
3678 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 56, NO. 8, AUGUST 2008

Statistically Robust Design of Linear
MIMO Transceivers
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Abstract—The treatment of channel state information (CSI) is
critical in the design of MIMO systems. Accurate CSI at the trans-
mitter is often not possible or may require high feedback rates.
Herein, we consider the robust design of linear MIMO transceivers
with perfect CSI either at the transmitter or at both sides of the
link. The framework considers the design problem where the im-
perfect CSI consists of the channel mean and covariance matrix
or, equivalently, the channel estimate and the estimation error co-
variance matrix. The robust transceiver design is based on a gen-
eral cost function of the average MSEs as well as a design with
individual MSE based constraints. In particular, a lower bound of
the average MSE matrix is explored for the design when only the
CSI at the transmitter is imperfect. Under different CSI conditions,
the proposed robust transceivers exhibit a similar structure to the
transceiver designs for perfect CSI, but with a different equivalent
channel and/or noise covariance matrix.

Index Terms—Array signal processing, beamforming,
joint transmit-receive equalization, linear precoding, mul-
tiple-input-multiple-output (MIMO) channels, robustness.

I. INTRODUCTION

C OMMUNICATION links with multiple antennas at
both the transmitter and the receiver sides, so-called

multiple-input-multiple-output (MIMO) systems, can signifi-
cantly increase the capacity of band-limited wireless channels,
provided that the environment has sufficiently rich scattering.
In this respect, it is ideal for future high data rate wireless
communications [1].

The design of a MIMO communication system depends on
the degree of knowledge of the channel state information (CSI).
For a given communication channel, the best spectral efficiency
and/or performance is obviously achieved when perfect CSI is
available at both sides of the link. Optimal linear transceiver
design has been extensively studied in this case (e.g., [2] and
[3]). In practical communication systems, imperfect CSI may
arise from a variety of sources such as channel estimation errors,
quantization of the channel estimate in the feedback channel,
outdated channel estimates with respect to the current channel
(for time-varying channels), etc. [4]. This effect is of paramount
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importance in practical implementations. By modeling such im-
perfections and taking them into account in the transceiver de-
sign, a robust high performance link can be achieved.

CSI at the receiver (CSIR) is traditionally acquired via a
training sequence that allows the estimation of the channel, or
via blind methods that exploit the structure of the transmitted
signal or of the channel. CSI at the transmitter (CSIT) can be
obtained either by means of feedback from the receiver, or
from previous receive measurements if the channel has some
reciprocity [4]. Whereas sufficiently accurate CSIR can be
assumed in certain cases, CSIT will be far from perfect in most
realistic situations. In other cases, both CSIT and CSIR cannot
be modeled as perfect. Hence, it is reasonable to assume two
different CSI assumptions for design purposes: i) imperfect
CSIR with imperfect CSIT, and ii) perfect CSIR with imperfect
CSIT.

There are different ways to design a system that is robust to
imperfect CSIT. In [4]–[6], worst-case designs are considered.
This guarantees a certain system performance for any possible
channel sufficiently close to the estimated one. This approach
leads to conservative designs, which may translate into a signif-
icant increase of the required transmit power. Alternatively, the
CSI uncertainty can be modeled statistically. This guarantees a
certain system performance averaged over the channel realiza-
tions [7], [8]. The latter statistical modeling approach is used in
the sequel.

For the statistical or stochastic approach, different types
and amount of CSIR and CSIT determine different transceiver
designs. Previous work has considered channel mean CSIT or
channel covariance CSIT and perfect CSIR. The case of mean
CSIT is addressed in [9] for minimizing the average mean
square error (MSE), and in [10] [multiple-input-single-output,
(MISO)] and [11] (MIMO with ML receiver) for maximizing
the mutual information by beamforming. The case when the
channel covariance is the only CSIT and the channel mean
is assumed to be zero is addressed in [12] (ML receiver) for
minimizing an upper bound of the average pairwise error
probability (PEP) by eigenbeamforming, and in [10] (MISO)
and [11] (MIMO with ML receiver) for maximizing the mutual
information by beamforming. When both mean and covariance
CSIT are available, a robust design is more involved. The
problem of minimizing the average MSE and maximizing
the average signal-to-noise ratio (SNR) in MISO channels is
considered in [7], and in [8] for minimizing the sum MSE with
an equivalent channel based on conditional channel mean and
linear transceivers. In [13], the Chernoff bound of the PEP is
minimized for a linear transmitter and an ML receiver with
space-time block codes.

