash equilibria of the game,
along with their convergence properties. Finally, in Section V,
some conclusions are drawn. Preliminary versions of this paper
appeared in [25], [28], and [29].

II. SYSTEM MODEL AND PROBLEM FORMULATION

We consider a Gaussian vector interference channel [35],
composed by noncooperative links. Aiming at finding
distributed algorithms, we focus on transmission techniques
where no interference cancellation is performed and multiuser
interference is treated as additive colored noise. Moreover,
we consider a block transmission without loss of generality
(w.l.o.g.), as it is a capacity-lossless strategy for sufficiently
large block length [36]–[38]. Then, under assumptions detailed
in Part I [1], the system design consists of finding the optimal
transmit/receive matrix pair for each link independently of the
others, according to some performance metrics. In Part I of this
paper [1], we assumed as optimality criterion the achievement
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of the NE and considered the two following strategic noncoop-
erative games:

P.1) the maximization of mutual information on each link,
given constraints on the transmit power and on the spec-
tral radiation mask;

P.2) the maximization of the transmission rate on each link,
using finite-order constellations, under the same con-
straints as in P.1 plus a constraint on the average (un-
coded) error probability.

After showing that the solution set of both games is always
nonempty, in [1, Theorem 1] we proved that the optimal trans-
mission strategy for each link leads to Gaussian signaling plus
the diagonal transmission through the channel eigenmodes (i.e.,
the frequency subchannels), irrespective of the channel state,
power budget, spectral mask constraints and interference levels.
Thanks to this result, both matrix-valued games P.1 and P.2 can
be recast, with no performance loss, as the following simpler
vector power control game [1, Theorem 1]:

(1)

where is the set of players (i.e., active links),
is the set of admissible strategies of player 2

(2)

where , with denoting the
maximum power that is allowed to be allocated on the th
frequency bin from the th user, and is the payoff
function of player

(3)

with

(4)

where denotes the
frequency response on the subcarrier of the channel between
source and destination is the distance between source

and destination , and is the path loss. The signal-to-noise
ratio (SNR) gap in (3) is set equal to 1 if game in P.1 is

2In order to avoid the trivial solution p (k) = p (k) for all
k 2 f1; . . . ; Ng; (1=N) p (k) > 1 is assumed for all q 2 
.
Furthermore, in the feasible strategy set of each player, we can replace, w.l.o.g.,
the original inequality power constraint (1=N) p (k) � 1, with
equality, since, at the optimum, this constraint must be satisfied with equality
from all users.

considered, whereas [39], if we con-
sider P.2, where denotes the -function [34] and is
the maximum tolerable (uncoded) average symbol error proba-
bility on link .

In [1, Theorem 2], we showed that the solution set of is
always nonempty and coincides with the solution set of the fol-
lowing nonlinear fixed-point equation:

(5)

with the waterfilling operator defined as

(6)

with , where denotes the Euclidean projec-
tion of onto the interval .3 The water level is chosen
to satisfy the power constraint .

Observe that system (5) contains, as special cases, the solu-
tions to power control games already studied in the literature
[21]–[26], when all the players are assumed to transmit with the
same power and no spectral mask constraints are imposed (i.e.,
when ). In this case, the Nash equilibria
of game are given by the classical simultaneous waterfilling
solutions [21]–[26], where in (5) is still obtained from
(6) simply setting . However, in the
presence of spectral mask constraints, the results of [21]–[26]
cannot be applied to system (5). In Part I of this paper [1, The-
orem 2], we studied system (5) and provided sufficient condi-
tions for the uniqueness of the solution. The problem we address
here is how to reach solutions to (5) (leading to the Nash equi-
libria of ) by means of totally distributed algorithms.

III. WATERFILLING OPERATOR AS A PROJECTOR

In this section, we provide an interpretation of the waterfilling
operator as a proper Euclidean projector. This interpretation will
be instrumental to prove the convergence properties of some of
the algorithms proposed in the subsequent sections.

A. A New Look at the Single-User Waterfilling Solution

Consider a parallel additive colored Gaussian noise channel
composed of subchannels with coefficients , sub-
ject to some spectral mask constraints and to a
global average transmit power constraint across the subchan-
nels. It is well known that the capacity-achieving solution for
this channel is obtained using independent Gaussian signaling
across the subchannels with the following waterfilling power al-
location [40]

(7)

3The Euclidean projection [x] , with a � b, is defined as follows: [x] = a,
if x � a; [x] = x, if a < x < b, and [x] = b, if x � b.
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where denotes the noise variance on the th subchannel, and
is the optimal power allocation over the th subchannel.

The water-level in (7) is chosen in order to satisfy the power
constraint and can be computed effi-
ciently using, e.g., the framework proposed in [50] .

We show now that, interesting ly, the solution in (7) can be
interpreted as the Euclidean projection of the vector - , de-
fined as

(8)

onto the simplex

(9)

Lemma 1: The Euclidean projection of the -dimensional
real nonpositive vector onto the
simplex defined in (9), denoted by , is by definition
the solution to the following convex optimization problem:

(10)

and assumes the following form:

(11)

where is chosen in order to satisfy the constraint
.

Proof: See Appendix A.
Lemma 1 is an extension of [46, Lemma 1] to the case where

interval bounds are included in the optimization.
But what is important to remark about Lemma 1 (and this is a
contribution of this paper) is that it allows us to interpret the
waterfilling operator as a projector, according to the following
corollary.

