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1 Competitive Optimization of
Cognitive Radio MIMO Systems via
Game Theory

Gesualdo Scutari, Daniel P. Palomar, and Sergio Barbarossa

Gesualdo Scutari is with the Hong Kong University of Science and Technology, Hong Kong.
Daniel P. Palomar is with the Hong Kong University of Science and Technology, Hong Kong.
Sergio Barbarossa is with the Sapienza University of Rome, Italy.

Game theory is a field of applied mathematics that describes and analyzes sce-
narios with interactive decisions. In recent years, there has been a growing inter-
est in adopting cooperative and non-cooperative game theoretic approaches to
model many communications and networking problems, such as power control
and resource sharing in wireless/wired and peer-to-peer networks. In this chap-
ter we show how many challenging unsolved resource allocation problems in the
emerging field of Cognitive Radio (CR) networks fit naturally in the game theo-
retical paradigm. This provides us with all the mathematical tools necessary to
analyze the proposed equilibrium problems for CR systems (e.g., existence and
uniqueness of the solution) and to devise distributed algorithms along with their
convergence properties. The proposed algorithms differ in performance, level of
protection of the primary users, computational effort and signaling among pri-
mary and secondary users, convergence analysis, and convergence speed; which
makes them suitable for many different CR systems. We also propose a more
general framework suitable for investigating and solving more sophisticated equi-
librium problems in CR systems when classical game theory may fail, based on
variation inequality (VI for short) that constitutes a very general class of prob-
lems in nonlinear analysis.

1.1 Introduction and Motivation

In recent years, increasing demand of wireless services has made the radio spec-
trum a very scarce and precious resource. Moreover, most current wireless net-
works characterized by fixed spectrum assignment policies are known to be very
inefficient considering that licensed bandwidth demands are highly varying along
the time or space dimensions (according to Federal Communications Commission
(FCC), only 15% to 85% of the licensed spectrum is utilized on the average [1]).
Many recent works [2, 3, 4] have recognized that the most appropriate approach
to tackle the great spectrum variability in time and space calls for dynamic access
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strategies that adapt transmission parameters (e.g., operating spectrum, modu-
lation, transmission power and communication technology) based on knowledge
of the electromagnetic environment.

Cognitive Radio (CR) originated as a possible solution to this problem [5]
obtained by endowing the radio nodes with “cognitive capabilities”, e.g., the
ability to sense the electromagnetic environment, make short term predictions,
and react intelligently in order to optimize the usage of the available resources.
Multiple debated positions have been proposed for implementing the CR idea
[2, 3, 4], depending on the policy to be followed with respect to the licensed users,
i.e., the users who have acquired the right to transmit over specific portions of
the spectrum buying the corresponding license. The most common strategies
adopt a hierarchical access structure, distinguishing between primary users, or
legacy spectrum holders, and secondary users, who access the licensed spectrum
dynamically, under the constraint of not inducing any significant Quality of Ser-
vice (QoS) degradations to the primary users.

Within this context, adopting a general multiple input-multiple output
(MIMO) channel, is natural to model the system of cognitive secondary users as
vector interference channel, where the transmission over the generic q-th MIMO
channel with nTq

transmit and nRq
receive dimensions is given by the following

baseband complex-valued signal model:

yq = Hqqxq +
∑
r �=q

Hrqxr + nq, (1.1)

where xq∈ CnTq is the signal transmitted by source q, yq∈ CnRq is the received
signal by destination q, Hqq∈ CnRq×nTq is the channel matrix between the q-
th transmitter and the intended receiver, Hrq∈ CnRq×nTr is the cross-channel
matrix between source r and destination q, and nq∈ CnRq is a zero-mean cir-
cularly symmetric complex Gaussian noise vector with arbitrary (nonsingular)
covariance matrix Rnq

, collecting the effect of both thermal noise and inter-
ference generated by the primary users. The first term on the right-hand side
of (1.1) is the useful signal for link q, the second and third terms represent the
Multi-User Interference (MUI) received by secondary user q and generated by the
other secondary users and the primary users, respectively. The power constraint
for each transmitter is

E
{
‖xq‖2

2

}
= Tr (Qq) ≤ Pq, (1.2)

where E {·} denotes the expectation value, Tr (·) is the trace operator, Qq is the
covariance matrix of the transmitted signal by user q, and Pq is the transmit
power in units of energy per transmission.

The model in (1.1) represents a fairly general MIMO setup, describing mul-
tiuser transmissions (e.g., peer-to-peer links, multiple access, or broadcast chan-
nels) over multiple channels, which may represent frequency channels (as in
OFDM systems) [6, 7, 8, 9], time slots (as in TDMA systems) [6, 7, 9], or spatial
channels (as in transmit/receive beamforming systems) [10].
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Due to the distributed nature of the CR system, with neither a centralized
control nor coordination among the secondary users, we focus on transmission
techniques where no interference cancellation is performed and the MUI is treated
as additive colored noise at each receiver. Each channel is assumed to change suf-
ficiently slowly to be considered fixed during the whole transmission. Moreover,
perfect channel state information at both transmitter and receiver sides of each
link is assumed. This includes the direct channel Hqq (but not the cross-channels
{Hrq}r �=q from the other users) as well as the covariance matrix of noise plus
MUI

R−q(Q−q) � Rnq
+
∑
r �=q

HrqQrHH
rq. (1.3)

Within the assumptions made above, the maximum information rate on link
q for a given set of user covariance matrices Q1, . . . ,QQ, is [11]

Rq(Qq,Q−q) = log det
(
I + HH

qqR
−1
−q(Q−q)HqqQq

)
(1.4)

where Q−q � (Qr)r �=q is the set of all the users covariance matrices, except the
q-th one.

In this chapter, we focus on opportunistic resource allocation techniques in
hierarchical CR systems as given in (1.1). In particular, our interest is in devis-
ing the most appropriate form of concurrent communications of cognitive users
competing over the physical resources that primary users make available, under
the constraint that the degradation induced on the primary users’ performance
is null or tolerable [2, 3]. While the definition of degradation may be formulated
mathematically in a number of ways, one common definition involves the imposi-
tion of some form of interference constraints on the secondary users, whose choice
and implementation are a complex and open regulatory issue. Both deterministic
and probabilistic interference constraints have been suggested in the literature
[2, 3]. In this chapter, we will consider in detail deterministic interference con-
straints, as described next .

1.1.1 Interference constraints: individual and conservative versus global and
flexible

We envisage two classes of interference constraints termed individual conservative
constraints and global flexible constraints.

Individual conservative constraints: These constraints are defined indi-
vidually for each secondary user (with the disadvantage that sometimes may
result too conservative) to control the overall interference caused on the primary
receivers. Specifically, we have

- Null shaping constraints :

UH
q Qq = 0, (1.5)
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where Uq ∈ CnTq×rUq is a tall matrix whose columns represent the spatial
and/or the frequency “directions” along which user q is not allowed to
transmit.

- Soft and peak power shaping constraints :

Tr
(
GH

q QqGq

)
≤ P ave

SU,q and λmax

(
GH

q QqGq

)
≤ P peak

SU,q (1.6)

which represent a relaxed version of the null constraints with a constraint
on the total average and peak average power radiated along the range
space of matrix Gq ∈ CnTq×nGq , where P ave

SU,q and P peak
SU,q are the maximum

average and average peak power respectively that can be transmitted along
the spatial and/or the frequency directions spanned by Gq.

The null constraints are motivated in practice by the interference-avoiding
paradigm in CR communications (also called white-space filling approach) [4, 12]:
CR nodes sense the spatial, temporal or spectral voids and adjust their transmis-
sion strategy to fill in the sensed white spaces. This white-space filling strategy
is often considered to be the key motivation for the introduction and develop-
ment of CR idea and has already been adopted as a core platform in emerging
wireless access standards such as the IEEE 802.22-Wireless Regional Area Net-
works (WRANs) [13]. Observe that the structure of the null constraints in (1.5)
has a very general form and includes, as particular cases, the imposition of nulls
over: 1) frequency bands occupied by the primary users (the range space of Uq

coincides with the subspace spanned by a set of IDFT vectors); 2) the time slots
used by the primary users (the set of canonical vectors); 3) angular directions
identifying the primary receivers as observed from the secondary transmitters
(the set of steering vectors representing the directions of the primary receivers
as observed from the secondary transmitters).