Herein, we reflect on the robust MIMO linear transceiver de-
sign for the cases of i) imperfect CSIR with imperfect CSIT and
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ii) perfect CSIR with imperfect CSIT. The framework considers
the cases of mean and/or covariance feedback CSIT. The de-
sign is based on a general cost function of the average MSEs as
well as a design with individual constraints based on the MSEs.
Under different CSI conditions, the proposed robust transceivers
exhibit a very similar structure to the transceiver designs for per-
fect CSI (with a different equivalent channel matrix and/or noise
covariance matrix) and can be unified into the same framework.

The paper is structured as follows. In Section II, a brief
description of the concepts of majorization and matrix variate
Gaussian distribution is given. Section III describes the MIMO
system model, along with a mean/covariance modeling of the
CSI. A short review of the transceiver design problem of perfect
CSI is included in Section IV. The formulation of the robust
transceiver design problem is given in Section V. The robust
design with imperfect CSIR and imperfect CSIT is treated
in Section VI, whereas the robust design with perfect CSIR
and imperfect CSIT is considered in Section VII. The MIMO
linear transceiver designs under different CSI conditions are
summarized in Section VIII by a unified framework. Numerical
examples are included in Section IX to illustrate our theoretical
development. Conclusions are drawn in Section X.

II. PRELIMINARIES

The following notation is used in the paper. Uppercase and
lowercase boldface denote matrices and vectors respectively.
The operators , and are Hermitian transpose,
stacking vectorization operator and trace operator, respectively.
The operators and are Kronecker product and the majoriza-
tion relation [14], respectively. The operators and for vec-
tors are defined element-wise. The operator is the vector
consisting of the diagonal elements of the matrix argument,
while is the diagonal matrix with the vector argument
as diagonal elements, and is the element of the matrix
argument. The set stands for the set of Hermitian
matrices.

The framework developed in the paper for the linear MIMO
transceiver design problem is based on majorization theory. For
this purpose, we first review some important definitions and
properties of Schur-convexity and the matrix variate Gaussian
distribution for easy reference.

A. Schur-Convexity

Two special classes of cost functions will be discussed in the
sequel: Schur-convex and Schur-concave functions. These func-
tions are defined by the majorization relation, which makes pre-
cise the vague notion that components of a vector are “less
spread out” or “more equal” than the components of another
vector . (see [14] for a complete reference of the subject).

Definition 1: [14, Ch. 1] For any , let

denote the components of in decreasing order.

Definition 2: [14, Ch. 1], Let , , the vector is
majorized by the vector if

and is denoted as .
Definition 3: [14, Ch. 3] A real-valued function defined on

a set is said to be Schur-convex on if

Similarly, function is said to be Schur-concave on if

Schur-convex or Schur-concave functions cover many inter-
esting cost functions that are important in wireless communica-
tion systems. When there exist multiple data streams, a simple
function is usually used to map certain merit functions of these
data streams to a single global merit function, which can be
easily analyzed and optimized. Here is a brief list of some of
these functions that fall into the class of Schur-convex or Schur-
concave functions. Their Schur-convexity is defined with re-
gards to the MSEs (cf. [3] for the detailed proof of their Schur-
convexity).

Corresponding to Schur-concave functions of the MSEs:
• minimizing the (weighted) sum of the MSEs;
• minimizing the product of the MSEs;
• minimizing the determinant of the MSE matrix;
• maximizing the (weighted) sum of the SNRs;
• maximizing the product of the SNRs.
Corresponding to Schur-convex functions of the MSEs:
• maximizing the harmonic mean of the SNRs;
• minimizing the average BER with equal constellations;
• minimizing the maximum of the MSEs.

B. Matrix Variate Gaussian Distribution

Definition 4: [15] A random matrix is said to
have a matrix variate complex Gaussian distribution with mean

and covariance matrix (where
and are both positive definite), denoted as

, if

Lemma 1: [15] Let , then

III. SYSTEM MODEL

A. Signal Model

Consider a narrow-band MIMO channel with transmit and
receive antennas, as shown in Fig. 1. Omitting the time index
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Fig. 1. Scheme of MIMO system model with linear transceiver.

for simplicity, the corresponding discrete-time signal model can
be written as

where the transmitted signal vector is , the channel
matrix is , the received signal vector is ,
and the noise vector is assumed to be zero-mean
circular symmetric complex Gaussian noise with arbitrary co-
variance matrix, i.e., .

We consider the simultaneous transmission of symbols over
the MIMO channel. The design quantities to be optimized are
a linear transmitter and a linear receiver

where the data symbol vector, , is zero-mean with
unit-energy uncorrelated symbols, i.e., . The total
average transmitted power is defined as

The SNR is defined as

(1)

Although this paper considers arbitrary functions as a measure
of the system performance, it will be useful to define the fol-
lowing MSE matrix as a convenient quantity:

(2)

Observe that the diagonal elements of , i.e., , contain the
MSEs of the established data streams.