Corollary 1: The waterfilling solution
in (7) can be expressed as the

projection of given in (8) onto the simplex in (9):

(12)

Corollary 2: The waterfilling solution in the form

(13)

where is any positive vector, can be ex-
pressed as the projection with respect to the weighted Euclidean

Fig. 1. Graphical interpretation of waterfilling solution (7) as a projection onto
the two-dimensional simplex.

norm4 with weights , of given in (8) onto the
simplex in (9):

(14)

The graphical interpretation of the waterfilling solution as a
Euclidean projector, for the single-carrier two-user case, is given
in Fig. 1: For any corresponding to a
point in the interior of the gray region (e.g., point ), the wa-
terfilling solution allocates power over both the channels. If, in-
stead, the vector is outside the gray region (e.g., point ),
all the power is allocated only over one channel, the one with
the highest normalized gain.

B. Simultaneous Multiuser Waterfilling

In the multiuser scenario described in game , the optimal
power allocation of each user depends on the power allocation
of the other users through the received interference, according
to the simultaneous multiuser waterfilling solution in (5).

As in the single-user case, introducing the vector ,
defined as

(15)

with , and invoking Lemma 1, we obtain the
following corollary.

Corollary 3: The waterfilling operator in (6) can
be expressed as the projection of defined in (15)
onto the simplex given in (2):

(16)

Comparing (5) with (16), it is straightforward to see that all
the Nash equilibria of game can be alternatively obtained as

4The weighted Euclidean norm kxk is defined as kxk
( w jx j ) [44].
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the fixed points of the mapping defined in (16), whose existence
is guaranteed by [1, Theorem 2]

(17)

In Appendix B, we provide the key properties of the mapping in
(16), that will be instrumental to obtain sufficient conditions for
the convergence of the distributed iterative algorithms based on
the waterfilling solution and described in Section IV-A.

IV. DISTRIBUTED ALGORITHMS

In [1, Theorem 2], we proved that, under some (sufficient)
conditions on transmit powers, channels and network topology,
the NE for game is unique. Since there is no reason to expect a
system to be initially at the equilibrium, the concept of equilib-
rium has a useful meaning in practice only if one is able to find
a procedure that reaches such an equilibrium from nonequilib-
rium states. In this section, we focus on algorithms that converge
to these equilibria.

Since we are interested in a decentralized implementation,
where no signaling among different users is allowed, we con-
sider only totally distributed iterative algorithms, where each
user acts independently of the others to optimize its own power
allocation while perceiving the other users as interference. The
main issue of this approach is to guarantee the convergence of
such an iterative scheme. In the following, we propose two al-
ternative classes of totally distributed iterative algorithms along
with their convergence properties, namely: iterative algorithms
based on the waterfilling solution (6), and iterative algorithms
based on the gradient projection mapping.

A. Distributed Algorithms Based on Waterfilling

So far, we have shown that the Nash equilibria of game
are fixed points [see (5)] of the waterfilling mapping defined in
(6). Hence, to achieve these solutions by a distributed scheme,
it is natural to employ an iterative algorithm based on the best
response (6). Based on this idea, we consider two classes of iter-
ative algorithms: sequential algorithms, where the users update
their strategies sequentially according to a given schedule; and
simultaneous algorithms, where all the users update their strate-
gies at the same time. In the following sections, we provide a
formal description of both algorithms and derive the conditions
guaranteeing their convergence to the unique NE of the game.

Before describing the proposed algorithms, we introduce the
following intermediate definitions. Given game , let

denote the set deprived of the carrier
indices that user would never use as the best response set to
any strategies adopted by the other users, for the given set of
transmit power and propagation channels [1]:

such that

(18)

with defined in (6) and
. We also introduce the nonnegative matrix

, defined as

otherwise
(19)

with the convention that the maximum in (19) is zero if
is empty. In (19), each set can be chosen as any subset of

such that , with
defined in (18). In Part I of the paper [1], we provided a simple
procedure to compute such a set .

1) Sequential Iterative Waterfilling Algorithm Revisited:
The sequential IWFA is an instance of the Gauss–Seidel
scheme [3]: All users update their own strategies sequentially,
performing the waterfilling solution (6). The algorithm is
described in Algorithm 1.

Algorithm 1: Sequential IWFA

Set any feasible power allocation, ;

for ,
,

otherwise
(20)

end

The convergence of the algorithm is guaranteed under the fol-
lowing sufficient conditions.

Theorem 1: Assume that the following condition is satisfied:

(C1)

where is defined in (19) and denotes the spectral
radius5 of the matrix . Then, as , the sequential
IWFA described in Algorithm 1 converges linearly to the unique
NE of game , for any set of initial conditions belonging to
and for any updating schedule.

Proof: See Appendix C.
Remark 1—Global Convergence and Uniqueness of the NE:

Even though the optimization problem (1) is nonlinear, condi-
tion (C1) guarantees the global convergence of the sequential
IWFA, irrespective of the specific users’ updating order. More-
over, the global asymptotic stability of the NE implies also the
uniqueness of the equilibrium. Condition (C1) indeed coincides
with the uniqueness condition given in [1, Corollary 1].

To give additional insight into the physical interpretation
of sufficient conditions for the convergence of the sequential
IWFA, we provide the following corollaries of Theorem 1.

