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Abstract—MIMO systems with perfect channel state informa-
tion at both sides of the link can adapt to the instantaneous channel
conditions to optimize the spectral efficiency and/or the reliability
of the communication. A low-complexity approach is the use of
linear MIMO transceivers which are composed of a linear pre-
coder at the transmitter and a linear equalizer at the receiver. The
design of linear transceivers has been extensively studied in the lit-
erature with a variety of cost functions. In this paper, we focus on
the minimum BER design, and show that the common practice of
fixing a priori the number of data symbols to be transmitted per
channel use inherently limits the diversity gain of the system. By
introducing the number of symbols in the optimization process, we
propose a minimum BER linear precoding scheme that achieves
the full diversity of the MIMO channel. For the cases of uncorre-
lated/semicorrelated Rayleigh and uncorrelated Rician fading, the
average BER performance of both schemes is analytically analyzed
and characterized in terms of two key parameters: the array gain
and the diversity gain.

Index Terms—Analytical performance, linear MIMO trans-
ceiver, minimum BER design, ordered eigenvalues, Wishart
matrices.

I. INTRODUCTION

W IRELESS multiple-input multiple-output (MIMO) sys-
tems [1]–[3] have been attracting a great interest since

they provide significant improvements in terms of spectral effi-
ciency and reliability with respect to single-input single-output
(SISO) systems. In order to simplify the study of MIMO sys-
tems, it is customary to divide them into an uncoded part, which
transmits symbols drawn from some signal constellation, and
a coded part that builds upon the uncoded system. Although
the ultimate system performance depends on the combination of
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both parts, it is convenient to consider the uncoded and coded
parts independently to simplify the design and analysis. This
paper focuses on the uncoded part of the system and, specifi-
cally, on the employment of linear transceivers (composed of a
linear precoder at the transmitter and a linear equalizer at the
receiver).
The design of linear transceivers when perfect channel

state information (CSI) is available at both sides of the link
has been extensively studied in the literature according to a
variety of criteria based on performance measures such as the
signal-to-noise ratio (SNR), the mean square error (MSE), or
the bit error rate (BER). The most common approach in the
linear transceiver design literature is to adapt only the linear
precoder/power allocation among the different substreams, as-
suming that the number of substreams and the corresponding
constellations are fixed beforehand, e.g., [4]–[14]. For most
of the reasonable criteria, the optimum linear transmitter di-
agonalizes the channel (possibly after a rotation of the data
symbols) and establishes parallel substreams through the
strongest channel eigenmodes [13], [14]. The available transmit
power is then distributed among these substreams according
to the specific design criterion and the instantaneous channel
conditions.
In this paper, we show analytically for the cases of uncorre-

lated Rayleigh, semicorrelated Rayleigh, and uncorrelated Ri-
cian fading that the diversity gain of these schemes with sub-
streams is at most given by , where is
the number of transmit and the number of receive antennas.
This diversity order can be far from the inherent diversity pro-
vided by the MIMO channel [15]. To overcome this limi-
tation, we then consider the introduction of the number of active
substreams in the design criterion by fixing the global rate but
allowing the use of an adaptive symbol constellation to com-
pensate for the change in the number of transmitted symbols.
Observe that this alternative restriction does not render ineffec-
tive the schemes available in the literature but simply implies
an additional optimization stage on top of the classical design.
Analytical diversity analysis confirms the intuitive notion that
the full diversity demands this final optimization step that
has been commonly neglected in the literature. An exception is
[16], where in the context of limited feedback linear precoding
a similar adaptation of the number of substreams under a fixed
rate constraint was proposed.
More specifically, this paper focuses on the minimum BER

linear MIMO transceiver design. We first present the conven-
tional design, in which the linear transmitter and receiver are
designed to minimize the BER under a transmit power con-
straint and assuming that the number of transmitted symbols
and constellations are fixed. This scheme is hereafter denoted
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as minBER-fixed design and was derived independently in
[13] and [11]. Suboptimal results, in which the linear trans-
mitter and receiver are designed under the same constraints
but forced to diagonalize the channel can be found in [10],
[12]. The substream optimization stage is considered next, i.e.,
the linear MIMO transceiver design with adaptive number of
substreams (minBER-adap). Although the symbol constellation
is jointly adapted with the number of substreams to keep the
total transmission rate fixed, the design problem addressed here
is substantially different from the classical problem formula-
tion in the adaptive modulation literature [17]–[20], where,
typically, the transmission rate is maximized under power and
quality-of-service (QoS) constraints or the transmission power
is minimized under QoS and rate constraints. For instance, in
the context of MIMO linear transceivers, the design of both
the constellations and the linear transceiver to minimize the
transmit power under a QoS constraint (given in terms of BER)
is addressed in [21].
The average BER performance of linear MIMO transceivers

depends on the statistics of the eigenvalues associated with the
channel eigenmodes user for communication [22]. Specifically,
under the uncorrelated/semicorrelated Rayleigh or the uncorre-
lated Rician fading models, the performance of MIMO systems
is strongly connected toWishart distributed matrices, which can
be jointly analyzed following the procedure in [23]. Indeed,
based on the unifying framework proposed in [23], we complete
these results and derive for the differentWishart distributions as-
sociated with the previous channel models:

(i) the cdf of the maximum weighted eigenvalue (out of a
subset of the largest ones) (Theorem 3.1);

(ii) the first-order Taylor expansion of the marginal cdf of the
largest eigenvalue (Theorem 3.2); and

(iii) the first-order Taylor expansion of the cdf obtained in (i)
(Theorem 3.3).