B. Modeling of CSI

Because it is either too difficult or too expensive to have per-
fect CSI at both the transmitter and the receiver side, CSI is usu-
ally not an accurate instantaneous channel information. In this
work, the channel is described statistically, so we assume that
the imperfect CSI consists of the first and second order statis-
tics of the actual channel, i.e., the channel is modeled in the
form of a nonzero channel mean and a channel covariance
matrix , or equivalently as a channel estimate and its esti-
mation error covariance. The transceiver optimized for
the available CSI will remain constant for a period of time until
the CSIR or CSIT is updated.

To model the MIMO channel matrix distribution, we consider
the so-called Kronecker model

(3)

where has i.i.d. elements distributed as ,
and it is the unknown part in the fading estimate. and

denote the covariance matrices seen from the receiver and
transmitter, respectively (cf. [16] and [17]), and that implies the
channel covariance matrix . The resulting
distribution of is

(4)

This statistical model will be simplified in Section VI in order
to make the analysis feasible.

IV. TRANSCEIVER DESIGN WITH PERFECT CSI: A REVIEW

In a scalar channel, the performance is typically measured
in terms of SNR, BER, or MSE. Interestingly, as shown in [3],
BER and SNR can both be remapped to functions of MSE.
Therefore, it suffices to consider functions of the MSEs of the
established data streams (i.e., ) as a performance measure
in a MIMO system. Let be a cost function in-
creasing in each argument without loss of generality.1 With per-
fect CSI, the system optimization problem can be formulated as

(5)

where denotes the maximum power budget at the trans-
mitter. This problem is solved in [2] and [3] (and references
therein) for several specific cost functions.

A. Receiver Design

Because the receiver has perfect knowledge of the channel
state, it can always optimize for each channel realization .
The linear receiver that minimizes the MSEs ( , with

given in (2)), and therefore the cost function (as it is in-
creasing in each argument) is the well known Wiener filter

(6)

and the resulting MSE matrix is

(7)

where is the squared channel matrix defined as

(8)

B. Transmitter Design

The transmitter design is studied in detail in [3] when both
CSIR and CSIT are perfect. In particular, the main results are
summarized here for better understanding of the proposed ro-
bust design in the following sections.

The nonconvex constrained optimization problem (5), with
the receiver given in (6), is solved when the transmitter
has the structure of

(9)

1Note that by increasing we do not mean strictly increasing but just nonde-
creasing. Also, it would be meaningless to have a function not increasing in the
arguments as smaller MSEs are always preferred (cf. [3]).
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where the matrix consists of the eigenvectors of
corresponding to the largest eigenvalues in increasing order

, the diagonal matrix
contains the power allocation in the diagonal elements, and

is a unitary matrix. With the transmitter given in
(9), the MSE matrix (7) becomes

(10)

What remains is to choose a proper unitary matrix and the
power allocation , both of which depend on the specific
function .

The choice of and can be further simplified in two
special cases, when falls into the class of Schur-concave or
Schur-convex functions on .2

• If is Schur-concave, then . The optimal trans-
mitter actually diagonalizes the equivalent channel co-
variance matrix . The whole optimization problem is
reduced to a power allocation problem, which depends on
the specific cost function.

• If is Schur-convex, then is a unitary matrix such
that in (10) has identical diagonal elements, e.g., the
Hadamard matrix or the unitary discrete Fourier transform
(DFT) matrix (cf. [3]). Surprisingly the optimal transmitter

is independent of the choice of the function . The
optimal does not fully diagonalize ; instead, it pro-
duces equal diagonal elements of . The optimization of
the power allocation is equivalent to the minimization of

and can be solved very efficiently.
Although the design of the receiver depends on the trans-

mitter , it is not necessary for the transmitter to feed forward
the matrix to the receiver because the receiver also has perfect
CSI and can calculate locally.

C. MSE-Constrained Design

In addition to the design problem (5), which minimizes a cost
function of the MSEs with a total transmit power constraint, it
is also possible to consider the dual problem that minimizes the
total transmit power with a global performance constraint. More
general is the design with individual MSE constraints:

(11)

where is a vector containing the desired MSEs targets for each
of the data streams. In this case, the optimal transceiver
is still given by (6) and (9), but the computation of the unitary
matrix is then more involved and depends on the channel
realization (cf. [18]).