5The spectral radius �(S) of the matrix S, is defined as �(S) = maxfj�j :
� 2 eig(S)g, with eig(S) denoting the set of eigenvalues of S [44].
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Corollary 4: A sufficient conditions for (C1) in Theorem 1 is
given by one of the two following set of conditions:

(C2)

(C3)

where is any positive vector.
Corollary 5: The best vector in (C2) and (C3) is given by

the solution to the following geometric programming problem:

(21)

where is defined as

(22)

if (C2) is used, or as

(23)

if (C3) is used.
Note that, according to the definition of in (19), one

can always choose the full set in (C1) and
(C2)–(C3). However, less stringent conditions are obtained by
removing the unnecessary carriers, i.e., the carriers that, for the
given power budget and interference levels, are never going to
be used.

Remark 2—Physical Interpretation of Convergence Con-
ditions: As already shown in Part I of the paper [1] for the
uniqueness conditions of the NE, the convergence of sequen-
tial IWFA is guaranteed if the interferers are sufficiently far
apart from the destinations. In fact, from (C1) or (C2)–(C3),
one infers that, for any given set of channel realizations and
power constraints, there exists a distance beyond which the
sequential IWFA is guaranteed to converge, corresponding
to the maximum level of interference that may be tolerated
by each receiver [as quantified, e.g., in (C2)] or that may be
generated by each transmitter [as quantified, e.g., in (C3)].
Interestingly, the presence of spectral mask constraints does not
affect the convergence capability of the algorithm. Moreover,
convergence condition (C1) [or (C2)–(C3)] has the same de-
sired properties as the uniqueness conditions obtained in Part I

of the paper: It is robust against the worst normalized channels
, since the subchannels corresponding to

the highest ratios (and, in particular, the
subchannels where is vanishing) do not necessarily
affect (C1) [or (C2)–(C3)], as their subcarrier indices may not
belong to the set . This strongly relaxes the convergence
conditions.

We can generalize the sequential IWFA given in Algorithm
1 by introducing a memory in the updating process, as given in
Algorithm 2. We call this new algorithm smoothed sequential
IWFA.

Algorithm 2: Smoothed Sequential IWFA

Set any feasible power allocation and
;

for .
[See (24), shown at the bottom of the page.]

end

Each factor in Algorithm 2 can be interpreted as
a forgetting factor: The larger is , the longer is the memory
of the algorithm. In this paper, we are only considering constant
channels. Nevertheless, in a time-varying scenario, (24) could
be used to smooth the fluctuations due to the channel variations.
In such a case, if the channel is fixed or highly stationary, it is
convenient to take close to 1; conversely, if the channel is
rapidly varying, it is better to take a small . Interestingly, the
choice of does not affect the convergence property of
the algorithm (although it may affect the speed of convergence),
as proved in the following.

Theorem 2: Assume that conditions of Theorem 1 are satis-
fied. Then, as , the smoothed sequential IWFA de-
scribed in Algorithm 2 converges linearly to the unique NE of
game , for any set of initial conditions in , updating schedule,
and , with .

Proof: See Appendix C.
Remark 3—Comparison With Previous Results: The sequen-

tial IWFA described in Algorithm 1 generalizes the well-known
sequential iterative waterfilling algorithm originally proposed
by Yu et al. in [21] and then studied in [22]–[26], to the case
in which the users have (possibly) different power budgets and
there are spectral mask constraints. In fact, the algorithm in [21]
can be obtained as a special case of Algorithm 1, by removing
the spectral mask constraints in each set in (2), (i.e., setting

) and replacing the waterfilling operator
in (6) with the classical waterfilling solution

(25)

otherwise
(24)
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where and is defined in (15).
The convergence of the sequential IWFA based on the map-

ping (25) has been studied in a number of works, each time ob-
taining milder convergence conditions. Specifically, in [21], the
authors provided sufficient conditions for the existence of a NE
and the convergence of the sequential IWFA, for a game com-
posed by two players. This was later generalized to an arbitrary
number of players in [22]–[25]. In [26], the case of flat-fading
channels was considered. Interestingly, although derived under
stronger constraints, incorporating for example spectral mask
constraints, our convergence conditions have a broader validity
than those obtained in [21]–[26], as shown in the following.6

Corollary 6: Sufficient conditions for (C2) are [21]–[25]

(C4)

or [23]

(C5)

In the case of flat-fading channels (i.e., ),
condition (C2) becomes [26]

(26)

Recently, alternative sufficient conditions for the convergence
of sequential IWFA as given in Algorithm 1 were independently
given in [27]. Specifically, the sequential IWFA was proved to
converge to the unique NE of the game if the following condition
is satisfied7:

(C6)

where denotes the spectral radius of the matrix
, with and denoting the strictly

lower and strictly upper triangular part of the matrix , re-
spectively, with defined, in our notation, as in (19), where
each is replaced by the full set .

As an example, in Fig. 2, we compare the range of validity
of our convergence condition (C1) with that of (C4), and (C6),
over a set of channel impulse responses generated as vectors
composed of i.i.d. complex Gaussian random variables with
zero mean and unit variance. In the figure, we plot the proba-
bility that conditions (C1), (C4), and (C6) are satisfied versus
the ratio , which measures how far apart are the inter-
ferers from the destination, with respect to the intended source.
In Fig. 2(a), we consider a system composed by users,
and in Fig. 2(b), a system with links. For the sake of
simplicity, to limit the number of free parameters, we assumed

6We summarize the main results of [21]–[25] using our notation.
7We write conditions of [27] using our notation.