These results are then effectively applied to:
(a) bound the average BER performance of the minBER-

fixed scheme (Theorem 4.1) and of the minBER-adap
scheme (Theorem 5.2), and to

(b) characterize the high-SNR average BER performance
of the minBER-fixed scheme (Theorem 4.2) and of the
minBER-adap scheme (Theorem 5.3) in terms of diver-
sity and array gain

under the previous channel models.
The rest of the paper is organized as follows. Section II is de-

voted to introducing the signal model and presenting the average
BER performance measure. In Section III we define the channel
model and derive the required results on theWishart distribution
ordered eigenvalues, which are later applied in the performance
analysis. The design and performance analysis of the minimum
BER linear transceiver with fixed and adaptive constellations is
addressed in Sections IV and V, respectively. Finally, we sum-
marize the main contribution of the paper in the last section.

II. SYSTEM DESIGN PROBLEM AND PERFORMANCE

EVALUATION

In this section we present the general signal model corre-
sponding to linear MIMO transceivers and formulate the min-
imum BER design problem. Additionally, we provide the pro-
cedure followed to analyze the performance of these schemes in
fading channels.

Fig. 1. Linear MIMO transceivers system model.

A. System Model

The signal model corresponding to a transmission through
a general MIMO channel with transmit and receive an-
tennas is

(1)

where is the transmitted vector, is the
channel matrix, is the received vector, and
is a spatially white zero-mean circularly symmetric complex
Gaussian noise vector normalized so that .
Suppose that the MIMO communication system is equipped

with a linear transceiver (see Fig. 1), then the transmitted vector
containing the data symbols is given by

(2)

where is the transmit matrix (linear precoder) and
the data vector gathers the data
symbols to be transmitted (zero-mean, unit-energy, and uncorre-
lated, i.e., . We consider a fixed-rate data trans-
mission and, hence, each data symbol is drawn from an

-dimensional constellation such that the total transmission
rate

(3)

is fixed for all channel realizations. The transmitted power is
constrained such that

(4)

where denotes the average SNR per receive antenna. The
estimated data vector at the receiver is

(5)

where is the receive matrix (linear equalizer). Ob-
serve from (5) that data streams are established for commu-
nication over the MIMO channel, where the column of
and , denoted by and , respectively, can be inter-
preted as the transmit and receive beam vectors associated with
the data stream or symbol

(6)

where is the interference-plus-
noise seen at the substream.
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B. Problem Statement

The linear MIMO transceiver design, i.e., the joint design of
the receive and transmit matrices when perfect CSI is
available at both sides of the link has been extensively studied
since the 1970s under different measures of performance based
on the MSEs, the SNRs, and the BERs [4]–[13]. A general uni-
fying framework that embraces most of these design criteria has
been proposed in [13] (see an up-to-date overview in [14]).
In this paper, we take the BER averaged over the data sym-

bols as the performance measure:

(7)

where is the instantaneous SNR of the substream in (6)
given by

(8)

where is the inter-
ference-plus-noise covariance matrix and is the
corresponding instantaneous BER. In the presence of additive
white Gaussian noise and assuming a Gray coding mapping,

can be approximated1 as [26, eq. (8.7)]

(9)

where is the Gaussian -function defined as [26, eq. (4.1)],

(10)

and the parameters and depend on the -dimen-
sional modulation used to map the source bits to symbols (see
the expressions for the most common digital modulation for-
mats in [26, Sec. 8.1]).
To summarize, the problem studied in this paper is

(11)

in the following two cases:
(i) (minBER-fixed) fixed constellations (for some given rate

) and given , and optimization variables .
(ii) (minBER-adap) fixed rate with optimization variables

.

C. Performance Evaluation

For fading channels, the instantaneous BER defined in (7)
does not offer representative information about the overall
system performance and all different realizations of the random
channel have to be taken into account, leading to the concept
of average BER

(12)

1The given BER approximation is very tight in the BER region of practical
interest � � �� �. See the exact expression for QAM and PSK modu-
lations in [24] and [25], respectively.

Given the limited availability of closed-form expressions for
the average BER in (12), a convenient method to find simple
performance measures is to allow a certain degree of approxi-
mation. In this respect, the most common approach is to shift
the focus from exact performance to large SNR performance as
done in [27], where the average BER versus SNR curve is char-
acterized in terms of two key parameters: the diversity gain and
the coding gain (also known as the array gain in the context of
multiantenna systems [15]). The diversity gain represents the
slope of the BER curve at high SNR and the coding gain (or
array gain) determines the horizontal shift of the BER curve.
Interestingly, both parameters only depend on the channel sta-
tistics through the first-order expansion of the pdf of the channel
parameter [27].
In this paper, we analyze the average BER performance of

both the minBER-fixed and the minBER-adap linear trans-
ceivers. More exactly, we find upper and lower bounds on
the performance in uncorrelated/semicorrelated Rayleigh and
uncorrelated Rician fading MIMO channels, with special em-
phasis on the high-SNR regime.

III. MIMO CHANNEL MODEL AND PROBABILISTIC
CHARACTERIZATION OF ITS ORDERED EIGENVALUES

When analyzing the performance of a communication system
over a MIMO flat-fading channel, it is necessary to assume a
certain channel fading distribution in order to obtain the average
BERmeasure introduced in Section II-C. In this section, we first
define the channel models used in the analytical performance
analysis of the following sections and, then, we provide the re-
quired probabilistic characterization of the ordered eigenvalues
of these channel models.

