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Abstract—In this paper, we present a general formulation that
unifies the probabilistic characterization of Hermitian random ma-
trices with a specific structure. Based on a general expression for
the joint pdf of the ordered eigenvalues, we obtain i) the joint cdf;
ii) the marginal cdfs; and iii) the marginal pdfs of the ordered
eigenvalues, where ii) and iii) follow as simple particularizations
of i). Our formulation is shown to include the distribution of some
common MIMO channel models such as the uncorrelated, semi-
correlated, and double-correlated Rayleigh MIMO fading channel
and the uncorrelated Rician MIMO fading channel, although it is
not restricted only to these. Hence, the proposed formulation and
derived results provide a solid framework for the simultaneous an-
alytical performance analysis of MIMO systems under different
channel models. As an illustrative application, we obtain the exact
outage probability of a spatial multiplexing MIMO system trans-
mitting through the strongest channel eigenmodes.

Index Terms—Channel eigenmodes, Hermitian random ma-
trices, linear MIMO transceivers, ordered eigenvalues, Pseudo-
Wishart distribution, Wishart distribution.

I. INTRODUCTION

M ULTIPLE-INPUT multiple-output (MIMO) channels
are an abstract and general way to model many different

communication systems of diverse physical nature; ranging
from wireless multi-antenna channels [2]–[5], to wireline
digital subscriber line (DSL) systems [6], and to single-antenna
frequency-selective channels [7]. In particular, wireless MIMO
channels have been recently attracting a great interest since they
provide significant improvements in terms of spectral efficiency
and reliability with respect to single-input single-output (SISO)
channels [4], [5].

Assuming that the communication link has transmit and
receive dimensions, the MIMO channel is mathematically
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described by an channel matrix , whose th entry
characterizes the path between the th transmit and the th re-
ceive antenna. In particular, when communicating over MIMO
fading channels, is a random matrix that depends on the par-
ticular system architecture and the particular propagation con-
ditions. Hence, is assumed to be drawn from a certain proba-
bility distribution, which characterizes the system and scenario
of interest and is known as channel model. The system behavior
is then evaluated on the average or outage sense, taking into ac-
count all possible channel states.

The performance of a MIMO system is usually related to
the eigenstructure of (channel eigenmodes) or, more exactly,
to the nonzero eigenvalues of (or ). Consequently,
the probabilistic characterization of these eigenvalues for the
adopted channel model is necessary in order to derive analytical
expressions for the average and outage performance measures.

In MIMO wireless communications is commonly mod-
eled with Gaussian distributed entries, leading to the MIMO
generalization of the well-known SISO Rayleigh or Rician
fading channels (depending on whether the entries are zero
mean or not). Some important particular cases of the MIMO
Rayleigh and Rician channel models result in (or )
being a Wishart random matrix. The Wishart distribution and
some closely related distributions have been widely studied
during the sixties and seventies in the mathematical literature
(see, e.g.,1 [8]–[13]), due to its importance in various areas
of research such as the analysis of time series [14] or nuclear
physics [15], [16]. More recently, the statistical properties of
the eigenvalues of Wishart matrices have been investigated and
effectively applied to analyze the information theoretical limits
of MIMO channels [4], [17]–[31] as well as the performance
of practical MIMO systems [32]–[45]. Some other interesting
cases entail the study of complex Pseudo-Wishart distributed
matrices. However, this distribution and its eigenvalues have
been only marginally considered in the MIMO literature [17],
[19], [23], [30], [37], [38], [46]. This is also the case of the more
general complex Quadratic form distributions [30], [47]–[53],
which include the Wishart and Pseudo-Wishart distributions as
particular cases.

Most of these works deal with the joint pdf of the ordered
eigenvalues [17]–[24], [30], [39], [46], [49]–[52], the marginal
distribution of an unordered eigenvalue [4], [25]–[29], or the
distribution of the smallest eigenvalue [32], [45] to evaluate the

1We only include here some relevant references that focus on the complex
Wishart distribution.
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system performance for the uninformed transmitter case. In con-
trast, when perfect channel state information is available at the
transmitter, the weakest channel eigenmodes can be discarded,
and the marginal statistics of the ordered eigenvalues become
necessary. In this context, useful closed-form expressions for
the distribution of the largest eigenvalue have been derived in
[17], [33]–[38], [45], [54], and [55] to analyze the performance
of the beamforming scheme (also referred as maximum-ratio
transmission [56]). Nevertheless, an exhaustive analysis of the
marginals of all ordered eigenvalues was still missing.2 Some
initial contributions in this direction are [40]–[42]. In particular,
the first order Taylor expansion of the marginal pdfs of all the
ordered eigenvalues was given in [40], [41] for the uncorrelated
central Wishart distribution to characterize the high-SNR per-
formance of the individual MIMO channel eigenmodes and of
linear MIMO transceivers [57]. With the same purpose, [42] de-
rived the exact marginal cdfs and the first order Taylor expansion
of the marginal pdfs of the ordered eigenvalues for the uncorre-
lated noncentral Wishart distribution.

In this paper, we present a general formulation that unifies
the probabilistic characterization of Hermitian random ma-
trices with a specific structure. Based on a general expression
for the joint pdf, we obtain i) the joint cdf; ii) the marginal
cdfs; and iii) the marginal pdfs of the ordered eigenvalues,
where ii) and iii) follow as simple particularizations of i).
Then, in order to illustrate the utility of our unified approach,
we particularize these results for uncorrelated and correlated
central Wishart, correlated central Pseudo-Wishart, and un-
correlated noncentral Wishart matrices. To the best of the
authors’ knowledge, the joint cdf was unknown for all these
distributions and the marginal cdfs and pdfs were only available
for the uncorrelated central and noncentral Wishart distribu-
tions. Recently, other unified treatments have been proposed
in [28] and [36], including, however, only uncorrelated and
correlated central Wishart and uncorrelated noncentral Wishart
matrices. Furthermore, only the distribution of the largest and
the smallest eigenvalue was derived in [36] and the distribution
of an unordered eigenvalue in both [28], [36]. Specifically, in
the context of MIMO performance analysis, our results can
be applied to investigate the spatial multiplexing system that
results from transmitting independent substreams through the
strongest eigenmodes when perfect channel state information is
available at both sides of the link (also termed as MIMO SVD
systems). The motivation behind the analysis of this particular
communication scheme is that it was proven to be optimal in
the design of linear MIMO transceivers under a wide rage of
different optimization criteria [57]. The most common perfor-
mance measures such as the average BER or outage probability
of the established substreams have been (partially or approxi-
mately) obtained in [40]–[44] under an specific channel model.
Here, we exploit the proposed unified formulation and results
to characterize the exact outage probability of the channel
eigenmodes and the global outage probability of the system for
different channel models simultaneously.