Fig. 2. Probability of (C1), (C4), and (C6) versus d =d ;Q = 5 [subplot
(a)], Q = 15 [subplot (b)],  = 2:5; d = d ; d = d = 1; P = P ;
� = 1; P =� = 7 dB, P =(� d ) = 3 dB, 8r; q 2 
; www = 1.

and . We tested our condi-
tion considering the set , obtained using the algorithm given
in [1]. We can see, from Fig. 2, that the probability of guaran-
teeing convergence increases as the distance of the interferers,
normalized to the source–destination distance, increases (i.e.,
the ratio increases). Interestingly, the probability that
(C1) is satisfied, differently from (C4) and (C6), exhibits a neat
threshold behavior as it transits very rapidly from the noncon-
vergence guarantee to the almost certain convergence, as the
ratio increases by a small percentage. This shows that
the convergence conditions depend, fundamentally, on the inter-
ferers distance, rather than on the channel realizations. Finally,
it is worthwhile noticing that our conditions have a broader va-
lidity than (C4) and (C6). As an example, for a system with
probability of guaranteeing convergence of 0.99 and ,
conditions (C1) only require , whereas conditions
(C4) and (C6) require and , respec-
tively. Furthermore, comparing Fig. 2(a) with (b), one can see
that this difference increases as the number of links increases.
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Remark 4—Distributed Nature of the Algorithm: The sequen-
tial IWFA as described in Algorithms 1 and 2 can be imple-
mented in a distributed way, since each user, to maximize its
own rate, needs only to measure the PSD of the thermal noise
plus the overall MUI [see (4)]. However, despite its appealing
properties, the algorithm may suffer from slow convergence if
the number of users in the network is large, as we will also
show in Section IV-A-3). This drawback is due to the sequen-
tial schedule in the users’ updates, wherein each user, to choose
its own strategy, is forced to wait for all the other users sched-
uled before. Moreover, although distributed, both algorithms re-
quire that all users share a prescribed updating schedule. This re-
quires a centralized synchronization mechanism that determines
the order and the update times of the users. We show next how
to remove these limitations.

2) Simultaneous Iterative Waterfilling Algorithm: To over-
come the main limitation of sequential IWFAs given in Algo-
rithms 1 and 2, we consider in this section the simultaneous ver-
sion of the IWFA, called simultaneous IWFA. The algorithm is
an instance of the Jacobi scheme [3]: At each iteration, all users
update their own power allocation simultaneously, performing
the waterfilling solution (6), given the interference generated by
the other users in the previous iteration. Stated in mathemat-
ical terms, the proposed algorithm is described in Algorithm 3
[28], [29].

Algorithm 3: Simultaneous IWFA

Set any feasible power allocation,

for ,
(27)

end

As for the sequential IWFA, also in the simultaneous IWFA
we can introduce a memory in the updating process and obtain
the so-called smoothed simultaneous IWFA, as described in Al-
gorithm 4 [28], [29].

Algorithm 4: Smoothed SIWFA

Set any feasible power allocation and

for

(28)

end

Interestingly, both Algorithm 3 and 4 are guaranteed to glob-
ally converge to the unique NE of the game, under the same
sufficient conditions of the sequential IWFA, as proved in the
following.

Theorem 3: Assume that conditions of Theorem 1 are satis-
fied. Then, as , the simultaneous IWFAs described in
Algorithm 3 and Algorithm 4 converge linearly to the unique NE

of game , for any set of initial conditions in and ,
with .

Proof: See Appendix D.
Additional (weaker) convergence conditions for Algorithm 3

and 4 are given next. Introducing the matrix ,
defined as

otherwise
(29)

we have the following theorem.
Theorem 4: Assume that the following conditions are

satisfied:

(30)

where is defined in (29). Then, as , the sequen-
tial IWFA8 described in Algorithm 3 converges linearly to the
unique NE of game , for any set of initial conditions in .

Proof: See Appendix E.
Remark 5—Sequential Versus Simultaneous IWFA: Since

both simultaneous IWFAs in Algorithms 3 and 4 are still based
on the waterfilling solution (6), they keep the most appealing
features of the sequential IWFA, namely its low complexity
and distributed nature. In fact, as in the sequential IWFA, also
in the simultaneous IWFA each user only needs to locally
measure the PSD of the interference received from the other
users and water-pour over this level. In addition, thanks to the
Jacobi-based update, all the users are allowed to choose their
optimal power allocation simultaneously. Hence, the simulta-
neous IWFA is expected to be faster than the sequential IWFA,
especially if the number of active users in the network is large.
We formalize this intuition in the next section.

3) Asymptotic Convergence Rate: In this section, we provide
an upper bound of the convergence rate of both (smoothed) se-
quential and simultaneous IWFAs. The convergence rate can be
either measured on the average or for the worst possible initial
vector . In the following we focus on the latter approach,
introducing the asymptotic convergence exponent.

Denoting by and the NE of game and the power
allocation vector obtained by the proposed algorithm at the th
iteration, respectively, the distance between and can be
measured by some vector norm , which is to be
compared with the initial distance . This leads to the
following asymptotic convergence exponent for the worst-case
convergence rate [43]:

(31)

Since for large

(32)

8Condition (30) is sufficient also for the convergence of the smoothed simul-
taneous IWFA described in Algorithm 4, provided that the second hand-side of
(30) is replaced by � = (1�max � )=(1�min � ) � 1.
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Fig. 3. Rates of the users versus iterations: sequential IWFA (solid line curves),
simultaneous IWFA (dashed line curves),Q = 50;  = 2:5; d = d ; d =
d = 1; P = P ; � = 1; P =� = 7 dB, P =(� d ) = 3 dB, 8r; q 2 
.

where is a constant that depends on the initial conditions,
gives the (asymptotic) number of iterations for the error to

decrease by the factor (for the worst possible initial vector).
Since the waterfilling operator is not a monotone mapping,

only (upper) bounds for the asymptotic convergence exponent
can be obtained [41], [42], as given in the following.