Opportunistic communications allow simultaneous transmissions between pri-
mary and secondary users, provided that the required QoS of the primary
users is preserved (also called interference-temperature controlled transmissions
[2, 12, 14]). This can be done using the individual soft shaping constraints
expressed in (1.6) that represent a constraint on the total average and peak
average power allowed to be radiated (projected) along the directions spanned
by the column space of matrix Gq. For example, in a MIMO setup, the matrix
Gq in (1.6) may contain, in its columns, the steering vectors identifying the
directions of the primary receivers. By using these constraints, we assume that
the power thresholds P ave

SU,q and P peak
SU,q at each secondary transmitter have been

fixed in advance (imposed, e.g., by the network service provider, or legacy sys-
tems, or the spectrum body agency) so that the interference temperature limit
constraints at the primary receivers are met. For example, a possible (but conser-
vative) choice for P ave

SU,q’s and P peak
SU,q ’s is P ave

SU,q = P ave
PU /Q and P peak

SU,q = P peak
PU /Q

for all q, where Q is the number of active secondary users, and P ave
PU and P peak

PU

are the overall maximum average and peak average interference tolerable by
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the primary user. The assumption made above is motivated by all the practical
CR scenarios where primary terminals are oblivious to the presence of secondary
users, thus behaving as if no secondary activity was present (also called commons
model).

The imposition of the individual interference constraints requires an oppor-
tunity identification phase, through a proper sensing mechanism: Secondary
users need to reliably detect weak primary signals of possibly different type
over a targeted region and wide frequency band in order to identify white-space
halls. Examples of solutions to this problem have recently been proposed in
[3, 15, 14, 16]. The study of sensing in CR networks goes beyond the scope
of this chapter. Thus, hereafter, we assume perfect sensing from the secondary
users.

Individual interference constraints (possibly in addition with the null con-
straints) lead to totally distributed algorithms with no coordination between
the primary and the secondary users, as we will show in the forthcoming sec-
tions. However, sometimes, they may be too restrictive and thus marginalize the
potential gains offered by the dynamic resource assignment mechanism. Since the
interference temperature limit [2] is given by the aggregate interference induced
by all the active secondary users to the primary users’ receivers, it seems natural
to limit instead such an aggregate interference, rather than the individual soft
power and peak power constraints. This motivates the following global interfer-
ence constraints.

Global flexible constraints: These constraints, as opposed to the individual
ones, are defined globally over all the secondary users:

Q∑
q=1

Tr
(
GH

q,pQqGq,p

)
≤ P ave

PU,p and
Q∑

q=1

λmax

(
GH

q,pQqGq,p

)
≤ P peak

PU,p,

(1.7)
where P ave

PU,p and P peak
PU,p are the maximum average and peak average interference

tolerable by the p-th primary user. As we will show in the forthcoming sections,
these constraints in general lead to better performance of secondary users than
imposing the conservative individual constraints. However, this gain comes at a
price: The resulting algorithms require some signaling (albeit very reduced) from
the primary to the secondary users. They can be employed in all CR networks
where an interaction between the primary and the secondary users is allowed,
as, e.g., in the so-called property-right CR model (or spectrum leasing), where
primary users own the spectral resource and possibly decide to lease part of it
to secondary users in exchange for appropriate remuneration.

1.1.2 System design: A game theoretical approach

Given the CR model in (1.1), the system design consists in finding out the set
of covariance matrices of the secondary users satisfying a prescribed optimality
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criterion, under power and interference constraints in (1.2) and (1.5)-(1.7). One
approach would be to design the transmission strategies of the secondary users
using global optimization techniques. However, this has some practical issues
that are insurmountable in the CR context. First of all, it requires the pres-
ence of a central node having full knowledge of all the channels and interference
structure at every receiver. But this poses a serious implementation problem in
terms of scalability and amount of signaling to be exchanged among the nodes.
The required extra signaling could, in the end, jeopardize the promise for higher
efficiency. On top of that, recent results in [17] have shown that the network
utility maximization based on the rate functions is an NP-hard problem, under
different choices of the system utility function; which means that there is no
hope to obtain an algorithm, even centralized, that can efficiently compute a
globally optimal solution. Consequently, suboptimal algorithms have been pro-
posed (see, e.g., [18, 19]), but they are centralized and may converge to poor
spectrum sharing strategies, due to the nonconvexity of the optimization prob-
lem. Thus, it seems natural to concentrate on decentralized strategies, where the
cognitive users are able to self-enforce the negotiated agreements on the usage
of the available resources (time, frequency, and space) without the intervention
of a centralized authority. The philosophy underlying this approach is a compet-
itive optimality criterion, as every user aims for the transmission strategy that
unilaterally maximizes his own payoff function. This form of equilibrium is, in
fact, the well-known concept of Nash Equilibrium (NE) in game theory.

Because of the inherently competitive nature of multi-user systems, it is not
surprising indeed that game theory has been already adopted to solve distribu-
tively many resource allocation problems in communications. An early applica-
tion of game theory in a communication system is [20], where the information
rates of the users were maximized with respect to the power allocation in a
DSL system modeled as a frequency-selective (in practice, multicarrier) Gaus-
sian interference channel. Extension of the basic problem to ad-hoc frequency-
selective and MIMO networks were given in [6, 7, 8, 9, 21] and [10, 22, 23, 24],
respectively. However, results in the cited papers have been recognized not to be
applicable to CR systems because they do not provide any mechanism to con-
trol the amount of interference generated by the secondary users on the primary
users [2].

1.1.3 Outline

Within the CR context introduced so far, we formulate in the next sections
the optimization problem for the transmission strategies of the secondary users
under different combinations of power and individual/global interference con-
straints. Using the game-theoretic concept of NE as competitive optimality cri-
terion, we propose various equilibrium problems that differ in the achievable
trade-off between performance and amount of signaling among primary and sec-
ondary users. Using results from game theory and VI theory, we study, for each
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equilibrium problem, properties of the solution (e.g., existence and uniqueness)
and propose many iterative, possibly asynchronous, distributed algorithms along
with their convergence properties.

The rest of the chapter is organized as follows. Section 1.2 introduces some
basic concepts and results on non-cooperative strategic form games that will be
used extensively through the whole chapter. Section 1.3 deals with transmissions
over unlicensed bands, where there are no constraints on the interference gen-
erated by the secondary users on the primary users. Section 1.4 considers CR
systems under different individual interference constraints and proposes various
NE problems. Section 1.5 focuses on the more challenging design of CR sys-
tems under global interference constraints and studies the NE problem using VI
theory. Finally, Section 1.6 draws some conclusions.