V. ROBUST PROBLEM FORMULATION

In reality, the CSIT and/or the CSIR are prone to perturba-
tions due to practical constraints in wireless systems. Our goal
is to design linear transceivers with robustness to such imper-
fect CSI conditions. The stochastic robust design method will

2Furthermore, the results in the sequel follow verbatim for functions that may
not be Schur-concave/convex on but are minimized when the arguments are
sorted in decreasing order (or any fixed ordering) and then they become Schur-
concave/convex on fx 2 jx � x � � � � � x g.

be used in the sequel, following a Bayesian philosophy based
on the knowledge of the channel mean and covariance matrix.
In contrast to the perfect CSI case [cf. (5)] where an arbitrary
increasing function of the instantaneous MSEs is considered,
the average system performance should be considered. One pos-
sible way to formulate the problem is to consider instead an
arbitrary increasing function of the average MSEs of the data
streams, leading to the problem formulation:

(12)

In fact, (12) considers the so-called certainty-equivalent system
[19], in which the optimization is only based on the expected
value of MSEs. Observe that a statistical robust design does
not guarantee any performance target for a particular realization
of the random channel, because the statistical variation of the
MSEs are ignored in a certainty-equivalent system. If one has
to guarantee certain performance or outage for all the channel
realizations, worst case designs or certainty-equivalent margins
[19] should be used.

Another possible way to formulate the robust design problem
is to consider the average value of an increasing cost function
of the instantaneous MSEs, leading to a different problem for-
mulation:

(13)

In this paper, we will focus only on problem (12). Problem
(13) is more difficult to deal with because it is generally impos-
sible to find a closed-form expression of for an arbitrary
function. However, the two problems are equivalent when the
cost function is linear. When the cost function is nonlinear but
differentiable, the two problems can be related via a Taylor ex-
pansion, which will be discussed in Section IX.

The MSE-constrained problem (11), in the robust design con-
text, becomes

(14)

This problem will not be explicitly considered in this paper, but
it can be similarly dealt with by combining the approach in this
paper with the result in [18].

Two different cases of the robust transceiver design for
problem (12) will be addressed in the following sections:
i) design with both imperfect CSIR and imperfect CSIT in
Section VI, and ii) design with perfect CSIR but imperfect
CSIT in Section VII. In both sections, problem (12) is solved in
two steps: first a receiver is optimized according to different
CSIR conditions; then the joint transceiver design is reduced to
the optimization of the transmitter only. Due to the difference
in CSI, the resulting optimal transceivers are different in nature.

VI. ROBUST DESIGN WITH IMPERFECT CSIR AND

IMPERFECT CSIT

In this section, the situation when perfect CSI is available
neither at transmitter nor at the receiver will be considered. The
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channel is Gaussian distributed as in (4) with CSIR and CSIT
in the form of and .

Since the CSIR is not perfect, it is not possible to optimize
the linear transceiver for each instantaneous channel
state as in the perfect CSI case in Section IV. Consequently,
a fixed transceiver must be calculated for a specific set
of and .

To solve the problem (12), we first give a closed-form expres-
sion for the average MSE matrix, , by invoking
Lemma 1. For a given transceiver , the MSE matrix (2)
averaged over and , is

(15)
where the equivalent noise covariance matrix is

(16)

A. Receiver Design

The average MSE matrix given in (15) is exactly the same as
(2), but with instead of and instead of . It follows
immediately that the optimal receiver , which minimizes the
diagonal elements of the above average MSE matrix, is still
given by (6) but with replaced by and by . The
average MSE matrix becomes

(17)

Since in (17) depends on , it follows that ,

and an MSE floor exists (proof in the next footnote). Such MSE
floor can be clearly observed in the numerical examples later in
Section IX.

B. Transmitter Design

The optimal design of the transmitter is more involved
since also appears in the equivalent noise covariance . In
order to be able to carry on the analytical computation, we as-
sume that . It can be shown then that the optimal so-
lution is always achieved with equality in the power constraint,3
so that becomes

(18)

Now no longer appears in the equivalent noise covariance,
and the resulting averaged MSE matrix is the same as (7), but
with an equivalent covariance matrix instead of , which
is defined as

(19)

So the optimal is also given by (9), but with instead of
. What remains is to choose a proper unitary matrix and

3Simply rewrite the MSE matrix (17) as fEg = (I + ~P �H (R +
R =tr[PP ]) �H~P) , where ~P = P= tr[PP ], and note that
for any given ~P, fEg is decreasing in tr[PP ]. Also, when 
 =
tr[PP ]=tr[R ]!1, lim fEg = (I + ~P �H (R ) �H~P) 6= 0

the power allocation , which both depend on the specific
function .

The robust design can be summarized in the following the-
orem.

Theorem 1: When both the CSIR and the CSIT are imperfect
and in the form of a channel mean and a channel covariance

, the optimal solution to the robust
design problem (12) has the same structure as the perfect CSI
one given in (6) and (9), except for replacing the perfect channel

with , the noise covariance matrix with the equivalent
noise covariance in (18), and with the equivalent co-
variance matrix in (19).

Similar to the case of perfect CSI, the robust design of the
receiver depends on the transmitter , but it is not necessary
for the transmitter to feed forward the matrix to the receiver.
The receiver also has the same CSI as the transmitter so it can
calculate locally.