A. Rayleigh/Rician MIMO Channel Models

A MIMO channel with transmit and receive dimen-
sions can be described by an channel matrix , whose

entry characterizes the propagation path between the
transmit and the receive antenna. Usually, since there

are a large number of scatters in the channel that contributes
to the signal at the receiver, the application of the central limit
theorem results in Gaussian distributed channel matrix coeffi-
cients. Analogously to the single antenna channel, this model
is referred to as MIMO Rayleigh or Rician fading channel, de-
pending whether the channel entries are zero-mean or not. More
exactly, we assume that the channel matrix can be described as
(see [23] and references therein)

(13)

where is power normalization factor known
as the Rician -factor, is a deterministic ma-
trix containing the line-of-sight components of the channel,

is the transmit correlation matrix,

is the receive correlation matrix, and
is the random channel matrix with i.i.d. zero-mean unit-variance
circulary symmetric Gaussian entries, i.e., .
For a fair comparison of the different cases, the total average
received power is assumed to be constant and, hence, we
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can impose without loss of generality that ,
, and . In this paper, we

consider the following important particular cases of the general
channel model in (13).

Definition 3.1: The uncorrelated Rayleigh MIMO fading
channel model is defined as

(14)

where is a random channel matrix with i.i.d. zero-
mean unit-variance complex Gaussian entries.

Definition 3.2: The semicorrelated Rayleigh fading MIMO
channel model with correlation at the side with minimum
number of antennas is defined as

(15)

where is the positive definite corre-
lation matrix with and is defined in (14).

Definition 3.3: The uncorrelated Rician fading MIMO
channel model is defined as

(16)

where , is a deterministic matrix, and
is defined in (14).

B. Ordered Eigenvalues of a General Class of Random
Hermitian Matrices

Recently, the joint cdf and both the marginal cdf’s and pdf’s
of the ordered eigenvalues of a general class of Hermitian
random matrices have been derived in [23]. As formalized in
Assumption 3.1, we concentrate on a more restrictive class2 but
general enough to include the channel models in Definitions
3.1–3.3.

Assumption 3.1: We consider the class of Hermitian random
matrices, for which the joint pdf of its nonzero ordered eigen-
values, , can be expressed as

(17)

where is a Vandermonde matrix [29, eq. (6.1.32)]
and matrix satisfies

(18)

The constant and the functions and depend
on the distribution of the random matrix.
For the sake of completeness we now provide in Lemma 3.1

the expression of the marginal cdf of the largest channel
eigenvalue a random Hermitian matrix satisfying Assumption
3.1 and derive in Theorem 3.1 the cdf of the maximumweighted
eigenvalue out of a subset of the largest ones. These results

2The ordered eigenvalues of the random matrices satisfying Assumption 3.1
were also recently analyzed in [28].

will prove useful in the analytical evaluation of the average per-
formance of the minimum BER linear MIMO transceiver de-
signs under analysis.

Lemma 3.1 ([23, Thm. 3.2]): The marginal cdf of the
largest eigenvalue, , of a random Hermitian

matrix satisfying Assumption 3.1 is given by

(19)

where is the set of all permutations
of the integers such that and

, matrix is defined as

(20)

for and the function
(see Assumption 3.1).

Theorem 3.1: Let us define the random variable as

(21)

where is the largest eigenvalue of a random Hermitian
matrix satisfying Assumption 3.1, is a nonempty subset of

of cardinality , and are some
given positive constants such that , 3 where

denotes the element of ordered in increasing order.
Then, the cdf of is

(22)

where with

(23)

for , the summation over is for all
in the set defined as4

(24)

and

(25)

where denotes the Kronecker delta. The operator is
defined in Appendix A and the tensor
is defined as

(26)

3Note that if �� � are in increasing order, then � � � .
4Note that � � � and by definition � � �, � � ��� and � ��� �

�.
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for , where (see
Assumption 3.1).

Proof: See Appendix B-I
When focusing on the high-SNR regime, the system perfor-

mance does not depend anymore on the exact probabilistic char-
acterization of the fading channel, but only on its behavior near
the origin [27]. For this reason, we present in the following the-
orems the first-order Taylor expansion around zero of the cdf’s
given in Lemma 3.1 and Theorem 3.1.

Assumption 3.2: Let the Taylor expansion5 of the function
(see Assumption 3.1) be

(28)

where is such that for and let matrix
, defined as

(29)

for have nonzero determinant, where
and

(30)

Theorem 3.2: Under Assumption 3.2, the first-order Taylor
expansions of the marginal cdf, , and the marginal pdf,

, of the largest eigenvalue of a random Hermitian
matrix satisfying Assumption 3.1 are

(31)

(32)

with and defined as

(33)

(34)

5The Taylor expansion of a function ���� around a point � is [30, eq.
(25.2.24)],

���� �
� ����

��
��� � �

�
� ����

��
��� � � � � ���� � � � (27)

where � ��� denotes the � derivative of ���� and we say that ���� �
������� if ����������� � as ��� �[31, eq. (1.3.1)].

where the summation over is for all per-
mutations of the integers , is

(35)

andmatrix is defined as shown in (36) at the bottom
of the page.