1.1.4 Notation

The following notation is used in the chapter. Uppercase and lowercase boldface
denote matrices and vectors respectively. The operators (·)∗, (·)H , (·)�, E {·}, and
Tr(·) are conjugate, Hermitian, Moore-Penrose pseudoinverse [25], expectation,
and trace operators, respectively. The range space and null space are denoted
by R(·) and N (·), respectively. The set of eigenvalues of a n × n Hermitian
matrix A is denoted by {λi(A)}n

i=1, whereas the maximum and the minimum
eigenvalue are denoted by λmax(A) and λmin(A), respectively. The operators ≤
and ≥ for vectors and matrices are defined component-wise, while A � B (or
A 	 B) means that A − B is positive (or negative) semidefinite. The operator
Diag(·) is the diagonal matrix with the same diagonal elements as the matrix (or
vector) argument; bdiag(A,B, . . .) is the diagonal matrix, whose diagonal blocks
are the matrices A, B, . . .; the operator ⊥ for vector and matrices means that two
vectors x and y or two matrices A and B are orthogonal, i.e., x ⊥ y ⇔ xHy = 0
and A ⊥ B ⇔ Tr(AHB) = 0 (note that Tr(AHB) = 0 ⇔ AHB = 0 if A,B �
0). The operators (·)+ and [ · ]ba, with 0 ≤ a ≤ b, are defined as (x)+ � max(0, x)
and [ · ]ba � min (b, max(x, a)), respectively; when the argument of the operators
is a vector or a matrix, then they are assumed to be applied component-wise.
The spectral radius of a matrix A is denoted by ρ(A), and is defined as ρ (A) �
max{|λ| : λ ∈ σ(A)}, with σ(A) denoting the spectrum (set of eigenvalues) of
A [26]. The operator PN (A) (or PR(A)) denotes the orthogonal projection onto
the null space (or the range space) of matrix A and it is given by PN (A) =
NA(NH

A NA)−1NH
A (or PR(A) = RA(RH

A RA)−1RH
A ), where NA (or RA) is any

matrix whose columns are linear independent vectors spanning N (A) (or R(A))
[26]. The operator [X]Q = argminZ∈Q ‖Z−X‖F denotes the matrix projection
with respect to the Frobenius norm of matrix X onto the (convex) set Q, where
‖X‖F is defined as ‖X‖F �

(
Tr(XHX)

)1/2 [26]. We denote by In the n × n

identity matrix and by rX � rank(X) the rank of matrix X. The sets C, R,
R+, R−, R++, N+, Sn, and Sn

+ (or Sn
++) stand for the set of complex, real,
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nonnegative real, nonpositive real, positive real, nonnegative integer numbers,
and n × n complex Hermitian, and positive semidefinite (or definite) matrices,
respectively.

1.2 Strategic Non-cooperative Games: Basic Solution Concepts
and Algorithms

In this section we introduce non-cooperative strategic form games and provide
some basic results dealing with the solution concept of Nash equilibrium (NE).
We do not attempt to cover such topics in encyclopedic depth. We have restricted
our exposition only to those results (not necessary the most general ones in the
literature of game theory) that will be used in the forthcoming sections to solve
the proposed CR problems and make this chapter self-contained. The literature
on pure Nash equilibrium problem is enormous; we refer the interested reader
to [27, 28, 29, 30, 31, 32] as entry points. A more recent survey on current
state-of-the-art results on non-cooperative games is [33].

A non-cooperative strategic form game models a scenario where all players act
independently and simultaneously according to their own self-interests and with
no a priori knowledge of other players strategies. Stated in mathematical terms,
we have the following.

Definition 1.1. A strategic form game is a triplet G =
〈
Ω, (Qi)i∈Ω , (ui)i∈Ω

〉
,

where:

� Ω = {1, 2, . . . , Q} is the (finite) set of players;
� Qi is a non-empty set of the available (pure) strategies (actions) for player i,

also called admissible strategy set of player i (assumed here to be independent
of the other players’ strategies1);

� ui : Q1 × · · · × QQ → R is the payoff (utility) function of player i that depends
in general on the strategies of all players.

We denote by xi ∈ Qi a feasible strategy profile of player i, by x−i = (xj)j �=i a
tuple of strategies of all players except the i-th, and by Q = Q1 × · · · × QQ the
set of feasible strategy profiles of all players. We use the notation Q−i = Q1 ×
Qi−1,Qi+1, · · · × QQ to define the set of feasible strategy profiles of all players
except the i-th. If all the strategy sets Qi are finite, the game is called finite;
otherwise infinite.

The non-cooperative paradigm postulates the rationality of players’ behaviors:
Each player i competes against the others by choosing a strategy profile xi ∈ Qi

1 The focus on more general games where the strategy set of the players may depend on the
other players’ actions (usually termed as generalized Nash equilibrium problem) goes beyond
the scope of this section. We refer the interested reader to [33] and references therein.
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that maximizes his own payoff function ui(xi,x−i), given the actions x−i ∈ Q−i of
the other players. A non-cooperative strategic form game can be then represented
as a set of coupled optimization problems

(G) :
maximize

xi

ui(xi,x−i)

subject to xi ∈ Qi,
∀i ∈ Ω. (1.8)

The problem of the i-th player in (1.8) is to determine, for each fixed but arbitrary
tuple x−i of the other players’ strategies, an optimal strategy x�

i that solves the
maximization problem in the variable xi ∈ Qi.

A desirable solution to (1.8) is one in which every (rational) player acts in
accordance with his incentives, maximizing his own payoff function. This idea is
best captured by the notion of Nash equilibrium, formally defined next.

Definition 1.2. Given a strategic form game G =
〈
Ω, (Qi)i∈Ω , (ui)i∈Ω

〉
, an

action profile x� ∈ Q is a pure strategy Nash equilibrium of G if the following
condition holds for all i ∈ Ω:

ui(x�
i ,x

�
−i) ≥ ui(xi,x�

−i), ∀xi ∈ Qi. (1.9)

In words, a Nash equilibrium is a (self-enforcing) strategy profile with the
property that no single player can unilaterally benefit from a deviation from it,
given that all the other players act according to it. It is useful to restate the defi-
nition of NE in terms of a fixed-point solution to the best-response multifunction
(i.e., point-to-set map).

Definition 1.3. Let G =
〈
Ω, (Qi)i∈Ω , (ui)i∈Ω

〉
be a strategic form game. For any

given x−i ∈ Q−i, define the best-response multifunction Bi(x−i) of player i as

Bi(x−i) � {xi ∈ Qi |ui(xi,x−i) ≥ ui(yi,x−i), ∀yi ∈ Qi} , (1.10)

i.e., the set of the optimal solutions to the i-th optimization problem in (1.8),
given x−i ∈ Q−i (assuming that the maximum in (1.10) exists). We also intro-
duce the multifunction mapping B : Q ⇒ Q defined as B(x) : Q � x ⇒ B1(x−1) ×
B2(x−2) × · · · × BQ(x−Q). A strategy profile x� ∈ Q is a pure strategy NE of G
if and only if

x� ∈ B(x�). (1.11)

If B(x) is a single-valued function (denoted, in such a case, as B(x)), then x� ∈ Q
is a pure strategy NE if and only if x� = B(x�).

This alternative formulation of the equilibrium solution may be useful to
address some essential issues of the equilibrium problems, such as the existence
and uniqueness of solutions, stability of equilibria, design of effective algorithms
for finding equilibrium solutions, thus paving the way to the application of the
fixed-point machinery. In fact, in general, the uniqueness or even the existence
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of a pure strategy Nash equilibrium is not guaranteed; neither is convergence to
an equilibrium when one exists (some basic existence and uniqueness results in
the form useful for our purposes will be discussed in Section 1.2.1). Sometimes,
however, the structure of a game is such that one is able to establish one or
more of these desirable properties, as for example happens in potential games
[34] or supermodular games [35], which have recently received some attention in
the signal processing and communication communities as a useful tool to solve
various power control problems in wireless communications [36, 37, 38].

Finally, it is important to remark that, even when the NE is unique, it need
not be Pareto efficient.

Definition 1.4. Given a strategic form game G =
〈
Ω, (Qi)i∈Ω , (ui)i∈Ω

〉
, and

two action profiles x(1),x(2) ∈ Q, x(1) is said to be Pareto-dominant on x(2) if
ui(x(1)) ≥ ui(x(2)) for all i ∈ Ω, and uj(x(1)) > uj(x(2)) for at least one j ∈ Ω. A
strategy profile x ∈ Q is Pareto efficient (optimal) if there exists no other feasible
strategy that dominates x.

This means that there might exist proper coalitions among the players yield-
ing an outcome of the game with the property that there is always (at least)
one player who cannot profit by deviating by that action profile. In other words,
a NE may be vulnerable to deviations by coalitions of players, even if it is not
vulnerable to unilateral deviation by a single player. However, Pareto optimality
in general comes at the price of a centralized optimization, which requires the
full knowledge of the strategy sets and the payoff functions of all players. Such
a centralized approach is not applicable in many practical applications in sig-
nal processing and communications, e.g., in emerging wireless networks, such as
sensor networks, ad-hoc networks, cognitive radio systems, and pervasive com-
puting systems. The NE solutions, instead, are more suitable to be computed
using a decentralized approach that requires no exchange of information among
the players. Different refinements of the NE concept have also been proposed
in the literature to overcome some shortcomings of the NE solution (see, e.g.,
[29, 39]).