Proposition 1: Let and be lower bound of in (31)
obtained using (smoothed) sequential IWFA in Algorithm 2 and
(smoothed) simultaneous IWFA in Algorithm 4, respectively.
Under condition (C2) of Corollary 4, we have

(33)

(34)

Proof: The proof follows directly from Proposition 2 in
Appendix B.

Remark 6—Convergence Speed: Expression (33) shows that
the convergence speed of the algorithms depends, as expected,
on the memory factors and on the level of interference.
Given , the convergence speed increases as the inter-
ference level decreases. Since and are only bounds
of the asymptotic convergence exponent, a comparison between
the sequential IWFA and the simultaneous IWFA by and

might not be fair. These bound becomes meaningful if
and approximate with equality and , respectively,
for some initial conditions (cf. [41]).

In Fig. 3, we compare the performance of the sequential and
simultaneous IWFA, in terms of convergence speed. We con-
sider a network composed of 50 links, and we show the rate
evolution of three of the links corresponding to the sequential
IWFA and simultaneous IWFA as a function of the iteration
index as defined in Algorithms 1 and 3. To make the figure

not excessively overcrowded, we report only the curves of 3 out
of 50 links. As expected, the sequential IWFA is slower than the
simultaneous IWFA, especially if the number of active links
is large, since each user is forced to wait for all the users sched-
uled in advance, before updating its own power allocation.

B. Distributed Algorithms Based on Gradient Projection

In this section, we propose two alternative distributed algo-
rithms based on the gradient projection mapping. The first algo-
rithm is an instance of the Jacobi scheme, whereas the second
one is based on the Gauss–Seidel procedure. Both algorithms
come out from an interesting interpretation of the Nash equi-
libria in (5) as solutions to a proper Nonlinear Variational In-
equality (NVI) problem [30, Sec. 1.4.2], as we show next. The
NVI problem is defined as follows. Given a subset
of the Euclidean th-dimensional space and a mapping

, the (nonlinear) variational inequality is to find a
vector such that [30, Def. 1.1.1]

(35)

All the Nash equilibria in (5) of game , can be written as
solutions to a NVI problem. In fact, a feasible strategy profile

satisfies (5) if and only if the following
necessary and sufficient optimality conditions hold true [45]9 :

(36)

where denotes the gradient vector of with
respect to , evaluated in and is defined in (2).
Comparing (35) with (36), it is straightforward to see that a
strategy profile is a NE of if and only if it is a solution
to the NVI problem (35), with the following identifications:

(37)

(38)

(39)

where denotes the th component of
. In fact, if (36) is satisfied for each ,

then summing over , (35) follows. Conversely, assume that
(35) holds true for some . Then, for any given , choosing

and , we have
and

.
Building on the equivalence between (35) and (36), [30], [32],

we can obtain distributed algorithms that reach the Nash equi-
libria of game by looking for algorithms that solve the NVI
problem in (35). A similar approach was already followed in
[23], where the equivalence between the Nash equilibria of a
DSL game that is a special case of and the solutions to a proper
nonlinear complementary problem [30] was shown. However,

9Observe that, given the strategy profiles of the other players, the optimal
strategy of each player is a solution to the convex optimization problem defined
in (1), whose optimality conditions, for any given q and p , can be written as
in (36) [45, Sec. 4.2.3].
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the algorithms proposed in [23] to compute the NE solutions, in
general, cannot be implemented in a distributed way, since they
need a centralized control having access to all channel state in-
formation and to the PSD of all users. Differently from [23], we
exploit the equivalence between (35) and (36) and propose two
alternative totally distributed algorithms that do not require any
centralized control to be implemented and have the same com-
putational complexity as the IWFAs. To this end, we need the
following intermediate result that comes directly from the NVI
formulation in (36) [3, Prop. 5.1].

Lemma 2: Let be a positive scalar and be
a set of symmetric positive definite matrices. A vector

is a NE of game if and only if
it is a fixed point of the following mapping10:

(40)

where is the Euclidean projection on with respect to
the vector norm = .

Given Lemma 2, to reach the Nash equilibria of , it is nat-
ural to employ an iterative algorithm, based either on Jacobi or
Gauss–Seidel schemes, using as best response for each user the
mapping in (40). Specifically, if the mapping in (40) is used in
the Jacobi scheme, we obtain the simultaneous iterative gradient
projection algorithm (IGPA), as described in Algorithm 5.

Algorithm 5: Simultaneous IGPA

Set any feasible power allocation, , and
;

for

(41)

end

The sequential update of the strategies from the players can
be easily obtained from (40) by using the Gauss–Seidel scheme,
and provides the sequential IGPA, as given in Algorithm 6.

10The mapping in (40) always admits at least one fixed point, since it satis-
fies Brouwer’s fixed-point theorem [48, Theorem 4.2.5]. In fact, each set P
is compact and convex, and the mapping T (p) = (T (p)) in (40) is
continuous on P = P �� � ��P , since eachR (p) is a continuously differ-
entiable function of p and the projector operator is continuous as well [3, Prop.
3.2c].

Algorithm 6: Sequential IGPA

Set any feasible power allocation, , and
;

for
[see (42), shown at the bottom of the page].

end

The positive constant and the set of (positive definite) ma-
trices are free parameters that affect the convergence
property of the algorithms [3]. Sufficient conditions for the con-
vergence of both sequential and simultaneous IGPAs are given
in Appendix F.