2Simultaneously to the publication of this work in [2], the marginal cdfs of
all the ordered eigenvalues were obtained in [45] following the unified approach
by the same authors in [36] that includes uncorrelated and correlated central
Wishart and uncorrelated noncentral Wishart matrices.

The rest of the paper is outlined as follows. Section II is
devoted to introducing the Rayleigh and Rician MIMO channel
models and the corresponding joint pdfs of its ordered eigen-
values. Section III contains the main contribution of this paper,
i.e., the derivations of the joint cdf and both the marginal
cdfs and pdfs of the ordered eigenvalues of a general class
of Hermitian random matrices. In Section IV we establish
the matching between this class and the Rayleigh and Rician
MIMO channel models in Section II. More exactly, we provide
the expressions for the parameters describing the general joint
pdf of the eigenvalues considered in Section III as well as the
expressions needed to particularize the derived distributions.
As a straightforward example of application of the proposed
characterization, the exact outage performance of a MIMO
spatial multiplexing scheme is obtained in Section V. The paper
is finally summarized in Section VI.

II. MIMO CHANNEL MODEL

In this section, we introduce the Rayleigh and Rician flat-
fading3 MIMO channel models used in the analytical derivations
and performance analysis of Sections IV and V.

A. Rayleigh and Rician MIMO Channels

Recall from the introduction that a MIMO channel with
transmit and receive dimensions can be modeled as an

random matrix . Usually, since there are a large
number of scatters in the channel that contribute to the signal at
the receiver, application of the central limit theorem results in

having zero-mean Gaussian distributed coefficients. Analo-
gously to the single antenna case, this model is referred to as
Rayleigh MIMO fading channel [5].

In realistic environments, the SISO channels connecting each
pair of transmit and receive antenna elements are not indepen-
dent due, for instance, to insufficient spacing between antenna
elements or insufficient scattering. In such cases, a convenient
approach is to construct a correlation model that can provide
a reasonable description of the propagation environment and
physical setup for the wireless application of interest (see [59]
for a review on MIMO channel models). The most common
correlation model assumes that antenna correlation at the trans-
mitter side and at the receiver side are caused by independent
phenomena and is known as Kronecker model [60]–[64]. Thus,
correlation can be separated and the correlated MIMO Rayleigh
channel can be modeled as

(1)

where is the transmit correlation matrix,

is the receive correlation matrix, and
is the random channel matrix with i.i.d. zero-mean unit-variance
circulary symmetric Gaussian entries, i.e., .
Although this simple correlation model is not completely gen-
eral (see, e.g., [65] and [66] for environments where it does not
apply), it has been validated experimentally in [67]–[69] as well

3Observe that in wideband MIMO systems a multicarrier approach is usu-
ally applied and the flat-fading assumption holds then for the channel seen by
each subcarrier (cf. [58]). Henceforth, we use the term “fading” instead of “flat-
fading,” although a flat-fading channel is implicitly considered.
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as using ray-tracing simulations in [62]. Hence, it is widely ac-
cepted as an accurate representation of the fade correlation seen
in actual cellular systems.

In addition, for scenarios where a line-of-sight or specular
component is present, the channel matrix is modeled as having
nonzero mean [63], [64]

(2)

where is power normalization factor known as
the Rician -factor and is a deterministic matrix
containing the line-of-sight components of the channel. Anal-
ogously to the single antenna case, this model is referred to as
MIMO Ricean fading channel [70].

Observe that the MIMO Ricean fading model in (2) includes
channels ranging from a fully random Rayleigh channel when

to a fully deterministic channel when . For a
fair comparison of the different cases, the total average received
power is assumed to be constant, i.e.,

(3)

(4)

and, hence, we can impose without loss of generality that

(5a)

and

(5b)

B. Particular Cases of Rayleigh and Rician MIMO Channels

We now present the different distributions of or
and the joint pdf of its ordered eigenvalues which result when

follows some important particular cases of the Rayleigh and
Rician MIMO channel models introduced in the previous sec-
tion (see physical justifications of these channels in [71]).

1) Uncorrelated Rayleigh Fading MIMO Channel:
Definition 2.1: The uncorrelated Rayleigh MIMO fading

channel model is defined as

(6)

where is an random channel matrix with i.i.d. zero-
mean unit-variance complex Gaussian entries.

Consider an uncorrelated Rayleigh fading MIMO channel
as given in Definition 2.1, then the random Hermitian matrix

defined as

(7)

follows a complex uncorrelated central Wishart distribution
[8]–[10], [13], denoted as , where

and . The joint pdf
of the ordered eigenvalues, , of

is given by [9, eq. (95)], [10, eq.
(7.1.7)], [18, eq. (10)]

(8)

where is a Vandermonde matrix (see Appendix A.1).
2) Min-Semicorrelated Rayleigh Fading MIMO Channel:
Definition 2.2: The semicorrelated Rayleigh fading MIMO

channel model with correlation at the side with minimum
number of antennas is defined as

(9)

where is the positive definite cor-
relation matrix with and is an
random channel matrix with i.i.d. zero-mean unit-variance com-
plex Gaussian entries.

Consider a min-semicorrelated Rayleigh fading MIMO
channel as given in Definition 2.2, then the random
Hermitian matrix in (7) follows a complex
correlated central Wishart distribution [9], [10], [13], de-
noted as , where ,

, and is the positive definite
correlation matrix. The joint pdf of the ordered eigenvalues,

, of is given by [9, eq.
(95)], [18, eq. (17)]

(10)
where is a Vandermonde matrix (see Appendix A.1) and

is defined as

for (11)

where are the eigenvalues of ordered such
that4 .