The definition of NE as given in Definition 1.2 covers only pure strategies.
One can restate the NE concept to contain mixed strategies, i.e. the possibility
of choosing a randomization over a set of pure strategies. A mixed strategy NE of
a strategic game is then defined as a NE of its mixed extension (see, e.g., [27, 40]
for details). An interesting result dealing with Nash equilibria in mixed strategy
is that every finite strategic game has a mixed strategy NE [41], which in general
does not hold for pure strategies. In this chapter, we focus only on pure strategy
Nash equilibria of non-cooperative strategic form games with infinite strategy
sets.
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1.2.1 Existence and uniqueness of the NE

Several different approaches have been proposed in the literature to study prop-
erties of the Nash solutions, such as existence, (local/global) uniqueness, and
devise numerical algorithms to solve the NE problem. The three most frequent
methods are: i) interpreting the Nash equilibria as fixed-point solutions, ii) reduc-
ing the NE problem to a variational inequality problem, and iii) transforming
the equilibrium problem into an optimization problem. Each of these methods
leads to alternative conditions and algorithms. We focus next only on the former
approach and refer the interest reader to [32, 33, 42] and [27, 43] as examples of
the application of the other techniques.

Existence of a Nash solution. The study of the existence of equilibria under
weaker and weaker assumptions has been investigated extensively in the litera-
ture (see, e.g., [41, 44, 45, 46, 47]). A good overview of the relevant literature is
[33]. For the purpose of this chapter, it is enough to recall an existence result
that is one of the simplest of the genre, based on the interpretation of the NE
as a fixed-point of the best-response multifunction (cf. Definition 1.3) and the
existence result from the Kakutani fixed-point theorem.

Theorem 1.1 (Kakutani’s Fixed Point Theorem). Given X ⊆ Rn, let S(x) :
X � x ⇒ S(x) ⊆ X be a multifunction. Suppose that the following hold:

(a) X is a nonempty, compact, and convex set;
(b) S(x) is a convex-valued correspondence (i.e., S(x) is a convex set for all

x ∈ X ) and has a closed graph (i.e., if {x(n),y(n)} → {x,y} with y(n) ∈
S(x(n)), then y ∈ S(x)).

Then, there exists a fixed-point of S(x).

Given G =
〈
Ω, (Qi)i∈Ω , (ui)i∈Ω

〉
with best-response B(x), it follows from Defi-

nition 1.3 and Theorem 1.1 that conditions (a) and (b) applied to B(x) are suffi-
cient to guarantee the existence of a NE. To make condition (b) less abstract, we
use Theorem 1.1 in a simplified form, which provides a set of sufficient conditions
for assumption (b) that represent classical existence results in the game theory
literature [44, 45, 46, 47].

Theorem 1.2 (Existence of a NE). Consider a strategic form game G =〈
Ω, (Qi)i∈Ω , (ui)i∈Ω

〉
, where Ω is a finite set. Suppose that

(a) each Qi is a non-empty, compact, and convex subset of a finite-dimensional
Euclidean space;

(b) one of the two following conditions holds:
1. each payoff function ui(xi,x−i) is continuous on Q, and, for any given

x−i ∈ Q−i, it is quasi-concave on Qi;
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2. each payoff function ui(xi,x−i) is continuous on Q, and, for any given
x−i ∈ Q−i, the following optimization problem

max
xi∈Qi

ui(xi,x−i) (1.12)

admits a unique (globally) optimal solution.

Then, game G admits a pure strategy NE.

The assumptions in Theorem 1.2 are only sufficient for the existence of a
fixed point. However, this does not mean that some of them can be relaxed.
For example, the convexity assumption in the existence condition (Theorem
1.1(a) and Theorem 1.2(a)) cannot, in general, be removed, as the simple one-
dimensional example f(x) = −x and X = {−c, c} , with c ∈ R, shows. Further-
more, a pure strategy NE may fail to exist if the quasi-concavity assumption
(Theorem 1.2(b.1)) is relaxed, as shown in the following example. Consider
a two-player game, where the payers pick points x1 and x2 on the unit cir-
cle, and the payoff functions of the two players are u1(x1,x2) = ‖x1 − x2‖ and
u2(x1,x2) = −‖x1 − x2‖, where ‖·‖ denotes the Euclidean norm. In this game
there is no pure strategy NE. In fact, if both players pick the same location,
player 1 has incentive to deviate; whereas if they pick different locations, player
2 has incentive to deviate.

The relaxation of the assumptions in Theorem 1.2 has been the subject of a
fairly intense study. Relaxations of the (i) continuity assumptions; (ii) compact-
ness assumptions and (iii) quasi-concavity assumption have all been considered
in the literature. The relevant literature is discussed in detail in [33]. More recent
advanced results based on degree theory can be found in [42].

Uniqueness of a Nash solution. The study of uniqueness of a solution for
the Nash problem is more involved and available results are scarce. Some classi-
cal papers on the subject are [46, 48, 49] and more recently [43, 50, 51], where
different uniqueness conditions have been derived, most of them valid for games
having special structure. Since the games considered in this chapter satisfy Theo-
rem 1.2.(b.2), in the following we focus on this special class of games and provide
some basic results, based on the uniqueness of fixed-points of single-valued func-
tions. A simple uniqueness result is given in the following (see, e.g., [52, 53]).

Theorem 1.3 (Uniqueness of the NE). Let B(x) : X � x → B(x) ∈ X be a func-
tion, mapping X ⊆ Rn into itself. Suppose that B is a contraction in some vector
norm ‖·‖ , with modulus α ∈ [0, 1), i.e.,∥∥∥B(x(1)) − B(x(2))

∥∥∥ ≤ α
∥∥∥x(1) − x(2)

∥∥∥ , ∀x(1),x(2) ∈ X . (1.13)

Then, there exists at most one fixed-point of B. If, in addition, X is closed, then
there exists a unique fixed-point. �
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Alternative sufficient conditions still requiring some properties on the best-
response function B can be obtained, by observing that the fixed-point of B

is unique if the function T(x) � x − B(x) is one-to-one. Invoking results from
mathematical analysis, many conditions can be obtained guaranteeing that T

is one-to-one. For example, assuming that T is continuously differentiable and
denoting by J(x) the Jacobian matrix of T at x, some frequently applied condi-
tions are the following: i) all leading principal minors of J(x) are positive (i.e.,
J(x) is a P-matrix [54]); ii) all leading principal minors of J(x) are negative
(i.e., J(x) is a N-matrix [54]); iii) matrix J(x) + J(x)T is positive (or negative)
semidefinite, and between any pair of points x(1) �= x(2) there is a point x(0) such
that J(x(0)) + J(x(0))T is positive (or negative) definite [53].

1.2.2 Convergence to a fixed-point

We focus on asynchronous iterative algorithms, since they are particularly suit-
able for CR applications. More specifically, we consider a general fixed-point
problem−the NE problem in (1.11)−and describe a fairly general class of totally
asynchronous algorithms following [52], along with a convergence theorem of
broad applicability. According to the totally asynchronous scheme, all the play-
ers of game G =

〈
Ω, (Qi)i∈Ω , (ui)i∈Ω

〉
maximize their own payoff function in a

totally asynchronous way, meaning that some players are allowed to update their
strategy more frequently than the others, and they might perform their updates
using outdated information about the strategy profile used by the others. To pro-
vide a formal description of the algorithm, we need to introduce some preliminary
definitions, as given next.