The MSE-constrained problem (14) is more difficult to solve
than (12) in this case, because contains , which is
precisely the objective function and cannot be replaced by .

Remark: We have discussed the problem when both the trans-
mitter and the receiver have the same imperfect CSI. When
CSIR and CSIT are both imperfect but with different imperfect-
ness, i.e., and/or are different at the transmitter and re-
ceiver, the robust design problem is still an open problem.

VII. ROBUST TRANSCEIVER DESIGN WITH PERFECT CSIR
AND IMPERFECT CSIT

It is quite often the case that the channel estimate at the re-
ceiver is accurate enough to be modeled as perfect CSIR, but
the CSIT is still modeled as imperfect due to feedback-related
issues (e.g., feedback errors, quantization, and delay). The ro-
bust design problem (12) under such CSI assumptions will be
considered here. The channel is Gaussian distributed as in
(4). The CSIR is perfect in the form of , while the CSIT is
imperfect in the form of and .

A. Receiver Design

Exactly as in the design for perfect CSI case, the receiver
can be designed based on any instantaneous , which means
that the optimal receiver is exactly (6). The joint transceiver
design problem is, therefore, reduced to the optimization of the
linear transmitter allowing robust performance with respect
to channel imperfectness in the CSIT.

B. Transmitter Design

When is given by (6), the instantaneous MSE is given by
(7). To simplify the optimization problem (12), a closed-form
expression for the averaged MSE matrix would be useful
just as in Section VI; however, this is very difficult in general.
In the following, a robust transmitter design will be proposed
based on a tight lower bound of .

Lemma 2: Given the optimal in (6) and instantaneous
MSE matrix defined in (7), the average MSE matrix is lower
bounded by as

(20)
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Fig. 2. Trace of average MSE and its lower bound versus SNR (m = 4,n = 4,
` = 2).

where the equivalent channel covariance matrix is

(21)

Proof: See Appendix A.
Lemma 3: Let be full rank. The lower bound

in (20) is asymptotically tight with the SNR in the following
sense:

i (22)

ii (23)

(24)

where and .
Proof: See Appendix A.

Observe that because of (22), there is no MSE floor, as later
will be seen in the numerical results in Section IX. This differs
from the case when both the CSIT and the CSIR are imperfect,
where an MSE floor is always present. The reason is that, even
though the transmitter is not well designed for a given realiza-
tion of the channel, the receiver can be adapted to each realiza-
tion which can compensate for the mismatch of the transmitter.

The accuracy of the lower bound is illustrated in Fig. 2. In this
toy example, true is compared with its lower bound by
plotting their trace for different SNRs. All the parameters are set
to very simple values ( , is a scaled identity
matrix, with given in Appendix B, and

). As shown in Fig. 2, this lower bound is sufficiently
close as indicated by (23). If another is used, similar results
are obtained. Due to the tightness, our robust design in the sequel
will be based on this lower bound. Another possibility would be
to base the design on some tight upper bound of , which
is not undertaken in this paper.

To solve the optimal transmitter , first observe that the in-
equality of Lemma 2 also holds for the diagonal entries ele-
ment-wise

so the increasing cost function of the design problem (12) is also
lower-bounded as

(25)

Replacing the cost function in (12) with the above lower bound,
as the expression of has the same format as (7) but with

instead of , the optimal transmitter based on the tight
lower bound (25) is also given by (9) but with instead of

. What remains is to choose a proper unitary matrix and
the power allocation , which depend on the specific function

.
The robust design can be summarized in the theorem below.
Theorem 2: When the CSIR is perfect but the CSIT is imper-

fect in the form of a channel mean and a channel covariance
, the optimal solution to the robust

design problem (12), with the objective function replaced by the
lower bound in (25), has the same structure as the perfect CSI
case in (6) and (9), but using the equivalent covariance matrix

in (21) instead of .
Notice that even though the receiver has perfect CSI, the de-

sign of matrix still depends on the transmitter . If the CSIT
is obtained by slow CSI feedback from the receiver, it implies
that the receiver also has the same CSIT and can calculate
locally. If, instead, the CSIT is obtained locally by the trans-
mitter, there are two possible approaches to obtain knowledge
of at the receiver side: i) the transmitter can simply feed for-
ward the matrix to the receiver; ii) separate estimation of the
channel statistics are performed at the receiver side
because the receiver has perfect CSI, and the receiver also cal-
culates locally. The second alternative saves bandwidth over
feed forward, but it could give different estimates of the channel
statistics, which would be a problem.