Remark 7—Computation of the Projection: According to the
best response mapping defined in (41) and (42), both Algo-
rithms 5 and 6 require, at each iteration, the computation of
the Euclidean projection on the feasible strategy set
given in (2), with respect to the norm . For any given

and the projections in (41)
and (42), written as

with

(43)

can be computed solving the following convex quadratic
programming:

(44)

where

and

(45)

with given in (43). Observe that in the special case of
the mapping in (43) becomes the classical

Euclidean projection on the set , that can be efficiently com-
puted as a waterfilling solution, as shown in Section III-A (cf.
Lemma 1).

Interestingly, to compute the projection in (43), a variety of
alternative algorithms can be obtained, interpreting in

otherwise
(42)
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Fig. 4. Users’ rates versus iterations; simultaneous IGPA (solid line curves)
and simultaneous IWFA (dashed-line curves), Q = 35;  = 2:5; d = d ;
d = d = 1; P = P ; � = 1; P =� = 7 dB, P =(� d ) = 3 dB,
8r; q 2 
.

(43) as the unique solution to a proper linear variational in-
equality (LVI) problem [3], as we show next. Using the scaled
projection theorem [3, Prop. 3.7(b)],11 one can find that the pro-
jection in (43) can be equivalently defined as the unique
vector such that

which, since , can be rewritten as

(46)

where and are defined in (45). Inequality in (46) still de-
fines a variational inequality problem [see (35)], but computa-
tionally simpler than the original one given in (36), as the func-
tion in (46), for any given , is linear in .
Observe that, since (and thus ) is positive definite, the
(unique) solution in (46) is well defined, as LVI in (46) ad-
mits a unique solution [3, Prop. 5.5]. A variety of algorithms,
known in the literature as linearized algorithms can be used to
efficiently solve the LVI in (46). The interested reader may refer
to [30]–[32] for a broad overview of these algorithms.

Remark 8—Distributed Nature of the Algorithms: Interest-
ingly, both IGPAs keep the most appealing features of IWFAs,
namely their low-complexity distributed nature. In fact, as in
IWFAs, also in IGPAs each user needs only to locally mea-
sure the PSD of the overall interference received from the other
users and project a vector that depends on this interference (i.e.,

) onto its own feasible set.
Numerical Example: As an example, in Fig. 4, we compare

the performance of the simultaneous IGPA with the simulta-
neous IWFA, in terms of convergence speed. We consider a net-
work composed of 35 active users and compare the rate
evolution of 3 out of 35 links as a function of the iteration index

11The scaled projection theorem says that, given some x 2 and a convex
setX � , a vector z 2 X is equal to [x] if and only if (y�z) G(y�z) �
0; 8y 2 X , where [x] denotes the Euclidean projection of x on X with
respect to the norm k � k .

, as defined in Algorithms 3 and 5. Interestingly, the simul-
taneous IGPA shows similar convergence speed than simulta-
neous IWFA. Thus, it can be used as a valid alternative to the
simultaneous IWFA.

V. CONCLUSION

In this two-part paper, we have formulated the problem of
finding the optimal linear transceivers in a multipoint-to-mul-
tipoint wideband network, as a strategic noncooperative game.
We first considered the theoretical problem of maximizing mu-
tual information on each link, given constraints on the spectral
mask and transmit power. Then, to accommodate for practical
implementation aspects, we focused on the competitive maxi-
mization of the transmission rate on each link, using finite-order
constellations, under the same constraints as above plus a con-
straint on the average error probability. In Part I of the paper,
we fully characterized both games by providing a unified ex-
pression for the optimal structure of the linear transceivers and
deriving conditions for the uniqueness of the NE. In this Part
II, we have focused on how to reach these equilibria using to-
tally decentralized algorithms. We have proposed and analyzed
alternative distributed iterative algorithms along with their con-
vergence conditions, namely: 1) the sequential IWFA, which is
a generalization of the well-known (sequential) iterative water-
filling algorithm proposed by Yu et al. to the case where spec-
tral mask constraints are incorporated in the optimization; 2) the
simultaneous IWFA, which has been shown to converge faster
than the sequential IWFA; and 3) the sequential and simulta-
neous IGPAs, which are based on the gradient projection best re-
sponse, and establish an interesting link between the Nash equi-
libria of the game and the solutions to the corresponding varia-
tional inequality problem. Interestingly, the simultaneous IGPA
has been shown to have approximately the same convergence
speed and computational complexity of the simultaneous IWFA,
and thus it can be a valid alternative to the algorithms based on
the waterfilling solutions. We have derived the sufficient condi-
tions for the global convergence of all the proposed algorithms
that, although proved under stronger constraints (e.g., the addi-
tional spectral mask constraint), have broader validity than the
convergence conditions known in the current literature for the
sequential IWFA proposed by Yu et al.

We are currently investigating the extension of the proposed
algorithms to the case in which the updating strategies are per-
formed in a totally asynchronous way [49]. The other major
extension that needs to be addressed is the situation where the
channels and interference covariance matrices are known only
within an inevitable estimation error.

APPENDIX

A. Proof of Lemma 1

First of all, observe that the objective function of the convex
problem (10) is coercive on the feasible set [47]. Hence, a
solution for the problem (10) exists [47]. Since problem (10)
satisfies Slater’s condition [45], [47], the Karush–Kuhn–Tucker
(KKT) conditions are both necessary and sufficient for the
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optimality. The Lagrangian corresponding to the constrained
convex problem (10) is

(47)

and the KKT conditions are

(48)

with and .
Observe that, if or

for some , then the problem is infeasible; if
, then the problem admits the

trivial solution if for some ,
then . Here after, we thus assume that all the subcarrier
indices corresponding to the zero-valued ’s have been
removed and (to avoid the trivial
solution).