3) Max-Semicorrelated Rayleigh Fading MIMO Channel:
Definition 2.3: The semicorrelated Rayleigh fading MIMO

channel model with correlation at the side with maximum
number of antennas is defined as

(12)

where is the positive definite cor-
relation matrix with and is an

4If some � ’s are equal the result is obtained by taking the limiting case of
(10) (see [30, Sec. IV]). However, the most common practical scenarios which
give rise to eigenvalue multiplicities are when all the eigenvalues are the same,
i.e., ��� � � [53], and, hence, � � � ���� � � � as in Section II-B-1).
This observation also holds for the max-semicorrelated Rayleigh fading MIMO
channel in Section II-B-3).

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 5, 2009 at 05:30 from IEEE Xplore.  Restrictions apply.

fono
Rectángulo



ORDÓÑEZ et al.: ORDERED EIGENVALUES OF A GENERAL CLASS OF HERMITIAN RANDOM MATRICES 675

random channel matrix with i.i.d. zero-mean unit-variance com-
plex Gaussian entries.

Consider a max-semicorrelated Rayleigh fading MIMO
channel as given in Definition 2.3, then the random Hermi-
tian matrix defined as

(13)

is not full-rank and follows a complex correlated cen-
tral Pseudo-Wishart distribution5 [46], [73], [74], denoted
as , where ,

, and is the positive definite
correlation matrix. The joint pdf of the ordered nonzero eigen-
values, ,6 of is
given by [19, eq. (25)], [30, eq. (43)]

(14)

where is a Vandermonde matrix (see Appendix A.1) and
is defined as

(15)

for , where are the eigen-
values of ordered such that . Per-
forming the Laplace expansion (see, e.g., [75, Sec. 33]) over the
first columns of , it follows that

(16)

where the summation over is for all permuta-
tion of integers such that and

and the matrices
and are defined as

for (17)

for (18)

Observing that is a Vandermonde matrix (see
Appendix A.1), we can finally rewrite the joint pdf as

(19)

5The Pseudo-Wishart distribution is also referred to as singular Wishart [72]
or anti-Wishart [73] distribution.

6There will be also � � � additional zero eigenvalues.

4) Uncorrelated Rician Fading MIMO Channel:
Definition 2.4: The uncorrelated Ricean fading MIMO

channel model is defined as

(20)

where , is an deterministic matrix, and
is an random channel matrix with i.i.d. zero-mean

unit-variance complex Gaussian entries.
Consider a uncorrelated Rician fading MIMO channel as

given in Definition 2.4, then the random Hermitian matrix
, where is given in (7), follows a com-

plex uncorrelated noncentral Wishart distribution [9], [10], [13],
denoted as , where and

, and the non-centrality parameter is de-
fined as

.
(21)

Note that in this case the nonzero channel eigenvalues, i.e., the
eigenvalues of , are a scaled version of the eigenvalues of
the complex uncorrelated central Wishart distributed matrix .
The joint pdf of the ordered eigenvalues of

is given by [9, eq. (102)], [34, eq. (45)]

(22)

where is a Vandermonde matrix (see Appendix A.1) and
is defined as

for (23)

where is a generalized hypergeometric function (see
[76, eq. (9.14.1)]) and are the eigenvalues of

ordered such that7 .

III. ORDERED EIGENVALUES OF A GENERAL CLASS OF

RANDOM MATRICES

Observe that the joint pdf of the ordered eigenvalues of the
distributions associated with the channel models presented in
Section II-B follow a very similar structure [cf. (8), (10), (19),
and (22)]. This enables to perform the probabilistic characteriza-
tion of the ordered eigenvalues simultaneously for these distri-
butions by assuming this particular structure for the joint pdf of
the ordered eigenvalues in all derivations. Indeed, in this section
we derive the joint cdf and both the marginal cdfs and pdfs of the
ordered eigenvalues of a general class of Hermitian random ma-
trices (formalized next in Assumption 3.1). This general class is
shown in Section IV to include or when is drawn
from the particular cases of the general Rayleigh and Rician

7If some � ’s are equal or zero the result is obtained by taking the limiting
case of (22) (see [34, App. B]).
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MIMO channel models introduced in Section II-B. Hence, the
results obtained in this section can be applied to analyze the per-
formance of MIMO systems as we will illustrate in Section V.

Assumption 3.1: We consider the class of Hermitian random
matrices, for which the joint pdf of its nonzero ordered eigen-
values can be expressed as

(24)

where is a vector of indices and the summation is for all vectors
in the set , is a Vandermonde matrix (see

Appendix A.1) and matrix satisfies

for (25)

The dimension of , the set , the constant , and the func-
tions and depend on the particular distribution of
the random matrix.

The adoption of Assumption 3.1 for the joint pdf of the eigen-
values is not only supported by the identification of the common
structure for the distributions in Section II-B. In addition, it can
be also motivated by investigating the form of the most common
Hermitian matrix distributions as done in Appendix B.1.

A. Joint CDF of the Ordered Eigenvalues

This section presents the main contribution of this paper,
since all the other results follow as straightforward particular-
izations of the next theorem.

Theorem 3.1: The joint cdf of the ordered eigenvalues
of a random Hermitian matrix satisfying As-

sumption 3.1 is given by

(26)

where ,8 the summation over
is for all in the set defined as9

(27)

and

(28)

where denotes the Kronecker delta. The operator is
defined in Appendix A.1 and the tensor
is defined as

(29)

8If � � � then � �� � � � � � � � � � � � � � � ��
� �� � � � � � � � � � � � � � � � and if some � � �, then � ����� � �.

9Note that � � � and by definition � � �, � � �� � and � � �.

for , where (see
Assumption 3.1).

Proof: See Appendix B.2.

B. Marginal CDF and PDF of the th Largest Ordered
Eigenvalue

In this section we particularize the joint cdf of the ordered
eigenvalues given in Theorem 3.1 to derive the marginal cdf and
the marginal pdf of the th largest eigenvalue.

Theorem 3.2: The marginal cdf of the th largest eigenvalue,
, of a random Hermitian matrix satisfying Assumption 3.1 is

given by

(30)

where is the set of all permutations
of the integers such that and

, matrix is defined as

(31)

for , and (see As-
sumption 3.1).