Remark: As an alternative to the lower bound in (20), it is
also possible to expand the average MSE matrix by the
expectation of a truncated Neumann expansion of as
proposed in [20]. When , the matrix
follows a noncentral complex Wishart distribution [21], which
is unfortunately very involved in computation as it utilizes Zonal
polynomials [22], generalized Laguerre polynomials [23] or it is
approximated by a central Wishart distribution [24]. The lower
bound approximation presented herein performs better than the
approach based on the truncated Neumann expansion in [20]
due to the error accumulated from series truncation and mo-
ments approximation.

VIII. UNIFIED FRAMEWORK

Under different CSI assumptions, the linear transceiver de-
sign problem has different optimal solutions, but follows a uni-
fied framework summarized in Table I.

• The optimal receiver is always a Wiener filter, regard-
less of the CSIT. The CSIR determines the parameters for

: if the CSIR is perfect, is calculated using and
; if the CSIR is imperfect, is calculated with and

the equivalent in (18).
• The optimal transmitter always diagonalizes the equiv-

alent channel covariance matrix (possibly up to a ro-
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TABLE I
SUMMARY OF LINEAR TRANSCEIVER DESIGN

tation) for all CSIT conditions.4 The equivalent is dif-
ferent for different CSI condition and is determined by both
the CSIR and the CSIT: if both the CSIR and the CSIT are
perfect, is calculated based on and as in (8); if
only the CSIR is perfect, is calculated using and
as in (21); if neither the CSIR nor the CSIT is perfect,

is calculated with and as in (19).

IX. NUMERICAL EXAMPLES

We herein present several robust design examples following
the development in Sections VI and VII. These originally com-
plicated robust design problems have solutions with clear struc-
ture, and are then reduced into simple convex problems with
scalar power allocation variables, thus they are easily computed
numerically.

The imperfect CSI is in the form of a mean and a covariance
as in the Gaussian model (4). The channel mean is drawn
from a complex Gaussian distribution
and kept fixed for all the simulations in this section. The spe-
cific value of the channel mean used to generate all the fig-
ures is given in Appendix B. Very similar curves are observed
with different realizations of . The covariance matrix is
Toeplitz, defined by the correlation coefficient
as . The covariance matrix is defined
similarly by its correlation coefficient . The SNR is defined
in (1). The Gaussian noise is white both spatially and tempo-
rally, so is a scaled identity matrix. In all the examples,

, , , and QPSK is used.5

A. Example: Minimizing the Weighted Sum of the Average
MSEs

The MSE is the central figure-of-merit of the above set of
optimization problems. The nonrobust design of this problem
is solved in [2], [3], [25]. The more complicated robust design
problem is the minimization of the weighted sum of the av-
erage MSEs, which can be solved by our proposed solutions.
The problem can be formulated as

(26)

4Observe that the transceiver design for perfect CSIR and imperfect CSIT
case is based on a sufficiently close lower bound. Also, the closed-form solution
of the transmitter design for imperfect CSIR and CSIT case can only be obtained
when R = I .

5With a larger ` close to minfm;ng, the average BER or average MSE per-
formance will be more likely dominated by the worst data stream and thus di-
minish the performance difference between different designs. However, our con-
clusions will still hold even for larger `. Here ` = 2 is chosen for clear illustra-
tions.

where is a positive weighting vector
with elements in increasing order (or equal) to guarantee that
the objective function in (26) is a Schur-concave function (cf.
[3]). It follows from the Schur-concavity that .

Imperfect CSIT and Perfect CSIR: Invoking Theorem 2, the
optimal receiver is given by (6) and optimal transmitter is
given by (9) but with given in (21). What remains is to find
the optimal power allocation . By using the expressions for

and , the problem (26) is simplified to

where are the strongest eigenvalues of
in increasing order. This particular scalar optimization problem
can be solved efficiently by the water-filling solution

(27)

where is the water-level satisfying the power constraint with
equality.

Imperfect CSIT and CSIR: Invoking Theorem 1, the optimal
receiver is given by (6), but using and . The optimal

is also given by (9), but using given in (19). The power
allocation can be solved exactly the same way as in (27),
but with determined by .

Simulations: Monte Carlo simulations are carried out for a 4
4 MIMO system to compare four different linear transceiver

designs: i) naive solution that assumes the channel estimate
to be a perfect channel estimate of the instantaneous realization

and utilizes the solution of Section IV; ii) the robust solu-
tion where both CSIT and CSIR are imperfect as in Theorem 1;
iii) the robust solution where CSIR is perfect, but CSIT is im-
perfect as in Theorem 2; iv) the ideal solution assuming exact
instantaneous CSIR and CSIT as in Section IV.