Proof: See Appendix B-II
Theorem 3.3: Under Assumption 3.2, the first-order

Taylor expansions of the cdf, , and the pdf, ,
of the random variable introduced in Theorem 3.1
when6 are

(37)

(38)

with and defined as

(39)

(40)

where the summation over and are defined as in
Theorem 3.1, the summation over is for all
permutations of integers , the tensor

is defined as

(41)

for and .
Proof: See Appendix B-C.

C. Ordered Eigenvalues of Rayleigh/Rician Fading Channels

In this section we consider the different distributions of
or that result when follows the MIMO channel models
described in Definitions 3.1–3.3. For these cases, we provide
the expressions for the parameters describing the general joint
pdf of the eigenvalues in Assumption 3.1, as well as the expres-
sions needed to particularize the results given in Section III-B.
Defining the random Hermitian matrix as

(42)

we can derive without loss of generality the statistical properties
of the nonzero channel eigenvalues by analyzing the eigenvalues

6For simplicity of the proof we make the assumption that ��� � �, although
it is not really necessary.

(36)
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TABLE I
PARAMETERS OF THE UNCORRELATED AND MIN-SEMICORRELATED RAYLEIGH FADING MIMO CHANNELS (DEFINITIONS 3.1 AND 3.2)

of , since the nonzero eigenvalues of and coin-
cide.

1) Uncorrelated Rayleigh Fading MIMO Channel: Given the
MIMO channel in Definition 3.1, the random Hermitian ma-
trix in (47) follows a complex uncorrelated cen-
tral Wishart distribution [32], denoted as ,
where and . The joint pdf
of the ordered eigenvalues of satisfies As-
sumption 3.1 and the parameters to particularize the results in
Lemma 3.1 and Theorem 3.1 are provided in Table I7 (see [23,
Sec. 4] for details). Finally, in order to apply Theorems 3.2 and
3.3, we just need to calculate

(43)

and the Taylor expansion of . Using the Taylor ex-
pansion of (see [30, eq. (4.2.1)]), it follows that

(44)

where the function ,
.

2) Min-Semicorrelated Rayleigh Fading MIMO Channel:
Given the MIMO channel in Definition 3.2, the random
Hermitian matrix in (47) follows a complex
correlated central Wishart distribution [32], denoted as

, where is the positive defi-
nite correlation matrix with eigenvalues
ordered such that . The joint pdf of
the ordered eigenvalues of satisfies
Assumption 3.1 and the parameters to particularize the results

7In Table I, ���� �� denotes the lower incomplete gamma function [30, eq.
(6.5.2)], and ���� �� denotes the upper incomplete gamma function [30, eq.
(6.5.3)].

in Lemma 3.1 and Theorem 3.1 are provided in Table I (see
[23, Sec. 4] for details). Finally, in order to apply Theorems 3.2
and 3.3, we just need to calculate

(45)

and the Taylor expansion of . Using the Taylor ex-
pansion of the (see [30, eq. (4.2.1)]), it follows that

(46)

where .
3) Uncorrelated Rician Fading MIMO Channel: Given the

MIMO channel in Definition 3.3, the random Hermitian matrix
, where is given in (42), follows a complex

uncorrelated noncentral Wishart distribution [32], denoted as
, where the noncentrality parameter is

defined as

(47)

with eigenvalues ordered such that
. Observe that in this case the nonzero channel

eigenvalues, i.e., the eigenvalues of , are a scaled version of
the eigenvalues of the complex uncorrelated centralWishart dis-
tributed matrix . The joint pdf of the ordered eigenvalues
of satisfies Assumption 3.1 and the pa-
rameters to particularize the results in Lemma 3.1 and Theorem
3.1 are provided in Table II8 (see [23, Sec. 4], for details). Fi-
nally, in order to particularize Assumption 3.2 and Theorems

8In Table II, � ��� �� and � ��� �� are generalized hypergeometric functions
[33, eq. (9.14.1)], and� ��� �� denotes the Nuttall� function [26, eq. (4.104)],
which is not considered to be a tabulated function. However, it can be easily
calculated as shown in [34].
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TABLE II
PARAMETERS OF THE UNCORRELATED RICIAN FADING MIMO CHANNEL (DEFINITION 3.3)

3.2 and 3.3, we just need to calculate the Taylor expansion of
and

(48)

Noting that [30, eq. (9.6.47)]

(49)

where is the modified Bessel function of the first kind of
integer order [30, eq. (9.6.10)]

(50)

it follows that

(51)

(52)

where . Then, using Leibniz’s Rule (see [30, eq.
(3.3.8)]), we have that

(53)

and, using (51) and (53)

(54)

IV. MINBER LINEAR MIMO TRANSCEIVER WITH FIXED
NUMBER OF SUBSTREAMS

Traditionally, the linear MIMO transceiver design has been
addressed using analytically tractable cost functions based on
the MSEs or the SNRs of the established substreams. Only re-
cently, the system has been designed in [11] and [13] using
the BER as performance measure, when equal constellations
are used on all substreams. In this section we present this min-
imum BER linear transceiver and analyze its average BER per-
formance for the Rayleigh and Rician MIMO channel models
introduced in Definitions 3.1–3.3.