Proof: See Appendix B.3.
In the following, we particularize Theorem 3.2 to obtain a

simplified expression for the marginal cdf of the largest and
smallest eigenvalues.

Corollary 3.1: The marginal cdf of the largest eigenvalue,
, of a random Hermitian matrix satisfying Assumption 3.1 is

given by

(32)

where matrix is defined as

for (33)

and (see Assumption 3.1).
Proof: See Appendix B.4.

Corollary 3.2: The marginal cdf of the smallest nonzero
eigenvalue, , of a random Hermitian matrix satisfying As-
sumption 3.1 is given by

(34)

where matrix is defined as

for (35)

and (see Assumption 3.1).
Proof: See Appendix B.5.
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Similarly, the marginal pdf of the th largest eigenvalue can
be easily derived from Theorem 3.2 as we illustrate in the fol-
lowing corollary.

Corollary 3.3: The marginal pdf of the th largest eigenvalue,
, of a random Hermitian matrix satisfying Assumption 3.1 is

given by

(36)

where is the set of all permutations
of the integers such that and

, matrix is defined as

,

,

,

,
(37)

for , and (see As-
sumption 3.1).

Proof: See Appendix B.6.
Observe that the simplifications used in the proofs of Corol-

laries 3.1 and 3.2 can be straightforwardly applied to obtain
simple expressions for the marginal pdf of the largest and
smallest eigenvalues using Corollary 3.3.

Remark 3.1: This unified approach allows also the derivation
of the marginal cdf (the marginal pdf could be analogously ob-
tained) of an unordered eigenvalue chosen from the set of the

largest eigenvalues, , observing that

(38)

This expression is more general than the marginal cdf of an un-
ordered eigenvalue chosen from the set of all nonzero ordered
eigenvalues, , available in the literature (see, e.g.,
[28], [36]), which can be obtained by setting in (38).

IV. ORDERED EIGENVALUES OF RAYLEIGH AND

RICIAN MIMO CHANNELS

In this section, we provide the expressions for the parameters
describing the general joint pdf of the eigenvalues in Assump-
tion 3.1, as well as the expressions needed to particularize
the distributions given in Section III when follows the
Rayleigh and Rician fading MIMO channel models described
in Section II-B. Although we restrict here to simple cases of
the Rayleigh and Rician fading MIMO channels (for which
closed-form expressions can be obtained), other interesting
cases are also included in our unified formulation, for instance,
the double-correlated Rayleigh fading MIMO channel consid-
ered in [53], since the joint pdf of the ordered eigenvalues in
[53, eq. (57)] can be expressed as the joint pdf in Assumption
3.1 (see Appendix C).

A. Uncorrelated Rayleigh Fading MIMO Channel

Consider an uncorrelated Rayleigh fading MIMO channel
as given in Definition 2.1, then the random Hermitian ma-

trix in (7) follows a complex uncorrelated central
Wishart distribution, i.e., , where

and . Since the nonzero eigen-
values of and coincide, we can derive without loss
of generality the statistical properties of the nonzero channel
eigenvalues by analyzing the eigenvalues of .

Joint pdf: Identifying terms, the joint pdf of the ordered eigen-
values of in (8) coincides with the general
pdf given in Assumption 3.1 if we let be a singleton (the su-
perindex can then be dropped), define as

(39)

the function as

(40)

and matrix , equal to , with entries given
by

for (41)

Hence, it follows that is

(42)

where we have introduced the function .
Marginal distributions: In order to derive the marginal cdf

and pdf of the th largest eigenvalue using the results presented
in Section III-B, we only have to particularize

(43)

(44)

where and are the upper and lower incomplete
gamma functions defined in Appendix A.2.

The marginal cdf of the largest eigenvalue of
was initially derived in [73, Thm. 2] and ex-

tended to the marginal cdf and pdf of the th largest eigenvalue
in [78, eq. (16)]. Recently, the cdfs of the largest and smallest
eigenvalue were obtained in [33, eq. (18)], [34, Cor. 2], [35, eq.
(6)], [54, Thm. 5], [36, eq. (5)] and [32, eq. (38)], respectively.
In addition, the pdfs of the largest and smallest eigenvalue were
provided in [33, eq. (22)], [34, Cor. 3], [35, eq. (7)], [36, eq.
(23)] and [36, eq. (24)], respectively.

B. Min-Semicorrelated Rayleigh Fading MIMO Channel

Consider a min-semicorrelated Rayleigh fading MIMO
channel as given in Definition 2.2, then the random Her-
mitian matrix in (7) follows a complex correlated
central Wishart distribution, i.e., ,
where , , and is the
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positive definite correlation matrix with eigenvalues
ordered such that .

Joint pdf: Identifying terms, the joint pdf of the ordered eigen-
values of in (10) coincides with the gen-
eral pdf given in Assumption 3.1 if we let be a singleton (the
superindex can then be dropped), define as

(45)

the function as

(46)

and matrix with entries as given in (11), i.e.

for (47)

Hence, it follows that

(48)

where we have introduced the function .
Marginal distributions: In order to derive the marginal cdf

and pdf of the th largest eigenvalue using the results presented
in Section III-B, we only have to particularize

(49)

(50)

where and are the upper and lower incomplete
gamma functions defined in Appendix A.2.

The marginal cdfs of the largest and smallest eigenvalue of
were recently derived in [17, Thm. 4 (1)],

[36, eq. (7)], [37, eq. (9)], [38, eq. (18)] and in [36, eq. (9)],
[37, eq. (13)], [38, eq. (22)], respectively. The corresponding
marginal pdfs were obtained in [36, eq. (26)], [37, eq. (17)],
[38, eq. (24)] and in [37, eq. (18)], [38, eq. (25)]. To the best of
authors’ knowledge, the marginal cdf and pdf of the th largest
eigenvalue were not available in the literature.

C. Max-Semicorrelated Rayleigh Fading MIMO Channel

Consider a max-semicorrelated Rayleigh fading MIMO
channel as given in Definition 2.3, then the random Hermitian
matrix in (13) follows a complex correlated cen-
tral Pseudo-Wishart distribution, i.e., ,
where , , and is the

positive definite correlation matrix with eigenvalues
ordered such that .