First of all, observe that (in fact, is not ad-
missible, since the constraint necessarily
implies , for at least one ). If ,
since and (by the complementary slackness condition)

, then . If , then
and which provides , (observe

that ). Finally, if , then
and , which implies . Since,

for each , the values of the admissible solution induce a parti-
tion on the set of the values, the solution can be written as

with , where is chosen so that
.

B. Properties of Waterfilling Projection

First of all, it is convenient to rewrite the waterfilling operator
in (16) as

(49)

where is defined in (2), and

(50)

Building on (49), we derive now a key property of the water-
filling operator that will be fundamental in proving Theorems
1 and 3. To this end, we introduce the following mapping. For
technical reasons, we first define

otherwise
(51)

where [see (19)], and introduce the
admissible set , where is
the subset of containing all the feasible power allocations of
user , with zero power over the carriers that user would never
use, for the given power budget and interference level, in any of
its waterfilling solutions (6), against any admissible strategy of
the others12:

with

(52)

where the second equality in (52) follows from the properties
of the waterfilling solution (6) (cf. Appendix A). Observe that,
because of (52), the game does not change if we use instead
of the original . For any given with , let

be the mapping defined, for
each , as

(53)

where the second equality follows from (52). Observe that the
operator in (53) is indeed a mapping from to , due to
the convexity of . Moreover, it follows from (49) that all
the Nash equilibria of game in (1) [see (17)]
satisfy the following set of equations:

(54)

12Observe that all the subcarriers that user q will never use are considered if
D is chosen so that D = D .
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which correspond to the fixed points in of the mapping
defined in (53). Hence, the existence of at least one fixed point
for is guaranteed by the existence of a NE for game [1,
Theorem 2].

Before proving the main property of the mapping , we need
the following intermediated definitions. Given in (53) and
some , let denote the
(vector) block-maximum norm, defined as [3]

(55)

where is the Euclidean norm. Let be the vector
weighted maximum norm, defined as [44]

(56)

and let denote the matrix norm induced by ,
defined as [44]

(57)

Finally, define as

(58)

with defined in (18). Observe that is not a vector
norm (as does not satisfy the positivity property), but it is a
vector seminorm [44].

The mapping in (53) is said to be a block-contraction with
modulus , with respect to the norm in (55), if there
exists such that [3, Sec. 3.1.2]

(59)

We provide now some interesting properties for the mapping
in (53), that will be instrumental to study the convergence of
both sequential and simultaneous IWFAs.

Lemma 3 (Nonexpansive Property of the Waterfilling Map-
ping): Given and defined in (19), (52), and

(58), respectively, let denote the projector operator onto

the convex set with respect to the vector norm . Then,

satisfies the following nonexpansive property:

(60)

Proof: For any given , let denote the
weighted vector norm (derived from an inner product [44]), de-
fined as

(61)

Then the projector satisfies the following inequality:

(62)

where the equality in (62) follows from

, due to the equivalence between the optimiza-
tion problem (10) and the same problem where the original
objective function is replaced by

(since any
is such that ); and the inequality in (62) rep-

resents the nonexpansion property of the projector

in the norm [3, Prop. 3.2(c)].13

Since is a continuous function of , taking in
(62) the limit as , and using

we obtain the desired inequality, as stated in (60).
Proposition 2 (Contraction Property of Mapping ): Given

, assume that the following condition
is satisfied:

(63)

where and are defined in (19) and (57), re-
spectively. Then, the mapping defined in (53) is a block-con-
traction with modulus , with respect to the
block-maximum norm defined in (55).

Proof: The proof consists of showing that, under (63), the
mapping satisfies (59), with . Given

and ,
define, for each ,

and

(64)

Then, we have, ,

(65)

13Observe that the nonexpansive property of the projector, usually given in
the Euclidean norm, is preserved in any vector norm (derived from an inner
product) used to define the projection.
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(66)

(67)

(68)

(69)

(70)

(71)

where (66) follows from (53) and the triangle inequality [44]; in
(67) is defined in (58) and the equality follows from
the fact that sets to zero the elements not in ; (68) fol-
lows from Lemma 3 [see (60)]; in (69) is a diagonal matrix
defined as

otherwise
(72)

Introducing the vectors

and (73)

with and defined in (64), and the matrix

(74)

where and is defined in (19).
Then, the set of inequalities in (71) for all , can be rewritten
in vectorial form as

(75)

Using the weighted maximum norm defined in (56) in
combination with (75), we have, and

(76)

where is the matrix norm induced by the vector norm
in (56) and defined in (57), [44]. Finally, using (76) and

(55), we obtain, and

(77)

which leads to a block-contraction for the mapping if
, implying condition (63) [since each

].

C. Proof of Theorem 1 and Theorem 2

Since the sequential IWFA described in Algorithm 1 is an in-
stance of the smoothed sequential IWFA given in Algorithm 1
when for all , to prove convergence of both algo-
rithms, it is sufficient to show that Algorithm 2, under condition
(C1), globally converges to the NE of game , for any given set

, provided that each . We thus focus in the
following only on Algorithm 2, w.l.o.g.