We assume w.l.o.g. that the set of times at which one or more players update
their strategies is the discrete set T = N+ = {0, 1, 2, . . .} . Let x(n)

i denote the
strategy profile of user i at the n-th iteration, and let Ti ⊆ T be the set of
times at which player i updates his own strategy x(n)

i (thus, implying that, at
time n /∈ Ti, x(n)

i is left unchanged). Let τ i
j(n) denote the most recent time at

which the strategy profile from player j is perceived by player i at the n-th
iteration (observe that τ i

j(n) satisfies 0 ≤ τ i
j(n) ≤ n). Hence, if player i updates

its strategy at the n-th iteration, then he maximizes his payoff function using
the following outdated strategy profile of the other players:

x(τ i(n))
−i �

(
x(τ i

1(n))
1 , . . . ,x

(τi
i−1(n))

i−1 ,x
(τ i

i+1(n))

i+1 , . . . ,x
(τi

Q(n))

Q

)
. (1.14)

The overall system is said to be totally asynchronous if the following assump-
tions are satisfied for each i: A1) 0 ≤ τ i

j(n) ≤ n; A2) limk→∞ τ i
j(nk) = +∞; and

A3) |Ti| = ∞; where {nk} is a sequence of elements in Ti that tends to infin-
ity. Assumptions (A1)−(A3) are standard in asynchronous convergence theory
[52], and they are fulfilled in any practical implementation. In fact, (A1) simply
indicates that, at any given iteration n, each player i can use only the strategy
profile x(τ i(n))

−i adopted by the other players in the previous iterations (to pre-
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serve causality). Assumption (A2) states that, for any given iteration index nk,

the values of the components of x(τ i(n))
−i in (1.14) generated prior to nk, are not

used in the updates of x(n)
i , when n becomes sufficiently larger than nk; which

guarantees that old information is eventually purged from the system. Finally,
assumption (A3) indicates that no player fails to update his own strategy as time
n goes on.

Using the above definitions, the totally asynchronous algorithm based on the
multifunction B(x) is described in Algorithm 1. Observe that Algorithm 1 con-
tains as special cases a plethora of algorithms, each one obtained by a possible
choice of the scheduling of the users in the updating procedure (i.e., the param-
eters {τq

r(n)} and {Tq}). Examples are the the sequential (Gauss-Seidel scheme)
and the simultaneous (Jacobi scheme) updates, where the players update their
own strategies sequentially and simultaneously, respectively. Moreover, variations
of such a totally asynchronous scheme, e.g., including constraints on the maxi-
mum tolerable delay in the updating and on the use of the outdated information
(which leads to the so-called partially asynchronous algorithms), can also be
considered [52]. A fairly general convergence theorem for Algorithm 1 is given in
Theorem 1.4, whose proof is based on [52].

Algorithm 1: Totally asynchronous algorithm

1 : Set n = 0 and choose any feasible x(0)
i , ∀i ∈ Ω;

2 : repeat

3 : x(n+1)
i =

{
x�

i ∈ Bi

(
x(τ i(n))
−i

)
, if n ∈ Ti,

x(n)
i , otherwise,

∀i ∈ Ω; (1.15)

4 : until the prescribed convergence criterion is satisfied

Theorem 1.4 (Asynchronous Convergence Theorem). Given Algorithm 1 based
on a multifunction B(x) : X � x ⇒ B1(x−1) × B2(x−2) × · · · × BQ(x−Q) ⊆ X ,
suppose that assumptions (A1)-(A3) hold true and that there exists a sequence
of nonempty sets {X (n)} with

. . . ⊂ X (n + 1) ⊂ X (n) ⊂ . . . ⊂ X , (1.16)

satisfying the next two conditions:

(a) (Synchronous Convergence Condition) For all x ∈X (n) and n,

B(x) ⊆X (n + 1). (1.17)

Furthermore, if {x(n)} is a sequence such that x(n)∈X (n), for every n,

then every limit point of {x(n)} is a fixed point of B(·).
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(b) (Box Condition) For every n, there exist sets Xi(n) ⊂ Xi such that X (n)
can be written as a Cartesian product

X (n) = X1(n) × . . . ×XQ(n). (1.18)

Then, every limit point of {x(n)} generated by Algorithm 1 and starting from
x(0) ∈ X (0) is a fixed point of B( · ).

The challenge in applying the Asynchronous Convergence Theorem is to iden-
tify a suitable sequence of sets {X (n)}. This is a reminiscent of the process of
identifying a Lyapunov function in the stability analysis of nonlinear dynamic
systems (the sets X (k) play conceptually the role of the level set of a Lyapunov
function). For the purpose of this chapter, it is enough to restrict our focus to
single-value best-response functions and consider sufficient conditions for (1.16)-
(1.18) in Theorem 1.4, as detailed next.

Given the game G =
〈
Ω, (Qi)i∈Ω , (ui)i∈Ω

〉
with the best-response function

B(x) = (Bi(x−i))i∈Ω, where each Bi(x−i) : Q−i � x−i → Bi(x−i) ∈ Qi, let us
introduce the following block-maximum vector norm ‖·‖block on Rn, defined as

‖B‖block = max
i∈Ω

‖Bi‖i , (1.19)

where ‖·‖i is any vector norm on Rni . Suppose that each Qi is a closed subset
of Rni and that B(x) is a contraction with respect to the block-maximum norm,
i.e., ∥∥∥B(x(1)) − B(x(2))

∥∥∥
block

≤ α
∥∥∥x(1) − x(2)

∥∥∥
block

, ∀x(1),x(2) ∈ Q, (1.20)

with α ∈ [0, 1). Then, there exists a unique fixed-point x� of B(x) (cf. Theorem
1.3)−the NE of G−and the Asynchronous Convergence theorem holds. In fact,
it is not difficult to show that, under (1.20), conditions (1.16)-(1.18) in Theorem
1.4 are satisfied with the following choice for the sets Xi(k):

Xi(k) =
{
x ∈ Q | ‖xi − x�

i ‖2 ≤ αk wi

∥∥∥x − x(0)
∥∥∥

block

}
⊂ Qi, k ≥ 1,

(1.21)
where x(0) ∈ Q is the initial point of the algorithm. Note that, because of the
uniqueness of the fixed-point of B(x) under (1.20), the statement on conver-
gence in Theorem 1.4 can be made stronger: For any initial vector x(0) ∈ Q, the
sequence {x(n)} generated by Algorithm 1 converges to the fixed-point of B(x).

1.3 Opportunistic Communications over Unlicensed Bands

We start considering the CR system in (1.1), under the transmit power con-
straints (1.2) only. This models transmissions over unlicensed bands, where multi-
ple systems coexist, thus interfering with each other, and there are no constraints
on the maximum amount of interference that each transmitter can generated.
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The results obtained in this case provide the building blocks instrumental to
study the equilibrium problems including interference constraints, as described
in the next sections.

The rate maximization game among the secondary users in the presence of the
power constraints (1.2) is formally defined as

(Gpow) :
maximize

Qq

Rq(Qq,Q−q)

subject to Qq ∈ Qq,
∀q ∈ Ω, (1.22)

where Ω � {1, 2, · · · , Q} is the set of players (the secondary users), Rq(Qq,Q−q)
is the payoff function of player q, defined in (1.4), and Qq is the set of admissible
strategies (the covariance matrices) of player q, defined as

Qq �
{
Q ∈ S

nTq

+ |Tr{Q} = Pq

}
. (1.23)

Observe that there is no loss of generality in considering in (1.23) the power
constraint with equality rather than inequality as stated in (1.2), since at the
optimum to each problem in (1.22), the power constraint must be satisfied with
equality. To write the Nash equilibria of game Gpow in a convenient form, we
introduce the MIMO waterfilling operator. Given q ∈ Ω, nq ∈ {1, 2, . . . , nTq

}, and
some X ∈ S

nq

+ , the MIMO waterfilling function WFq : S
nq

+ � X → S
nq

+ is defined
as

WFq (X) � UX

(
μq,XIrX

− D−1
X

)+
UH

X , (1.24)

where UX ∈ Cnq×rX and DX > 0 are the (semi-)unitary matrix of the eigen-
vectors and the diagonal matrix of the rX � rank(X) ≤ nq (positive) eigen-
values of X, respectively, and μq,X > 0 is the water-level chosen to satisfy
Tr
{
(μq,XIrX