A. Linear Transceiver Design

Following the approach in [13], the optimum receive matrix
, for a given transmit matrix , is the Wiener filter solution

[13, eq. (7)]:

(55)

independently of the design cost function. Specifically, under
the minimum BER design criterion when equal constellations
are used on all substreams, the transmit matrix is given by
[13, Sec. V.C and eq. (15)]

(56)

where has as columns the eigenvectors of
corresponding to the largest nonzero eigenvalues

, is a unitary matrix such that
has identical diagonal elements (see
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[13, Sec. IV.B], for details), and is a diagonal
matrix with diagonal entries equal to

(57)

where is chosen to satisfy the power constraint in (4) with
equality, i.e.,

(58)

B. Analytical Performance

Given the optimum receive matrix in (55) and the optimum
transmit matrix in (56), the communication process is diagonal-
ized up to a specific rotation that forces all data symbols to
have the same MSE

(59)

and, hence, the same instantaneous SNR

(60)

Thus, the minBER-fixed design transmits a rotated version of
the data symbols through the strongest channel eigenmodes,
so that all data symbols experience the same BER performance.
The instantaneous BER averaged over the data symbols de-
fined in (7) is then given by

(61)

where , , for ,
since all constellations are equal. Now, taking into account all
possible channel states, the average BER is obtained as

(62)

where is the pdf of the instantaneous SNR, , given in
(60). Observe that is a nontrivial function of the strongest
eigenvalues of the channel matrix . Thus, a closed-form
expression for the marginal pdf and by extension for the
average BER in (62) is extremely difficult to obtain. However,
we can derive easily computable average BER bounds based
only on the marginal cdf of the largest channel eigenvalue
given in Lemma 3.1 as done in the following theorem.

Theorem 4.1: The average BER attained by the minimum
BER linear transceiver with fixed and equal constellations (as-
suming data symbols per channel use) for the channel models
in Definitions 3.1–3.3 can be bounded as

(63)

with

(64)

(65)

where is the marginal cdf of the largest eigenvalue
given in Lemma 3.1 and the values of the parameters character-
izing each channel model given in Tables I and II.

Proof: See Appendix C-I.
Remark 4.1: Observe that in (64) can be used

to obtain the exact average BER performance of the channel
eigenmodes under the MIMO channel models in Definitions
3.1–3.3 when the power is uniformly distributed among the
established substreams (see [22] for details).

Remark 4.2: Considering Remark 4.1 and following [22,
Theorem 5], the average BER of the minBER-fixed design can
be tighter upper-bounded in the high-SNR regime by dividing

by .
Although Theorem 4.1 provides a numerical procedure to

bound the average BER performance of the minBER-fixed
design without resorting to the time-comsuming Monte Carlo
simulations, it is still difficult to extract any conclusion on how
to improve the system performance. Thus, we focus now on
the high-SNR regime and provide a simpler performance char-
acterization in terms of the array gain and the diversity gain.
Recently, the average BER versus SNR curves of the channel
eigenmodes have been parameterized for an uncorrelated
Rayleigh channel in [22], [35], and for an uncorrelated Rician
channel in [36]. In addition, the performance characterization of
the channel eigenmodes has been applied in [22] to analyze the
high-SNR global average BER performance of practical linear
MIMO transceivers (including the minBER-fixed scheme) in
an uncorrelated Rayleigh channel. Using Theorem 3.2, the
results in [22] can be straightforwardly extended to include the
channel models in Definitions 3.1–3.3 as we present partially
in the following theorem.

Theorem 4.2 ([22, Prop. 3]): The average BER attained by
the minimum BER linear transceiver with fixed and equal con-
stellations (assuming data symbols per channel use) for the
channel models in Definitions 3.1–3.3 satisfies

(66)

where the diversity gain is given by

(67)
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and the array gain can be bounded as9

(68)

with

(69)

(70)

where denotes the gamma function [30, eq. (6.1.1)],
is10

(71)

and the parameters and model the pdf of the largest
eigenvalue. They can be obtained using Theorem 3.2 with
the values of the parameters for each channel model given in
Tables I and II.
In Figs. 2(a) and 3(a), we show the average BER perfor-

mance of theminBER-fixed design and the averageBERbounds
derived in Theorem 4.1 in an uncorrelated and a semicorre-
lated Rayleigh MIMO channel, respectively. In both cases we
consider the minBER-fixed scheme with , a
target transmission rate of bits per channel use, and

. In Figs. 2(a) and 3(a), we show the high-SNR per-
formance and the parameterized upper and lower average BER
bounds (dashed lines) corresponding, respectively, to the lower
and upper array gain bounds derived in Theorem 4.2. We only
include the beamforming strategy in the high-SNR
plots, as for this case the upper and lower bounds coincide with
the exact average BER. It turns out that for the proposed
average BER upper bound is more convenient to approximate
the low SNR performance while the average BER lower bound
is very tight in the high-SNR regime.
Finally, it is important to note that the diversity gain given

in Theorem 4.2 coincides with the diversity gain achieved with
the classical SVD transmission scheme without the additional
rotation in (56) [22]. Hence, Theorem 4.2 shows that the
minBER-fixed design does not provide any diversity advantage
with respect to diagonal schemes with simpler channel non-
dependent power allocation policies but only a higher array
gain. Actually, this statement is not exclusive of the investigated
scheme but a common limitation of all linear MIMO transceiver
whenever the number of symbols to be transmitted is fixed
beforehand (even when using different constellations), as we
show in the next theorem.

9Observe that an array gain lower bound provides an upper bound on the
high-SNR average BER and vice versa.

10A closed-form expression for this integral does not exist for a general value
of the parameter �; however, it can be easily evaluated for the most common
values of � (integers).