It follows from Corollary 3 and (53) that Algorithm 2 is just an
instance of the Gauss–Seidel scheme based on the mapping ,
defined in (53). Observe that, to study the convergence of Algo-
rithm 2, there is no loss of generality in considering the mapping

defined in instead of since all the points pro-
duced by the algorithm (except possibly the initial point, which
does not affect the convergence of the algorithm in the subse-
quent iterations) as well as the Nash equilibria of the game are
confined, by definition, in [see (17) in Appendix B]. Con-
vergence of the Gauss–Seidel scheme based on the mapping
is given by the following result that comes from [3, Prop. 1.4]14

and [3, Prop. 1.1a].
Proposition 3: If the mapping defined in (53)

is a block-contraction with respect to some vector norm, then
1) the mapping has a unique fixed point in and 2) the
sequence of vectors starting from any arbitrary point in and
generated by the Gauss–Seidel algorithm based on the mapping

, converges linearly to the fixed point of .
It follows from Proposition 2 and Proposition 3 that the global

convergence of Algorithm 2 is guaranteed under the sufficient
condition given in (63). Moreover, since (63) does not depend
on , the convergence of the algorithm is not affected by
the particular choice of ’s as well [provided that each

].
To complete the proof, we just need to show that (63) is equiv-

alent to (C1). Since is a nonnegative matrix, there exists a
positive vector such that [3, Corollary 6.1]

(78)

Since the convergence of Algorithm 2 is guaranteed under (63),
for any given , we can choose and use (78),
which proves the desired result.

14Observe that the set P defined in (52) is closed, as required in [3, Prop.
1.4].
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Conditions (C2) and (C3) in Corollary 4 can be obtained as
follows. Using [3, Prop. 6.2e]

(79)

a sufficient condition for the direction in (78) is

(80)

for some given which provides (C2). The optimal vector
is given by the following geometric programming [45]

which provides (21).
Condition (C3) is obtained similarly, still using (78) and

.

D. Proof of Theorem 3

The proof is based on the same steps as in Appendix C. It fol-
lows from [3, Prop. 1.1] that both Algorithm 3 and Algorithm 4
linearly converge to the unique NE of game , starting from
any arbitrary point in , if the mapping defined in (53)
is a contraction [see (59)] in some vector norm. Using the
block-maximum norm as defined in (55), invoking Proposition
2, and following the same approach as in Appendix C we obtain
the desired sufficient condition (C1) for the global convergence
of both Algorithm 3 and Algorithm 4, for any given set ,
[provided that each .

E. Proof of Theorem 4

Since Algorithm 3 is an instance of Algorithm 4 when each
, we focus only on the latter, w.l.o.g. The proof of the

theorem is based on (pseudo) contraction arguments, similarly
to what we already shown in Appendix C. The main difference
with respect to the approach proposed in Appendix C is due to
the alternative definition of the error vector generated by Algo-
rithm 4, as detailed next.

Denoting by the power allocation vector
generated by Algorithm 4 at iteration , with arbitrary
starting point , and using the mapping defined in
(53), we have

(81)

Let be a NE of game (and thus a fixed point of
the mapping ), whose existence is guaranteed by [1, Theorem
2]. Define the vector , with

and (82)

and, given with , define the matrix
. Then, for each , we have

...

... (83)

... (84)

(85)

(86)

where (83) follows from the triangle inequality and
, and “ ” denotes the Kronecker product; (84)

follows from the nonexpansive property of the Euclidean pro-
jector, the definition of [see (52)] and the definition of the
diagonal matrices , as given in (72); and in (85) we have
used a permutation matrix so that the vector given in
(82), is replaced by , with

, and the
matrix is defined as

(87)

with given in (29). The matrix norm in (84) is
the spectral norm (induced by the vector Euclidean norm [44]),
defined as .

From (86) it follows that Algorithm 4 converges to the NE
, from any starting point if

in (86) approaches to zero
as , which is guaranteed if the following conditions are
satisfied:

which provides the desired result. Given (86), the linear conver-
gence of the algorithm follows directly from [3, Sec. 1.3.1].
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F. Proof of Convergence of Algorithm 5 and Algorithm 6

The global convergence of both sequential and simultaneous
IGPAs, described in Algorithms 5 and 6, is guaranteed if Al-
gorithms 5 and 6 satisfy [3, Prop. 1.1] and [3, Prop. 1.4], re-
spectively. To this end, since each is compact (and thus
also , it is sufficient that the mapping

is a block-contraction [see
(59)] with respect to the norm , defined as

(88)

where and
is defined as

(89)

with . Rewriting in
(89) as with

(90)

and using (88), we obtain

(91)

where the inequality follows from the nonexpansive property
of the projection in the norm . From (91), it fol-
lows that a sufficient condition for being a contraction with
respect to the norm in (88) is that the mapping

defined in (90) be a
contraction with respect to the same norm.

We derive now sufficient conditions for being a con-
traction with respect to defined in (88). For the sake
of simplicity, we will consider only the case in which

.
We introduce the following notation: For any

, let denote the matrix,
whose th column is the gradient vector of the th component
of , when viewed as function of . Then, we have the
following result that comes directly from [3, Prop. 1.10].

Proposition 4: As , the IGPAs described in Algo-
rithms 5 and 6 converge to the unique NE of game from any
set of initial conditions in if there exists a scalar
such that

(92)

where denotes the spectral norm of the matrix .

We derive now a sufficient condition for (92). Using
and (3) we have

(93)

where

(94)

Using (94), condition (92) becomes

(95)

A sufficient condition for (95) is

(96)

It is straightforward to see that it is always possible to find proper
(sufficiently small) and (close to one) such that
(96) is satisfied, provided that

(97)

where

(98)

and is defined in (94).
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