The numerical comparisons are shown in Fig. 3. In this ex-
ample, , and the weights . The robust
design for imperfect CSIT and CSIR performs better than the
naive design, but still much worse than the perfect CSI case. An
MSE floor is clearly visible, as predicted by (17) in Section VI.
The robust design for imperfect CSIT and perfect CSIR per-
forms close to the ideal perfect CSI case and the slope is approx-
imately the same. In this case, no MSE floor can be observed as
predicted by (22) in Section VII. This figure also reveals how
much the linear transceiver design can gain from having perfect
CSIR and/or CSIT: the knowledge of perfect CSIR is clearly
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Fig. 3. Sum average MSE versus SNR for different CSI (m = 4, n = 4,
` = 2, � = 0:6, � = 0).

more critical, as it provides significant gain in average MSE. In-
terestingly, our robust design with imperfect CSIT only suffers a
slight loss from the ideal case, although no instantaneous CSIT
is available to optimize the transmitter.

B. Example: Minimizing the Maximum of the Average MSEs

In addition to the first example of minimizing the weighted
average MSEs, one can also consider minimizing the worst av-
erage MSE among the data streams, because the overall per-
formance is usually dominated by the data stream with the worst
average MSE. The problem can be written as

(28)

The solution to this problem is quite simple because the cost
function is a Schur-convex function of the average MSEs (cf.
[3]). The unitary matrix is, therefore, a rotation that produces
equal diagonal elements of and the power allocation can
be simply obtained by minimizing , which is a Schur-
Concave function and solved as in the first example (26) with
equal weights.

Monte Carlo simulations are carried out for a 4 4 MIMO
system to compare four different linear transceiver designs with
the exactly same setup as previous example. The parameters
are and . The results are shown in Fig. 4.
Similar conclusions can be drawn: the proposed robust designs
outperforms the naive design; close-to-ideal performance can
be achieved by the proposed robust design even when CSIT is
not perfect; perfect CSIR is crucial to obtain acceptable perfor-
mance in terms of average MSEs.

C. Extensions to Design Problem (13)

All our robust linear transceiver designs are so far based on a
cost function of the average MSEs as in (12). The robust
design problem (13) is more difficult to solve, because the ex-
pectation operator does not necessarily commute with the func-
tion and can not be applied to the arguments . However,
these two problems are related: the cost function

Fig. 4. Max average MSE versus SNR for different CSI (m = 4, n = 4,
` = 2, � = 0:6, � = 0).

in (13) can be expanded by a Taylor series and then truncated
with only the first two terms, which is the cost function in (12)
and can be solved by the proposed robust designs, in the hope
that the resulting solutions are close, in some sense, to the solu-
tions of the original cost function .

For a general differentiable function , more specifically,
an approximation of with bounded error can be
obtained as

The error in the approximation depends on both the particular
function and the variance of .

We illustrate the above idea with the example of minimizing
the average BER, which belongs to the design problem (13). The
average uncoded BER is a good measure of the uncoded link
quality of a communication system. Hence, its minimization can
be regarded a good criterion:

(29)

where function is a function mapping MSE to BER. We
also assume the same M-ary QAM constellation is used for all
data streams. For square M-ary QAM constellations, the func-
tion is convex for the range of MSEs of interest [26] and is
given by

(30)
where is the -function defined for the Gaussian distribution.
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Fig. 5. Average BER versus SNR for different CSI (m = 4, n = 4, ` = 2,
� = 0:6, � = 0).

In order to approximate the above problem to (12), simply
take the first two terms in the Taylor expansion for the expec-
tation of the function .6 The problem is then approximately
reduced to

which indeed belongs to problem (12) and can be solved by our
proposed design framework.

First, the cost function is a sum of identical convex functions
so it is Schur-convex [14]. The unitary matrix is a rotation that
produces equal diagonal elements of and the power allo-
cation can be simply obtained by minimizing , which is
a Schur-concave function and solved by the first example (26).
The optimal receiver can be determined according to dif-
ferent CSI conditions as in Theorem 1 or 2.

Monte Carlo simulations are carried out for a 4 4 MIMO
system to compare four different linear transceiver designs with
the exactly same setup as previous examples. The parameters are

and . The results are shown in Fig. 5. The pro-
posed robust designs for different CSI work better than the naive
design based on channel mean only. Similar to Fig. 3, a perfect
CSIR is more important and provides a large gain in SNR. How-
ever, unlike Fig. 3, the performance of the robust design with
imperfect CSIT and perfect CSIR is now clearly inferior to the
perfect CSI design. This is most probably due to the Taylor ap-
proximation of function is simple but not very accurate and
(30) is not accurate when the interference is not Gaussian.

D. Correlation and Factor Effect

We examine the impact of channel correlation by varying
the correlation coefficients and . Our robust design
for

6This is not an accurate approximation of the expectation of the Q function.
Better approximations could be clearly considered but we limit the scope of the
present paper to the considered approximation for its simplicity.