Fig. 2. Simulated average BER of the minBER-fixed design and bounds �� �
�� � � �� � � ��� �� ��� � �� in an uncorrelated Rayleigh fading channel.

Theorem 4.3: The diversity gain attained by any linear
MIMO transceiver with fixed constellations (assuming data
symbols per channel use) for the channel models in Definitions
3.1–3.3 satisfies that

(72)

Proof: The BER averaged over the data symbols to be
transmitted of any linear MIMO transceiver given in (7) can be
lower-bounded as

(73)

The linear MIMO transceiver that minimizes the
maximum of the BERs as in (73) coincides with the optimum
receive and transmit matrices given in (55) and (56), respec-
tively, [14, Sec. 3.4.3.5]. Hence, as the factor does not have
any influence on the SNR exponent, the diversity gain of any
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Fig. 3. Simulated average BER of the minBER-fixed design and bounds �� �
�� � � �� � � ��� �� ��� � �� in an semicorrelated Rayleigh fading channel
(the correlation matrix is defined as �			
 � � with � � ���).

linear MIMO transceiver is upper-bounded by the one provided
in Theorem 4.2.
Intuitively, the performance of any linear MIMO transceiver

is inherently limited by the performance of strongest
channel eigenmode, since the design cost function [see, e.g.,
(11) for the minimum BER design] is evaluated for the
data symbols to be transmitted, regardless of whether power
is allocated to all channel eigenmodes during the effective
transmission or not. This reveals that the average BER can
be improved by introducing the parameter into the design
criterion, as analyzed in the following section.

V. MINBER LINEAR MIMO TRANSCEIVER WITH ADAPTIVE

NUMBER OF SUBSTREAMS

In this section we derive the minimum BER design with
fixed rate and adaptive constellations and analyze analytically
its performance.

A. Linear Transceiver Design

The precoding process is here slightly different from clas-
sical linear precoding, where the number of data symbols to be
transmitted per channel use is fixed beforehand. In the fol-
lowing, the parameter and the -dimensional constellations
(assumed equal for simplicity) are adapted to the instantaneous
channel conditions to minimize the BER by allowing to vary
between 1 and while keeping the total trans-
mission rate fixed. Usually, only a subset of
all possible values of is supported, since the number of bits
per symbol has to be an integer. This simple optimization
of suffices to exploit the full diversity of the channel whenever

is included in , as will be seen in the next theorem.
Theorem 5.1: The diversity gain attained by any linear

MIMO transceiver with adaptive constellations (assuming that
the number of data symbols per channel use is chosen optimally
from the set ) for the channel models in
Definitions 3.1–3.3 satisfies

(74)

provided that the linear transceiver design reduces to the op-
timum beamforming scheme for .

Proof: The average BER of any linear MIMO transceiver
when is optimized tominimize theBER can be upper-bounded
using Jensen’s inequality [37, Sec. 12.411] as

(75)

where denotes the average BER obtained for .
If, in this case, the optimum beamforming scheme is selected, it
follows that

(76)

where we have used Theorem 4.2 for . Hence, the full
diversity of the channel is achieved.
Observe that a more general setup would also adapt the in-

dividual modulations without the constraint of equal constella-
tions. However, the proposed minBER-adap scheme achieves
already the full diversity of the channel with low complexity.
On top of that, not even the minimum BER linear transceiver
with fixed and unequal constellations can be optimally obtained
in closed form [38], and this dramatically increases the com-
plexity of the system.
The linear transceiver and are designed to mini-

mize the BER averaged over the data symbols to be transmitted
for all supported values of

(77)

where has to satisfy the power-constraint in (4) and
is defined in (7). The optimum linear trans-

ceiver for a fixed and equal constellations has been
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presented and analyzed in Section IV-B. Using the resulting
BER expression in (67), the optimum should be selected as

(78)

or, neglecting the contribution of (since it is not in
the argument of the Gaussian -function), as11

(79)

where is given in (60).
A similar scheme that adapts the number of substreams under

a fixed rate constraint has been proposed in [16] in the context of
limited feedback linear precoding. Even assuming perfect CSI,
the multimode precoder designed in [16] is still suboptimum,
since it does not perform the rotation to ensure equal BER on
all substreams, the power is uniformly allocated among the es-
tablished substreams, and parameter is suboptimally chosen
as

(80)

A different approach to overcome the diversity limitation of
classical linear MIMO transceiver has been also recently given
in [39], where the precoder is designed to maximize the min-
imumEuclidean distance between symbols. However, the diver-
sity order is only increased to .
In Fig. 4 we compare the performance of the proposed

minBER-adap scheme against the multimode precoder of
[16] and the optimum minimum BER linear MIMO trans-
ceiver of [38] combined with an exhaustive search over all
possible combinations of number of substreams and (possibly
unequal) modulation orders which satisfy the rate constraint.
We have obtained the average BER performance by numerical
simulation in an uncorrelated Rayleigh fading channel for
(i) and (ii) , , and a target
transmission rate of bits per channel use. For the
minBER-adap design and the multimode precoder, the number
of substreams has been adapted with and the
corresponding constellations {256-QAM, 16-QAM, QPSK},
while for the optimum minimum BER system all feasible
combinations of number of substreams and modu-
lations {256-QAM, 128-QAM, 64-QAM, 32-QAM, 16-QAM,
8-QAM, QPSK, BPSK} have been taken into account. As
expected, the minBER-adap design offers a better BER perfor-
mance than the multimode precoder but it is still outperformed
by the optimum minimum BER linear transceiver. However,
this performance improvement over the proposed scheme does
not justify in any case the prohibitive increase of complexity in
the optimum design, which implies numerical linear transceiver
design and exhaustive search over all possible combinations of
substreams and modulations.