Joint pdf: Identifying terms, the joint pdf of the ordered
nonzero eigenvalues in (19) coincides with the general pdf
given in Assumption 3.1 by defining the set as

and (51)

where denotes permutation, the constant as

(52)

the function , and matrix with entries as given
in (18). Hence, it follows that

(53)

where we have introduced the function .
Marginal distributions: In order to derive the marginal cdf

and pdf of the th largest eigenvalue using the results presented
in Section III-B, we only have to particularize

(54)

(55)

where and are the upper and lower incomplete
gamma functions defined in Appendix A.2.

The marginal cdf of the largest eigenvalue and smallest eigen-
value of was recently derived in [17,
Th. 4 (2)], [37, eq. (21)], [38, eq. (40)] and [38, eq. (41)], respec-
tively, and the marginal pdfs of the largest and smallest eigen-
value were calculated in [37, eq. (22)], [38, eq. (42)] and in [37,
eq. (25)], [38, eq. (43)]. To the best of authors’ knowledge, the
marginal cdf and pdf of the th largest eigenvalue were not avail-
able in the literature.

D. Uncorrelated Rician Fading MIMO Channel

Consider a uncorrelated Rician fading MIMO channel as
given in Definition 2.4, then the random Hermitian matrix

, where is given in (7),
follows a complex uncorrelated noncentral Wishart distribu-
tion, i.e., , where and

, and the non-centrality parameter is
defined in (21) with eigenvalues ordered
such that .

Joint pdf: Identifying terms, the joint pdf of the ordered eigen-
values in (22) coincides with the general pdf given in Assump-
tion 3.1 if we let be a singleton (the superindex can then
be dropped), define as

(56)

the function as

(57)

and matrix with entries as given in (23), i.e.,

(58)

for . Hence, it follows that

(59)

where we have introduced the function .

Authorized licensed use limited to: IEEE Xplore. Downloaded on February 5, 2009 at 05:30 from IEEE Xplore.  Restrictions apply.

fono
Rectángulo



ORDÓÑEZ et al.: ORDERED EIGENVALUES OF A GENERAL CLASS OF HERMITIAN RANDOM MATRICES 679

Marginal distributions: In order to derive the marginal cdf
and pdf of the th largest eigenvalue using the results presented
in Section III-B, we only have to particularize

(60)

(61)

Using [79, eq. (9.6.47)], it holds that

(62)

(63)

where is the modified Bessel function of the first kind of
integer order [79, eq. (9.6.10)] and is the Nuttall

-function defined in Appendix A.2. Similarly, using [76, eq.
(6.643.2)] and [8, eq. (9.220.2)], it follows that

(64)

(65)

and we have that

(66)

(67)

Observe that the sum of the two indices of the Nuttall -func-
tions in (63) and (67) is always odd and, hence, Remark A.2 in
Appendix A.2 holds.

The marginal cdf of the th largest eigenvalue of
was initially derived in [80, eq. (9)]

in terms of an infinite series of determinants. Recently, the
marginal cdf the th largest eigenvalue was obtained in terms
of a finite sum of determinants in [42, Th. 3] and the particular
cases of the largest and smallest eigenvalue in [34, Thm. 1],
[42, Th. 2] and in [42, Th. 1], respectively. In addition, the
marginal pdf of the maximum eigenvalue was given in [34,

Cor. 3] and the case of being rank 1 was considered in [34,
Cor. 1 and Cor. 3].

V. OUTAGE PROBABILITY OF SPATIAL MULTIPLEXING MIMO
SYSTEMS WITH CSI

As an illustrative application for the joint and marginal cdfs
of the ordered eigenvalues given in Section III, we analyze in
this section the outage probability of a spatial multiplexing
MIMO system with perfect channel state information (CSI)
at both sides of the link, and which transmits independent
substreams through the channel eigenmodes [57]. Assuming
the channel models presented in Definitions 2.1–2.4, we first
obtain the outage probability of each individual substream,
i.e., each channel eigenmode, and, then, we derive different
global outage probabilities taking into account all established
substreams, i.e., all used channel eigenmodes.

A. Signal Model

The signal model corresponding to a transmission through a
general MIMO channel with transmit and receive dimen-
sions is

(68)

where is the transmitted vector, is the
channel matrix as given in Definitions 2.1–2.4, is the
received vector, and is a spatially white zero-mean
circularly symmetric complex Gaussian noise vector normal-
ized so that .

Following the singular value decomposition (SVD), the
channel matrix can be written as

(69)

where and are unitary matrices, and is a diagonal
matrix containing the singular values of sorted in descending
order. This way, the channel matrix is effectively decomposed
into independent orthogonal modes
of excitation, which are referred to as channel eigenmodes
[3]–[5].

Assuming that perfect CSI is available at the transmitter and
that independent data symbols per channel
use have to be communicated, the transmitted vector can be
written as

(70)

where gathers the data symbols (zero mean, unit energy
and uncorrelated, i.e., ), is formed with the

columns of associated with the strongest channel eigen-
modes and is a diagonal matrix con-
taining the power allocated to each established substream. The
transmitted power is constrained such that

(71)

where is the SNR per receive antenna. Assuming perfect
channel knowledge also at the receiver, the symbols transmitted
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TABLE I
PARAMETERS OF THE UNCORRELATED, MIN-SEMICORRELATED, AND MAX-SEMICORRELATED RAYLEIGH FADING

MIMO CHANNELS (DEFINITIONS 2.1, 2.2, AND 2.3)

TABLE II
PARAMETERS OF THE UNCORRELATED RICEAN FADING MIMO CHANNEL (DEFINITION 2.4)

through the channel eigenmodes are recovered from the received
signal with matrix , similarly defined to , as

(72)

where is a diagonal matrix that contains the largest sin-
gular values in descending order, and the noise vector
has the same statistical properties as , possibly with a reduced
dimension. Each substream experiences then an instantaneous
SNR given by

for (73)

where denotes the th ordered eigenvalue and defines the
power allocation policy. In the following, we focus only on fixed
(channel non-dependent) power allocation policies, i.e.,

for (74)

where is a positive constant independent of the channel with
. Although linear MIMO transceivers optimized

under the most common design criteria imply channel-depen-
dent power allocation policies [57], this simple case serves
as a starting point in the analysis of these systems [40]–[43];
channel-dependent power allocation strategies can be studied as
in [41]. In addition, if the power constraint in (71) is substituted
by a peak power constraint:

(75)

the optimum power allocation coincides with the fixed power
allocation in (74) for , i.e., a uniform power alloca-
tion [81].