Fig. 6. Average BER versus SNR with different correlations for the robust de-
sign of imperfect CSIT and perfect CSIR (m = 4, n = 4, ` = 2).

imperfect CSIT and perfect CSIR are tested against four dif-
ferent setups of channel correlations: both transmitter and re-
ceiver have high or low correlation, either transmitter or receiver
has high correlation. Average BER is used as the cost function
and the robust design follows the previous example. The sim-
ulation results are shown in Fig. 6. The relative position of the
curves suggests that low correlation on both the transmitter and
the receiver side results in the best average BER performance,
while the high correlated transmitter and receiver combination
is the worst. When the SNR is low, the correlation at the re-
ceiver is the dominating factor for BER, while the correlation at
the transmitter is the dominating factor when the SNR is high.
Intuitively, this phenomenon is reasonable as it is less important
to utilize more receiver antennas to average out the Gaussian
noise effect when the SNR is high.

To study the effect of factor, the channel model (4) is
slightly modified as

where determines the relative power of the mean and the
covariance of the channel, or equivalently, the channel esti-
mate quality. The channel mean is normalized such that

. Therefore a constant average power gain
of the channel can be maintained for different correlation
coefficients and channel means, i.e.,

is satisfied for all factors.
Again the example of average BER is used to demonstrate

the performance, as shown in Fig. 7. In this example,
and . When is close to 0, which means the channel
is close to Rayleigh, the naive design with only channel mean
information naturally fails. The proposed robust design benefits
from the fact that its equivalent channel covariance matrix incor-
porates both the channel mean and the channel covariance, for
all s. When the factor is extremely high at the right-hand
side of the figure, all three methods approach the same perfor-
mance, because the channel mean dominates over the channel
covariance matrix.
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Fig. 7. Average BER versus K factor for the robust design of imperfect CSIT
and perfect CSIR (m = 4, n = 4, ` = 2, � = 0:8, � = 0:2, SNR= 10 dB).

X. CONCLUSION

We have addressed the robust design problem of linear trans-
ceivers for MIMO channels based on a general cost function
of the average MSEs, for the cases of i) imperfect CSIR and
imperfect CSIT, and ii) perfect CSIR and imperfect CSIT. The
proposed framework solves the design problem when the CSI
takes the form of a channel mean and a channel covariance ma-
trix. In particular, a lower bound of the average MSE matrix is
explored for the design when only the CSIT is imperfect. The
resulting designs exhibit a similar structure as in the case of per-
fect CSI, which can be readily solved by convex optimization
approaches in practice. Therefore, linear MIMO transceiver de-
signs with general cost functions of the MSEs or average MSEs
can be solved with a unified framework, even for different CSI
conditions. By Taylor approximations, it is also possible to ex-
tend the proposed designs to the robust design problem based
on the expected value of general functions of the instantaneous
MSEs. Promising gains compared to simple nonrobust designs
are confirmed with numerical examples.

APPENDIX A
PROOF OF LEMMAS 2 AND 3

Definition 5: [14, Ch. 16] Let function
. For all random matrices taking values in and having

finite expectation ,

This is also the Jensen’s inequality for matrix-valued functions.
Lemma 4: [27] On the set of positive definite Hermitian

matrices, the matrix-valued function

is matrix-convex, i.e.,

We start by proving Lemma 2. As the matrix inverse is strictly
matrix-convex on the set of positive definite Hermitian matrices
per Lemma 4, the following inequality holds:

(31)

(32)

where is given in (21) and the equality follows from
Lemma 1.

The lower bound in (23) of Lemma 3 follows directly from
(20). To prove the upper bounds, first denote

(33)

(34)

(35)

so that , , and are now independent of the SNR . Let
be the eigenvalues of the matrix and

be the eigenvalues of the matrix , both in increasing
order. Therefore, the following holds:

(36)

As is full rank, we have .
The trace of the average MSE matrix can be upper bounded

as

(37)

Because is noncentral quadratic forms [15],
is a positive constant associated with its noncentrality and inde-
pendent of , and (37) is due to the pdf of .7

7The pdf of � takes the form of f (�) = C � P (�)D , where
C is a constant, P (�) is a polynomial of degree (m�`)(`�1), andD
is a constant obtained by the integral of two related invariant polynomials [28],
[29]. Exact values of these parameters are not relevant in this proof. Conditioned
on � � 1, the pdf can be written as f (�) = f (�)=F (1) �
c � , where c = C D max P (�)=F (1) and F is the
cumulative distribution function of � .
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To prove the upper bound in (23) while , take the limit
as

(38)

(39)

(40)

To prove the upper bound in (24) while , take the limit as

(41)

(42)

(43)

where both and are positive and independent of SNR .
To prove (22), because , the following limit holds:

(44)

The limit of the trace of the average MSE matrix is also upper
bounded when

(45)

while when

(46)

APPENDIX B
NUMERICAL SIMULATION PARAMETER

The channel mean used in the numerical simulations is
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