B. Analytical Performance

The minimum BER linear transceiver with fixed rate
and adaptive constellations has the same structure as the

11Numerical simulations do not show appreciable average BER differences
between the selection functions in (84) and in (85) in the BER region of practical
interest � � �� �.

Fig. 4. Simulated average BER of the minBER-adap design (� � ��� �� ��,
� �), the multimode precoder �� � ����� ��� � ��, and the optimum

minimum BER linear transceiver with an exhaustive search over all possible
number of substreams and QAM constellations such that � � in an uncorre-
lated Rayleigh fading channel.

minBER-fixed design presented in Section IV-A but the
number of symbols to be transmitted is optimally adapted
to minimize the BER. Analogously to Section IV-B with the
minBER-fixed scheme, we analyze in the following theorems
the average BER performance of the minBER-adap design.

Theorem 5.2: The average BER attained by the minimum
BER linear transceiver with fixed rate and equal constellations
(assuming that the number of data symbols per channel use is
chosen from the set as in (79)) for the
channel models in Definitions 3.1–3.3 can be bounded as

(81)

with

(82)
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(83)

where and we have defined

(84)

The corresponding cdfs, and , can be obtained
using Theorem 3.1 with the values of the parameters for each
channel model given in Tables I and II.

Proof: See Appendix C-II.
Remark 5.1: Observe that in (82) coincides

with the exact average BER performance of the multimode
precoder of [16] except for the factor
which is an upper bound. The corresponding lower bound can
be obtained using (134) in Appendix C-II.

Theorem 5.3: The average BER attained by the minimum
BER linear transceiver with fixed rate and equal constellations
[assuming that the number of data symbols per channel use is
chosen from the set as in (79)] for the
channel models in Definitions 3.1–3.3 satisfies

(85)

where the diversity gain is given by

(86)

the array gain can be bounded as

(87)

with

(88)

(89)

where is defined (77) and . The
parameters and model the pdfs of
and defined in (84). They can be obtained using Theorem
3.2 with the values of the parameters for each channel model
given in Tables I and II.

Proof: The proof follows from using [22, Lem. 1] and [22,
Cor. 1] with the bounds derived in the proof of Theorem 5.2.
Theorem 5.3 shows that the minimum BER linear transceiver

with fixed rate and equal constellations effectively exploits the
maximum diversity offered by the MIMO channel whenever

is contained in . In Fig. 5 we show the average BER per-
formance of the minBER-adap design and of the average BER
bounds derived in Theorem 5.2 in an uncorrelated and a semi-
correlated Rayleigh fading channel (see details in Fig. 3). We
have considered the minBER-fixed scheme with ,
a target transmission rate of bits per channel use, and

Fig. 5. Simulated average BER of the minBER-adap design and bounds �� �
�� � � ��� � ��� �� ��� � ��.

. As expected, the proposed design outperforms
the classical minBER-fixed linear transceiver in Figs. 2 and 3.

VI. CONCLUSION

The contributions of this paper are twofold. The first one re-
lates to linear MIMO system design whereas the second one
is more theoretical and provides new probabilistic characteri-
zations of the channel eigenvalues based on the unified formu-
lation of [23]. These results are directly applied to the perfor-
mance analysis of the investigated schemes.
The linear MIMO transceiver design has been addressed in

the literature with the typical underlying assumption that the
number of data symbols to be transmitted per channel use is
chosen beforehand. In this paper we have proved that, under
this assumption, the diversity order of any linear MIMO trans-
ceiver is at most driven by that of the weakest channel eigen-
mode employed, which can be far from the diversity intrinsi-
cally provided by the channel. Based on this observation, we
have fixed the rate (instead of the number of data symbols) and
we have optimized the number of substreams and constellations
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jointly with the linear precoder. This procedure implies only an
additional optimization stage upon the classical design which
suffices to extract the full diversity of the channel. Since the
ultimate performance of a communication system is given by
the BER, we have focused on the minimum BER design. The
implications of the proposed optimization have been then illus-
trated by means of analytical performance analysis of the min-
imum BER linear MIMO transceiver with fixed and with adap-
tive number of substreams.
The performance of linear MIMO transceivers is strongly

connected to the probabilistic characterization of the ordered
eigenvalues of the Wishart, Pseudo-Wishart and Quadratic
forms distributions. Based on the general formulation proposed
by the same authors in [23], we have derived the cdf of the
maximum weighted ordered eigenvalue and the first-order
Taylor expansion of both the cdf of the largest eigenvalue
and the cdf of the maximum weighted ordered eigenvalue for a
general class of Hermitian random matrices. This completes the
theoretical results presented in [23] and provides the essential
mathematical resources needed to investigate the analytical
performance of linear MIMO transceivers for typical channel
models under a unified framework. In this paper, we have used
these results to bound the average BER performance of the
investigated minimum BER designs, but they can be similarly
applied to other linear transceivers following the procedure in
[22]. Additionally, the high-SNR average BER characterization
of [22] can be now extended to include other channel models
such as the semicorrelated Rayleigh fading and the uncorrelated
Rician fading channel.