B. Outage Probability

The outage probability is defined as the probability that the
instantaneous SNR, denoted by , falls below a certain threshold

[82, eq. (1.4)]

(76)
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Assuming that the instantaneous bit error rate (BER) can be ap-
proximated as10 [82, Sec. 8.1.1]

(77)

where is the Gaussian -function defined as [82, eq. (4.1)]

(78)

and the parameters , and depend on
the -ary constellation11 used to map the data bits to symbols.
Observe that if is chosen as

(79)

where is the inverse of the Gaussian -function in (78),
the outage probability is the probability that the instantaneous
BER overcomes certain target BER denoted by , i.e.,

.
1) Individual Outage Probability: Let us consider the diag-

onal spatial multiplexing MIMO system in (72) with the fixed
power allocation policy in (74). Then, the instantaneous SNR of
the channel eigenmodes in (73) can be rewritten as

for (80)

and the individual outage probability as defined in (76) of the
substream transmitted through the th strongest channel eigen-
mode is given by

(81)

where denotes the marginal cdf of the th channel
eigenvalue. Under the MIMO channel models presented in
Definitions 2.1–2.4, can be easily obtained by particu-
larizing Theorem 3.2 with the corresponding expressions given
in Tables I and II.

In Fig. 1 we provide the individual outage probability defined
in (81) of the substream transmitted through the third
channel eigenmode in a spatial multiplexing MIMO system with

and antennas when substreams are es-
tablished, a QPSK modulation is used on each substream, and
the power is uniformly allocated . The performance
threshold has been chosen using (79) to guarantee a target BER
of and we have defined the correlation matrix as

with for the min- and max-semicorre-
lated Rayleigh, and the rician factor for the uncorre-
lated Rician fading MIMO channel.

The individual outage probability when transmitting through
the strongest eigenmode, i.e., for in (81) and

, has been widely analyzed in the literature, since it cor-
responds to the outage probability of the beamforming scheme
(or maximum ratio transmission [56]). In particular, the outage
probability under uncorrelated Rayleigh fading was obtained in

10The BER approximation in (77) implicitly assumes that a Gray encoding
mapping and coherent detection is used.

11The value of these parameters for � -QAM and � -PSK can be found in
[82, eq. (8.15)] and [82, eq. (8.33)] respectively.

Fig. 1. Exact ��� and simulated ��� individual outage probability for the sub-
stream transmitted through the third �� � �� channel eigenmode of a 6� 4
MIMO system with � � �, � � ���, and using a QPSK modulation.

[33, Sec. IV], [34, Sec. III], [54, Sec. II], [55, Sec. IV], under
semicorrelated Rayleigh fading in [17, Sec. IV], and under un-
correlated Rician fading in [34, Sec. III]. Additionally, the case
of double-correlated Rayleigh fading MIMO channels (not con-
sidered in detail in this paper) has been recently addressed in
[53, Sec. IV].

2) Global Outage Probability: In this section we analyze
the global outage probability of the spatial multiplexing MIMO
system described in Section V-A. Consider, for instance, that

services or substreams with possibly different performance
constraints are multiplexed by accommodating each service in
a different channel eigenmode. The global outage probability
can be defined in many different ways depending on how the
application of interest takes into account the individual outages
of the established substreams. In the following we provide two
illustrative examples.

All-Outage Probability: Assume that the communication
process is considered to be successful if at least one of the
substreams achieves the desired performance. Then, a global
outage event is declared only when all used channel eigen-
modes fail to offer their corresponding target performance and,
hence, the global outage probability is defined as

(82)

(83)

where are the target performances and de-
notes the joint cdf of the ordered channel eigenvalues. Under the
MIMO channel models presented in Definitions 2.1–2.4,
can be obtained particularizing Theorem 3.1 with the expression
of the corresponding parameters in Tables I and II.

When equal target performances are imposed on all estab-
lished substreams, i.e., , and a uniform power allocation
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Fig. 2. Exact ��� and simulated ��� global all-outage probability of a 6� 4
MIMO system with � � �, � � ���, and using a QPSK modulation.

is used, i.e., , the outage probability in (83) is simply
given by

(84)

where denotes the marginal cdf of the largest channel
eigenvalue.

In Fig. 2, we provide the global all-outage probability defined
in (83) of a spatial multiplexing MIMO system with
and antennas when substreams are established,
a QPSK modulation is used on each substream, and the power
is uniformly allocated . The target BERs have been
established as , , ,
and and the parameters of the MIMO channel
models have been chosen as defined in the simulations of the
previous section.

Any-Outage Probability: Assume that the quality of all
substreams has to be simultaneously guaranteed, then a global
outage event is declared whenever at least one of the used
channel eigenmodes cannot offer the desired performance. In
this case, the global outage probability in defined as

(85)

where denotes the joint complementary cdf of the or-
dered channel eigenvalues and can be obtained with techniques
similar to those used to derive the joint cdf given in Theorem 3.1.

When equal target performances are imposed on all the es-
tablished substreams and a uniform power allocation is used,
the outage probability in (85) is simply given by

(86)

where denotes the marginal cdf of the th largest channel
eigenvalue.

Fig. 3. Exact ��� and simulated ��� global all-outage and any-outage proba-
bilities of a 6� 4 MIMO system with � � �, � � ���, and using a QPSK
modulation.

In Fig. 3, we compare the global all-outage and any-outage
probabilities defined in (84) and (86) of a spatial multiplexing
MIMO system with and antennas when

substreams are established, a QPSK modulation is used on
each substream, and the power is uniformly allocated

. The target BERs is equal for all established substreams,
and the parameters of the MIMO channel models

have been chosen as defined in the simulations of the previous
section.