− D−1
X )+

}
= Pq. Using the above definitions, the solution to the

single-user optimization problem in (1.22)−the best-response of player q for any
given Q−q � 0−is the well-known waterfilling solution (e.g., [11])

Q�
q = WFq(HH

qqR
−1
−q(Q−q)Hqq), (1.25)

implying that the Nash equilibria of game Gpow are the solutions of the following
fixed-point matrix equation (cf. Definition 1.3):

Q�
q = WFq(HH

qqR
−1
−q(Q�

−q)Hqq) , ∀q ∈ Ω. (1.26)

Remark 1 -On the Nash equilibria: The main difficulty in the analysis of the
solutions to (1.26) comes from the fact that the optimal eigenvector matrix
U�

q = Uq(Q�
−q) of each user q (see (1.24)) depends, in general, on the strategies

Q�
−q of all the other users, through a very complicated implicit relationship−the

eigendecomposition of the equivalent channel matrix HH
qqR

−1
−q(Q�

q)Hqq. To over-
come this issue, we provide next an equivalent expression of the waterfilling
solution enabling us to express the Nash equilibria in (1.26) as a fixed-point of
a more tractable mapping. This alternative expression is based on the recent



Competitive Optimization of Cognitive Radio MIMO Systems via Game Theory 19

interpretation of the MIMO waterfilling mapping as a proper projector operator
[7, 10, 55]. Based on this result, we can then derive sufficient conditions for the
uniqueness of the NE and convergence of asynchronous distributed algorithms,
as detailed in Sections 1.3.4 and 1.3.5, respectively.

1.3.1 Properties of the multiuser waterfilling mapping

In this section we derive some interesting properties of the multiuser MIMO
waterfilling mapping. These results will be instrumental to study the games we
propose in this chapter. The main result of the section is a contraction theo-
rem for the multiuser MIMO waterfilling mapping, valid for arbitrary channel
matrices. Results in this section are based on recent works [10, 24].

For the sake of notation, through the whole section we refer to the best-
response WFq(HH

qqR
−1
−q(Q−q)Hqq) of each user q in (1.25) as WFq(Q−q), making

explicitly only the dependence on the strategy profile Q−q of the other players.

1.3.2 MIMO waterfilling as a projector

The interpretation of the MIMO waterfilling solution as a matrix projection is
based on the following result.

Lemma 1.1. Let Sn � X0 = U0D0UH
0 , where U0 ∈ Cn×n is unitary and D0 =

diag({d0,k}n
k=1), and let Q be the convex set defined as

Q �
{
Q ∈ Sn

+ | Tr{Q} = PT

}
. (1.27)

The matrix projection [X0]Q of X0 onto Q with respect to the Frobenius norm,
defined as

[X0]Q = argmin
X∈Q

‖X − X0‖2
F (1.28)

takes the following form:

[X0]Q = U0 (D0 − μ0I)
+ UH

0 , (1.29)

where μ0 satisfies the constraint Tr{(D0 − μ0I)
+} = PT .

Proof. Using X0 = U0D0UH
0 , the objective function in (1.28) becomes

‖X − X0‖2
F =
∥∥∥X̃−D0

∥∥∥2
F

, (1.30)

where X̃ is defined as X̃ � UH
0 XU0 and we used the unitary invariance of the

Frobenius norm [26]. Since∥∥∥X̃−D0

∥∥∥2
F
≥
∥∥∥Diag(X̃) − D0

∥∥∥2
F

, (1.31)
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with equality if and only if X̃ is diagonal, and the power constraint Tr{X} =
Tr{X̃} = PT depends only on the diagonal elements of X̃, it follows that the
optimal X̃ must be diagonal, i.e., X̃ = diag({dk}n

k=1). The matrix-valued prob-
lem in (1.28) reduces then to the following vector (strictly) convex optimization
problem

minimize
d≥0

n∑
k=1

(dk − d0,k)2

subject to
n∑

k=1

dk = PT ,

(1.32)

whose unique solution {d�
k} is given by d�

k = (d0,k − μ0)
+, with k = 1, · · · , n,

where μ0 is chosen to satisfy
∑n

k=1 (d0,k − μ0)
+ = PT .

Using the above result we can obtain the alternative expression of the water-
filling solution WFq(Q) in (1.25) as given next.

Lemma 1.2 (MIMO waterfiling as a projector). The MIMO waterfilling oper-
ator WFq (Q−q) in (1.25) can be equivalently written as

WFq(Q−q) =
[
−
((

HH
qqR

−1
−q(Q−q)Hqq

)�
+ cqPN (Hqq)

)]
Qq

, (1.33)

where cq is a positive constant that can be chosen independent of Q−q (c.f. [24]),
and Qq is defined in (1.23).

Proof. Given q ∈ Ω and Q−q ∈ Q−q, using the eigendecomposition
HH

qqR
−1
−q(Q−q)Hqq = Uq,1Dq,1UH

q,1, where Uq,1 = Uq,1(Q−q) ∈ CnTq×rHqq

is semi-unitary and Dq,1 = Dq,1(Q−q) = diag({λi}
rHqq

i=1 ) > 0 (we omit in the
following the dependence of Q−q for the sake of notation), and introducing the
unitary matrix Uq � (Uq,1,Uq,2) ∈ CnTq×nTq (note that R(Uq,2) = N (Hqq)),
we have, for any given cq ∈ R,(

HH
qqR

−1
−qHqq

)�
+ cqPN (Hqq)=Uq

(
D−1

q,1 0
0 cqInTq−rHqq

)
UH

q � UqD̃−1
q UH

q ,

(1.34)
where D̃−1

q � bdiag(D−1
q , cqInTq−rHqq

). It follows from Lemma 1.1 that, for any
given cq ∈ R++,[

−
((

HH
qqR

−1
−qHqq

)� + cqPN (Hqq)

)]
Qq

= Uq

(
μqInTq

− D̃−1
q

)+

UH
q (1.35)

where μq is chosen to satisfy the constraint Tr((μqInTq
− D̃−1

q )+) = Pq. Since
each Pq < ∞, there exists a (sufficiently large) constant 0 < cq < ∞, such that
(μq − cq)+ = 0, and thus the RHS of (1.35) becomes[

−
((

HH
qqR

−1
−qHqq

)� + cqPN (Hqq)

)]
Qq

= Uq,1

(
μqIrHqq

− D−1
q,1

)+

UH
q,1 (1.36)
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which coincides with the desired solution in (1.25).

Observe that, for each q ∈ Ω, PN (Hqq) in (1.33) depends only on the channel
matrix Hqq (through the right singular vectors of Hqq corresponding to the zero
singular values) and not on the strategies of the other users, since R−q(Q−q) is
positive definite for all Q−q ∈ Q−q.

Lemma 1.2 can be further simplified if the (direct) channels Hqq’s are full
column-rank matrices: Given the nonsingular matrix HH

qqR
−1
−q(Q−q)Hqq, the

MIMO waterfilling operator WFq(Q−q) in (1.25) can be equivalently written
as

WFq(Q−q) =
[
−
(
HH

qqR
−1
−q(Q−q)Hqq

)−1
]
Qq

. (1.37)

Non-expansive property of the waterfilling operator: Thanks to the interpretation
of the MIMO waterfilling in (1.25) as a projector, building on [52, Prop. 3.2],
one can easily obtain the following non-expansive property of the waterfilling
function.

Lemma 1.3. The matrix projection [ · ]Qq
onto the convex set Qq defined in

(1.23) satisfies the following non-expansive property:∥∥∥[X]Qq
− [Y]Qq

∥∥∥
F
≤ ‖X − Y‖F , ∀ X,Y ∈ CnTq×nTq . (1.38)

1.3.3 Contraction properties of the multiuser MIMO waterfilling mapping

Building on the interpretation of the waterfilling operator as a projector, we
can now focus on the contraction properties of the multiuser MIMO waterfilling
operator. We will consider w.l.o.g. only the case where all the direct channel
matrices are either full row-rank or full column-rank. The rank deficient case in
fact can be cast into the full column-rank case by a proper transformation of the
original rank deficient channel matrices into a lower-dimensional full column-rank
matrices, as shown in Section 1.3.4.