APPENDIX A
OPERATOR

Definition A.1: The operator over a tensor
is defined as12

(90)

where the summation over and
is for all permutations of the integers

and denotes the sign of the permutation.
Remark A.1: The operator introduced in Definition

A.1 can be alternatively expressed as

(91)

where matrix is defined as

(92)

12Note that this operator was also introduced in [40, Def. 1].

APPENDIX B
ORDERED EIGENVALUES. PROOFS

1. Proof of Theorem 3.1

Proof: The cdf of the random variable defined in (21)
can be obtained as

(93)

where denotes the element and the cardinality of the
set . Defining

otherwise
(94)

we can rewrite the cdf in (93) as

(95)

where denotes the joint cdf of the ordered eigenvalues
. Precisely, due to the order of the eigenvalues,

for it holds that
and, hence, we have that

(96)

where is defined in (23). Finally, the expression of
given in the theorem follows from substituting in (96)

the joint cdf of the ordered eigenvalues derived in [23, Thm.
3.1].

2. Proof of Theorem 3.2

Proof: The first-order Taylor expansion of is given
by

(97)

where denotes the derivative of (see Lemma

3.1) and is the smallest integer such that .

Using [41], (10), for the derivative of a determinant,
can be expressed as

(98)
where the summation over is for all such
that and , and the matrix

is defined as [see (20)]

(99)

for Then, the proof reduces to find the min-
imum integer such that in (104) does not equal 0
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when evaluated at . First we determine, for a fixed
and a fixed permutation , the set with minimum

such that and,
then, we obtain as

(100)

Recall from Assumption 3.2 that the Taylor expansion of
is given by

(101)

and, since , we have that

(102)

(103)

where we have defined

(104)

From (102) and (103) we conclude that , such that the
columns do not have all entries equal to
0, satisfies

(105)

where .
Note that the condition in (105) is only a necessary condition,

as we still have to guarantee that all columns of
are linearly independent in order to assure that

. In fact, the condition in (105) is not sufficient, as in
the following we show that the set with minimum

and is given by

(106)

where is a permutation of integers
.

Let us focus first on the case with , power
allocation policies, i.e.,

(107)

for For the case we have that

(108)

for and this, noting (105), shows that all
in the set have to be different to force these

columns not to be linearly dependent. Since the set
with different elements and minimum is

(109)

this confirms (106) as long as with

(110)

Now observe that , with
as given in (106), is obtained for and satisfying

(111)

and that, at least in this case, by As-
sumption 3.2. Thus, is

(112)

where we have used [33, eq. (0.121.1)]. Finally, we can rewrite
as

(113)

where

(114)

and the matrix is defined, using (106) and (110), as
shown in (115) at the bottom of the next page, or, equivalently,
using (111) and (104), as shown in (116) at the bottom of the
next page. Then, we complete the proof by substituting (113)
back in (97).
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3. Proof of Theorem 3.3

Proof: The first-order Taylor expansion of is given
by

(117)

where denotes the derivative of (see The-

orem 3.1) and is the smallest integer such that
. Using the alternative expression of operator in Remark

A.1, we can rewrite in (23) in terms of sum of determi-
nants. Then, using [41], (10), for the derivative of a deter-
minant, it follows

(118)

where the summation over is for all such
that and , and the matrix

is defined as [see (26)]

(119)

for Then, the proof reduces to find the min-
imum integer such that in (118) does not equal 0 when
evaluated at .
Using the Taylor expansion of in Assumption 3.2

and recalling that , it holds that

(120)

(121)

From (120) we conclude that , such that the columns
do not have all entries equal to 0,

satisfies

(122)

where . Observe that the condition in (122) is
only a necessary condition, as we still have to guarantee that
all columns of are linearly independent
in order to assure that . In fact, the
condition in (122) is not sufficient, since we have that

(123)

for , and this, noting (122), shows that all in
the set have to be different. The set
with minimum and different elements is

(124)

where is a permutation of integers .
In addition, due to Assumption 3.2, this set ensures that

, at least when . Thus,
independently of and , is

(125)

where we have used [33, eq. (0.121.1)]. Finally, we can rewrite
as

(126)

where

(127)

and the matrix is defined as

(128)

(115)

(116)
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for . Finally, using again Remark A.1, it follows

(129)

where the tensor is defined as

(130)

for Then, we complete the proof by substi-
tuting (129) back in (117).

APPENDIX C
PERFORMANCE ANALYSIS PROOFS

1. Proof of Theorem 4.1

Proof: The instantaneous SNR of the minBER-fixed de-
sign in (66) can be bounded as [22, App. VI]

(131)

The proof follows then from calculating the average BER at-
tained with the bounds in (131):

(132)

(133)

Finally, using integration by parts and the expression of the
Gaussian -function in (10), we can rewrite (132) and (133) in
terms of the cdf of the largest eigenvalue, , and this
completes the proof.

2. Proof of Theorem 5.2

Proof: The average BER of the minBER-adap design with
chosen from as in (85) can be bounded as

(134)

where is

(135)

we have defined , and denotes its
pdf. Using the bounds of the instantaneous SNR in (131), it
holds that

(136)

Let us define and
and denote their pdf by and

, respectively. The proof follows then from calculating
the average BER attained with the bounds in (136) and com-
bining them with (134)

(137)

(138)

Finally, we can rewrite (137) and (138) in terms of the cdfs
and , respectively, using again integration by

parts as in Appendix C-I.
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