VI. CONCLUSION

The probabilistic characterization of the eigenvalues of
Wishart, Pseudo-Wishart, and Quadratic form distributions
is critical in the performance evaluation of many communi-
cation and signal processing applications. In particular, the
performance of MIMO systems without CSI at the transmitter
demanded the characterization of the unordered eigenvalues
whereas the techniques that employed CSI at the transmitter
required the evaluation of probabilities associated with one
or several of the eigenvalues in some specific order (often
the highest or smallest but sometimes any one in particular
within the ordered set). Many different contributions, as early
as the 1960s in the mathematical literature and much more
recently in the signal processing community, provided partial
characterizations for specific problems. However, the unified
perspective provided by this paper was missing and can, not
only fill the gap of the currently unknown results, but even more
importantly, provide a solid framework for the understanding
and direct derivation of all the previously derived results.

APPENDIX A
PRELIMINARY DEFINITIONS AND RESULTS

A.1 Determinants and Matrices

In this section we review some basic results of matrices and
determinants required in the derivations presented in the paper.
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Definition A.1 (Determinant [83, Sec. 0.3.2]): The deter-
minant of a matrix , denoted by , is defined as

(87)

where the summation over is for all permu-
tations of the integers , is any ar-
bitrary fixed permutation of the integers , and
denotes the sign of the permutation. Alternatively, we also use
the common compact notation of the determinant in terms
of its th element: .

Lemma A.1 (Derivative of a Determinant [84, eq. (6.5.9)]):
The derivative of the determinant of matrix is
given by

(88)

where coincides with except that every entry in
the th column is differentiated with respect to .

Definition A.2 (Vandermonde Matrix [84, eq. (6.1.32)]):
The th order Vandermonde matrix in , de-
noted by , is defined as

for (89)

Lemma A.2 (Vandermonde Determinant [84, eq. (6.1.33)]):
The determinant of the th order Vandermonde matrix intro-
duced in Definition A.2 is given by

(90)

The following operator will prove useful to express a sum of
determinants compactly.

Definition A.3: The operator over a tensor
is defined as12

(91)

where the summation over and
is for all permutations of the integers

and denotes the sign of the permutation.
Remark A.1: The operator introduced in Definition

A.3 can be alternatively expressed as

(92)

where matrix is defined as

for (93)

12Note that this operator was also introduced in [18, Def. 1].

A.2 Integral Functions

In this section, we introduce some functions defined in inte-
gral form, which, due to their importance, have been tabulated
and are available as build-in functions in most common mathe-
matical software packages such as MATLAB or Mathematica.

Definition A.4 (Lower Incomplete Gamma Function [84,
eq. (6.5.2)]): The lower incomplete gamma function is defined
as

(94)

Definition A.5 (Upper Incomplete Gamma Function [79,
eq. (6.5.3)]): The upper incomplete gamma function is defined
as

(95)

Definition A.6 (Nuttall -Function [82, eq. (4.104)]): The
Nuttall -function is defined as

(96)

where is the modified Bessel function of the first kind of
integer order [79, eq. (9.6.19)].

Remark A.2 ([85]): The Nuttall -function is not consid-
ered to be a tabulated function. However, if is odd, i.e.,

for , the Nuttall -function can
be expressed as a weighted sum of generalized Marcum

-functions [82, eq. (4.60)] and modified Bessel functions of
the first kind [79, eq. (9.6.19)].

APPENDIX B
ORDERED EIGENVALUES. PROOFS

B.1 Motivation of the Joint pdf Structure

The joint pdf of the ordered eigenvalues
of a complex Hermitian random matrix with
pdf is given by [9, eq. (93)]

(97)

where , is the eigendecom-
position of , and is the invariant measure on the unitary
group normalized to make the total measure unity.

Typical univariate distributions such as the Chi-squared,
Cauchy and Beta distributions involve Bessel and hypergeo-
metric functions which can all be written as special cases, for
particular integers and , of the generalized hypergeometric
function of scalar arguments [76, eq. (9.14.1)]

(98)
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where denotes the Pochhammer’s
symbol [79, eq. (6.1.22)]. The corresponding complex multi-
variate distributions involve a generalization of this function to
the case in which the variable is replaced by an Hermitian ma-
trix . The generalized hypergeometric function of Hermitian
matrix argument is defined as [9, eq. (87)]

(99)

where the summation over is for all partitions of into
parts and is an homogenous symmetric polynomial in
the eigenvalues of , , known as zonal polynomial
[9, eq. (85)]:

(100)

Let us consider first that the distribution of the Hermitian
random matrix can be written as

(101)
where is a normalization constant, is a deter-
ministic Hermitian matrix with eigenvalues denoted by , and

is an arbitrary function. This pdf expression holds for some
cases of the complex Wishart and inverted Wishart distribution,
complex matrix variate Cauchy, and Bessel distributions (see [9,
Sec. 8] and [86]). The joint pdf of the ordered eigenvalues of
is then given by

(102)

(103)

where denotes the hypergeometric function of two
Hermitian matrix arguments [9, eq. (87)] and (103) follows from
the splitting property in [9, eq. (92)]. Hypergeometric functions
of two Hermitian matrix arguments are defined similarly to (99)
as an infinite series of zonal polynomials but can be alterna-
tively expressed in terms of a quotient of determinants including
generalized hypergeometric functions of scalar arguments [87],
[88]. Using [87, Lem. 3], [88, Th. 4.2] it follows that [see (104)

and (105) at the bottom of the page], where
is defined as

(106)

Observe that the joint pdf of the ordered eigenvalues in (105)
coincide with Assumption 3.1 if we let the set be a singleton.

Let us now consider an Hermitian random matrices
of rank such as Pseudo-Wishart matrices. In this
case, the same procedure can be followed but interchanging
by and taking the limit [30], [53], [89].
Hence, matrix is but only the first rows de-
pend on . Performing the Laplace expansion of the
determinant over the last rows, the joint pdf of
the ordered eigenvalues can be expressed as in Assumption 3.1
using the sum over the set to include this sum of determinants.

Finally, in a more general case, such as the Quadratic form
distributions, the hypergeometric function of one Hermitian ma-
trix argument in (101) is substituted by an hypergeometric func-
tion of more Hermitian matrix arguments [90, eq. (2.30)]. Since
the splitting property of hypergeometric functions also holds,
the structure of the joint pdf of the ordered eigenvalues is main-
tained (see, e.g., [53, eq. (45)]). Although a determinantal ex-
pression for hypergeometric function of more than two Hermi-
tian matrix arguments is not known, the corresponding series
expansion in terms of zonal polynomials can still be included in
the general expression of Assumption 3.1 using the summation
over the set (see an example in Appendix C).