1.3.3.1 Intermediate definitions
To derive the contraction properties of the MIMO waterfilling mapping we need
the following intermediate definitions. Given the multiuser waterfilling mapping

WF(Q) = (WFq(Q−q))q∈Ω : Q �→ Q, (1.39)

where WFq(Q−q) is defined in (1.25), we introduce the following block-maximum
norm on Cn×n, with n = nT1 + . . . + nTQ

, defined as

‖WF(Q)‖wF,block � max
q∈Ω

‖WFq(Q−q)‖F

wq
, (1.40)
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where w � [w1, . . . , wQ]T > 0 is any given positive weight vector. Let ‖·‖w
∞,vec

be the vector weighted maximum norm, defined as

‖x‖w
∞,vec � max

q∈Ω

|xq|
wq

, for w > 0, x ∈ RQ, (1.41)

and let ‖·‖w∞,mat denote the matrix norm induced by ‖·‖w∞,vec , given by [26]

‖A‖w
∞,mat � max

q

1
wq

Q∑
r=1

|[A]qr |wr , for A ∈ RQ×Q. (1.42)

Finally, we introduce the nonnegative matrices Spow,Sup
pow, S̃up

pow ∈ RQ×Q
+ defined

as

[Spow]qr �
{

ρ
(
HH

rqH
�H
qq H�

qqHrq

)
,

0,

if r �= q,

otherwise,
(1.43)

[
Sup

pow

]
qr

�
{

innrq · ρ
(
HH

rqHrq

)
ρ
(
H�H

qq H�
qq

)
,

0,

if r �= q,

otherwise
(1.44)

[
S̃up

pow

]
qr

�
{

[Spow]qr ,[
Sup

pow

]
qr

,

if rank(Hqq) = nRq
,

otherwise,
(1.45)

where the interference-plus-noise to noise ratio innrq is given by

innrq �
ρ

(
Rnq

+
∑
r �=q

PrHrqHH
rq

)
λmin

(
Rnq

) ≥ 1, q ∈ Ω. (1.46)

Note that Spow < Sup
pow < S̃pow implying ‖Spow‖w

∞,mat < ‖Sup
pow‖w

∞,mat <

‖S̃pow‖w
∞,mat, for all w > 0.

1.3.3.2 Case of full row-rank (fat/square) channel matrices
We start assuming that the channel matrices {Hqq}q∈Ω are full row-rank. The
contraction property of the waterfilling mapping is given in the following.

Theorem 1.5 (Contraction property of WF mapping). Suppose that
rank(Hqq) = nRq

, ∀q ∈ Ω. Then, for any given w � [w1, . . . , wQ]T > 0, the WF

mapping defined in (1.39) is Lipschitz continuous on Q:∥∥WF(Q(1)) − WF(Q(2))
∥∥w

F,block
≤ ‖Spow‖w

∞,mat

∥∥Q(1) − Q(2)
∥∥w

F,block
, (1.47)

for all Q(1),Q(2) ∈ Q, where ‖·‖wF,block , ‖·‖w
∞,mat and Spow are defined in (1.40),

(1.42) and (1.43), respectively. Furthermore, if the following condition is satisfied

‖Spow‖w
∞,mat < 1, for some w > 0, (1.48)

then, the WF mapping is a block-contraction with modulus β = ‖Spow‖w
∞,mat.
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Proof. Given Q(1) =
(
Q(1)

q , . . . ,Q(1)
Q

)
∈ Q and Q(2) =

(
Q(2)

1 , . . . ,Q(2)
Q

)
∈ Q, let

define, for each q ∈ Ω,

eWFq
�
∥∥∥WFq

(
Q(1)

−q

)
− WFq

(
Q(2)

−q

)∥∥∥
F

and eq �
∥∥∥Q(1)

q − Q(2)
q

∥∥∥
F

(1.49)

where, according to Lemma 1.2, each component WFq(Q−q) can be rewritten as
in (1.33). Then, we have:

eWFq
=

∥∥∥∥∥
[
−
(
HH

qqR
−1
q (Q(1)

−q )Hqq

)�

− cqPN (Hqq)

]
Qq

−
[
−
(
HH

qqR
−1
q (Q(2)

−q )Hqq

)�

− cqPN (Hqq)

]
Qq

∥∥∥∥∥
F

(1.50)

≤
∥∥∥∥(HH

qqR
−1
q (Q(1)

−q )Hqq

)�

−
(
HH

qqR
−1
q (Q(2)

−q )Hqq

)�
∥∥∥∥

F

(1.51)

=

∥∥∥∥∥∥H�
qq

⎛⎝∑
r �=q

Hrq

(
Q(1)

r − Q(2)
r

)
HH

rq

⎞⎠H�H
qq

∥∥∥∥∥∥
F

(1.52)

≤
∑
r �=q

ρ
(
HH

rqH
�H
qq H�

qqHrq

) ∥∥∥Q(1)
r − Q(2)

r

∥∥∥
F

(1.53)

=
∑
r �=q

[Spow]qr

∥∥∥Q(1)
r − Q(2)

r

∥∥∥
F

=
∑
r �=q

[Spow]qr er, ∀Q(1),Q(2) ∈ Q,

(1.54)

where (1.50) follows from (1.33) (Lemma 1.2); (1.51) follows from the non-
expansive property of the projector with respect to the Frobenius norm as given
in (1.38) (Lemma 1.3); (1.52) follows from the reverse order law for Moore-
Penrose pseudoinverses (see, e.g., [56]), valid under the assumption rank(Hqq) =
nRq

, ∀q ∈ Ω;2 (1.53) follows from the triangle inequality [26] and∥∥AXAH
∥∥

F
≤ ρ
(
AHA

)
‖X‖F , (1.55)

and in (1.54) we have used the definition of Spow given in (1.43).
Introducing the vectors

eWF � [eWF1 , . . . , eWFQ
]T , and e � [e1, . . . , eQ]T , (1.56)

with eWFq
and eq defined in (1.49), the set of inequalities in (1.54) can be rewrit-

ten in vector form as

0 ≤ eWF ≤ Spow e, ∀Q(1), Q(2) ∈ Q. (1.57)

2 Note that in the case of (strictly) full column-rank matrix Hqq , the reverse order law for
(HH

qqR
−1
q Hqq)� does not hold true (the necessary and sufficient conditions given in [56, Th.

2.2] are not satisfied). In fact, in such a case, it follows from (the matrix version of) the

Kantorovich inequality [57, Ch. 11] that
(
HHRH

)� 	 H�RH�H .
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Using the weighted maximum norm ‖·‖w
∞,vec defined in (1.41) in combination

with (1.57), we have, for any given w > 0 (recall that ‖·‖w∞,vec is a monotonic
norm3),

‖eWF‖w∞,vec ≤ ‖Spowe‖w∞,vec ≤ ‖Spow‖w∞,mat ‖e‖
w
∞,vec , (1.58)

∀Q(1),Q(2) ∈ Q, where ‖·‖w∞,mat is the matrix norm induced by the vector norm
‖·‖w∞,vec in (1.41) and defined in (1.42) [26]. Finally, introducing (1.40) in (1.58),
we obtain the desired result as stated in (1.47).

Negative result: As stated in Theorem 1.5, the waterfilling mapping WF satisfies
the Lipschitz property in (1.47) if the channel matrices {Hqq}q∈Ω are full row-
rank. Surprisingly, if the channels are not full row-rank matrices, the property
in (1.47) does not hold for every given set of matrices {Hqq}q∈Ω, implying that
the WF mapping is not a contraction under (1.48) for all {Hqq}q∈Ω and stronger
conditions are needed, as given in the next section. A simple counter-example is
given in [24].

1.3.3.3 Case of full column-rank (tall) channel matrices
The main difficulty in deriving contraction properties of the MIMO multiuser
waterfilling mapping in the case of (strictly) tall channel matrices {Hqq}q∈Ω is
that one cannot use the reverse order law of generalized inverses, as done in the
proof of Theorem 1.5 (see (1.51)-(1.52)). To overcome this issue, we develop a
different approach based on the mean-value theorem for complex matrix-valued
functions, as detailed next.