In this Appendix, we have justified the adoption of Assump-
tion 3.1 based on the results in [87] and [88] to express hyper-
geometric functions of Hermitian matrix arguments as a (finite)
sum of determinants. Hypergeometric functions result from in-
tegrating over the unitary group when deriving the joint pdf of
the ordered eigenvalues from the corresponding random matrix
distribution as in (97) and are the common representation used
in multivariate analysis. An alternative (and even more direct)
approach it to attack such integrals from the group theoretic
point-of-view as done in [91]. This method was recently applied
in [30] to derive the joint pdf of the ordered eigenvalues of the
same kind of MIMO channels discussed in this paper.

B.2 Proof of Theorem 3.1

Proof: The joint cdf of the ordered eigenvalues can
be obtained from the joint pdf of the ordered eigenvalues
as

(107)

(104)

(105)
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Fig. 4. Integration region � ��������� and normalizing constant ������.

where

(108)

and recall that by assumption .
Let and

with

(109)

Then, can be expressed as a union of non-overlapping
domains , i.e.,

(110)

where the set is defined as with13

(111)

(112)

Observe that the set is such that only in-
cludes domains in which each belongs to one of
the possible non-overlapping partitions of the interval

, i.e., (see a representa-
tion for in Fig. 4). Then, by intersecting with we
eliminate all domains with empty intervals, i.e., in-
tervals such that (compare representations for
in Fig. 4).

From (107) and (110), the joint cdf can be rewritten as

(113)

where

(114)

13Recall that by definition � � �, � � �� � and � � �.

Now, expanding the determinants of and (see Defi-
nitions A.1 and A.2) in the joint pdf expression in (24), we can
rewrite as

(115)

(116)

where the summation over and over
is for all permutations of the integers

and denotes the sign of the permutation. Substituting
(116) back in (114) and defining ,
it follows that

(117)

Using the symmetry of the integrand in (117) with respect to ,
i.e.

(118)

where is any arbitrary fixed permutation of
the integers , the domain in (117) can be
replaced with the unordered domain (see a similar re-
sult in [80, Lem. 2]) by properly normalizing the result of the
integral with

(119)

where denotes the number of different integration intervals
in , is the number of ordered variables integrated in
the th one of these intervals (see Fig. 4) and denotes the
Kronecker delta. Then, it holds that

(120)

Finally, is given by

(121)
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and the proof is completed by using again the operator .

B.3 Proof of Theorem 3.2

Proof: The marginal cdf of the th largest eigenvalue is

(122)

Hence, it can be obtained from the joint cdf of the ordered eigen-
values for and

. Particularizing the expression of given in Theorem 3.1,
we have that the set reduces to

(123)

which only contains elements and is given by

(124)

where . Let us denote by a unique
index each element of such that has the
first components equal to and the rest equal to .
Noting that

(125)

and using the alternative expression of the operator in Re-
mark A.1, it follows that

(126)
where the summation over is for all permuta-
tions of the integers and the matrix
is defined as [see (29)]

(127)

for . Observing that
if where denotes
permutation, it suffices to calculate one determinant for all these

permutations, for instance,
where is such that and .
Finally, we have that

(128)
and this completes the proof.

B.4 Proof of Corollary 3.1

Proof: Particularizing Theorem 3.2 for , it follows
that

(129)

Observe now that only contains the element .
Thus, using (31), we define the matrix as

for (130)

and this completes the proof.

B.5 Proof of Corollary 3.2

Proof: This proof could be done by particularizing The-
orem 3.2 for and simplifying the resulting expression.
However, it is easier to obtain directly as

(131)

where

(132)

Then, using the expression for the joint pdf given in As-
sumption 3.1 and substituting operator by its definition
(see Definition A.3), it follows that

(133)

where the summation over and
is for all permutations of the integers

and denotes the sign of the permutation. Noting the
symmetry of the integrand in (133)

(134)

(135)

and using the definition of determinant in Definition A.1 the
proof is completed.
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(138)

B.6 Proof of Corollary 3.3

Proof: The marginal pdf of the th largest eigenvalue can
be obtained from its marginal cdf as

(136)

Then, the proof follows from using the expression for the mar-
ginal cdf of the th largest eigenvalue in Theorem 3.2 and the
derivative of a determinant in Lemma A.1.

APPENDIX C
NOTE ON DOUBLE-CORRELATED

RAYLEIGH FADING MIMO CHANNELS

Consider a double-correlated Rayleigh fading MIMO
channel, i.e.,

(137)

where is the positive definite cor-

relation matrix with ,
is the positive definite correlation matrix with

, and is a random channel matrix
with i.i.d. zero-mean unit-variance complex Gaussian entries.
Then, the joint eigenvalue distribution of the matrix for
the case14 is given by [30, eq. (56)], [53, eq. (57)]
[see (138) at the top of the page], where the summation over

is for all strictly ordered partitions
with and , is a Van-
dermonde matrix (see Definition A.2), matrix
is defined as

for (139)

and and denote the eigen-
values of and ordered such that
and . Identifying terms, the expression
in (138) coincides with the general pdf given in Assumption 3.1
by defining the set as

and for (140)

with cardinality , the constant as

(141)

the function , and matrix . Hence,
it follows that

(142)

14The case � � � follows from applying the standard limiting approach (see
[53, App. A]).

In order to derive the marginal cdf and pdf of the th largest
eigenvalue using the results presented in Section III-B, we only
have to particularize and . Unfor-
tunately, integrating over the ’s before summing over
seems problematic since some of the integrals are unbounded
above. However, as noted in [30, Lem. 5], the joint pdf of the
ordered eigenvalues in (138) is bounded by an exponential func-
tion of any as becomes arbitrarily large and hence inte-
grable. To circumvent this discrepancy we can introduce a cutoff
function which is unity as and tends to zero faster
than a power law as . This makes all terms finite and
allows us to freely interchange the order of summation and in-
tegration. For instance, we can choose and calcu-
late the integrals for any positive . Then we only have to sum
the infinite series using the Cauchy-Binet Theorem [30, Lem. 3]
and set at the end of the calculation (see an example of
this procedure in [30, Sec. 5]).
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