Mean-value theorem for complex matrix-valued functions : The mean value theo-
rem for scalar real functions is one of the most important and basic theorems in
functional analysis (see, e.g., [57, Ch.5-Th.10], [58, Th.5.10]). The generalization
of the (differential version of the) theorem to vector-valued real functions that
one would expect does not hold, meaning that for real vector-valued functions
f : D ⊆ Rm �→ Rn in general

� t ∈ (0, 1) | f(y) − f(x) = Dxf(ty + (1 − t)x)(y − x), (1.59)

for any x,y ∈ D and x �= y, where Dxf denotes the Jacobian matrix of f .
One of the simplest examples to illustrate (1.59) is the following. Consider the
real vector-valued function f(x) = [xα, xβ ]T , with x ∈ R and, e.g., α = 2, β = 3.
There exists no value of t ∈ (0, 1) such that f(1) = f(0) + Dtf(t).

Many extensions and variations of the main value theorem exist in the litera-
ture, either for (real/ complex) scalar or real vector-valued functions (see, e.g.,
[59, 60], [53, Ch. 3.2]). Here, we focus on the following.

3 A vector norm ‖·‖ is monotonic if x ≥ y implies ‖x‖ ≥ ‖y‖ .
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Lemma 1.4 ([24]). Let F(X) : D ⊆ Cm×n �→ Cp×q be a complex matrix-valued
function defined on a convex set D, assumed to be continuous on D and differ-
entiable on the interior of D, with Jacobian matrix DXF(X).4 Then, for any
given X,Y ∈ D, there exists some t ∈ (0, 1) such that

‖F(Y) − F(X)‖F ≤ ‖DXF((tY + (1 − t)X)) vec(Y − X)‖2 (1.60)

≤ ‖DXF ((tY + (1 − t)X))‖2,mat ‖Y − X‖F , (1.61)

where ‖A‖2,mat �
√

ρ(AHA) denotes the spectral norm of A.

We can now provide the contraction theorem for the WF mapping valid also
for the case in which the channels {Hqq}q∈Ω are full column-rank matrices.

Theorem 1.6 (Contraction property of WF mapping). Suppose that
rank(Hqq) = nTq

, ∀q ∈ Ω. Then, for any given w � [w1, . . . , wQ]T > 0, the map-
ping WF defined in (1.39) is Lipschitz continuous on Q:∥∥WF(Q(1)) − WF(Q(2))

∥∥w
F,block

≤ ‖Sup
pow‖w

∞,mat

∥∥Q(1) − Q(2)
∥∥w

F,block , (1.62)

for all Q(1),Q(2) ∈ Q, where ‖·‖wF,block , ‖·‖w
∞,mat and Sup

pow are defined in
(1.40), (1.42) and (1.44), respectively. Furthermore, if the following condition
is satisfied 5

‖Sup
pow‖w

∞,mat < 1, for some w > 0, (1.63)

then, the mapping WF is a block-contraction with modulus β = ‖Sup
pow‖w

∞,mat.

Proof. The proof follows the same guidelines of that of Theorem 1.5, with the key
difference that, in the case of (strictly) full column-rank direct channel matri-
ces, we cannot use the reverse order law of pseudoinverses as done to obtain
(1.51)-(1.52) in the proof of Theorem 1.5. We apply instead the mean-value the-
orem in Lemma 1.4, as detailed next. For technical reasons, we introduce first a
proper complex matrix-valued function Fq(Q−q) related to the MIMO multiuser
waterfilling mapping WFq(Q−q) in (1.24) and, using Lemma 1.4, we study the
Lipschitz properties of the function on Q−q. Then, building on this result, we
show that the WF mapping satisfies (1.62).

4 We define the Jacobian matrix of a differentiable complex matrix-valued function following
the approach in [61], meaning that we treat the complex differential of the complex variable
and its complex conjugate as independent. This approach simplifies the derivation of many
complex derivative expressions. We refer the interested reader to [24, 61] for details.

5 Milder conditions than (1.63) are given in [24], whose proof is much more involved and thus
omitted here because of the space limitation.
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Given q ∈ Ω, let us introduce the following complex matrix-valued function
Fq : Q−q � Q−q �→ S

nTq

++ , defined as:

Fq(Q−q) �
(
HH

qqR
−1
−q(Q−q)Hqq

)−1
. (1.64)

Observe that the function Fq(Q−q) is continuous on Q−q (implied from the
continuity of R−1

−q(Q−q) at any Q−q � 0 [25, Th. 10.7.1]) and differentiable on
the interior of Q−q. The Jacobian matrix of Fq(Q−q) is [24]:

DQ−q
F(Q−q) =

[
G∗

1 q(Q−q) ⊗ G1 q(Q−q), . . . ,G∗
q−1 q(Q−q) ⊗ Gq−1 q(Q−q), . . . ,

G∗
q+1 q(Q−q) ⊗ Gq+1 q(Q−q), . . . ,G∗

Q q(Q−q) ⊗ GQ q(Q−q)
]
,

(1.65)
where

Grq(Q−q) �
(
HH

qqR
−1
−q(Q−q)Hqq

)−1
HH

qqR
−1
−q(Q−q)Hrq. (1.66)

It follows from Lemma 1.4 that, for any two different points Q(1)
−q ,Q(2)

−q ∈ Q−q,

with Q(i)
−q = [Q(i)

1 , . . . ,Q(i)
q−1,Q

(i)
q+1, . . . ,Q(i)

Q ] for i = 1, 2, there exists some t ∈
(0, 1) such that, introducing

Δ � tQ(1)
−q + (1 − t)Q(2)

−q , (1.67)

we have:∥∥∥Fq

(
Q(1)

−q

)
− Fq

(
Q(2)

−q

)∥∥∥
F
≤
∥∥∥DQ−q

Fq(Δ) vec
(
Q(1)

−q − Q(2)
−q

)∥∥∥
2

(1.68)

≤
∑
r �=q

∥∥G∗
rq(Δ) ⊗ Grq(Δ)

∥∥
2,mat

∥∥∥Q(1)
r − Q(2)

r

∥∥∥
F
(1.69)

=
∑
r �=q

ρ
(
GH

rq(Δ)Grq(Δ)
) ∥∥∥Q(1)

r − Q(2)
r

∥∥∥
F

, (1.70)

where (1.68) follows from (1.60) (Lemma 1.4); (1.69) follows from the structure
of DQ−q

Fq (see (1.65)) and the triangle inequality [26]; and in (1.70) we used

ρ
[(

GT
rq ⊗ GH

rq

) (
G∗

rq ⊗ Grq

)]
=
(
ρ
[
GH

rqGrq

])2
. (1.71)

Observe that, differently from (1.53)-(1.54), the factor αrq(Δ) �
ρ
[
GH

rq(Δ)Grq(Δ)
]

in (1.70) depends, in general, on both t ∈ (0, 1) and
the covariance matrices Q(1)

−q and Q(2)
−q through Δ (see (1.67)):

αrq(Δ) = ρ
[
HH

rqR
−1
−q(Δ)Hqq

(
HH

qqR
−1
−q(Δ)Hqq

)−1

×
(
HH

qqR
−1
−q(Δ)Hqq

)−1 HH
qqR

−1
−q(Δ)Hrq

] (1.72)

where in (1.72) we used (1.66). Interestingly, in the case of square (nonsingu-
lar) channel matrices Hqq, (1.72) reduces to αrq(Δ) = ρ

[
HH

rqH
�H

qq H�
qqHrq

]
=

[Spow]qr , where Spow is defined in (1.43), thus recovering the same contrac-
tion factor for the WF mapping as in Theorem 1.5. In the case of (strictly) full
column-rank matrices Hqq, an upper bound of αrq(Δ), independent of Δ is [24]
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αrq(Δ) < innrq · ρ
(
HH

rqHrq

)
ρ
(
H�H

qq H�
qq

)
(1.73)

where innrq is defined in (1.46). The Lipschitz property of the WF mapping as
given in (1.62) comes from (1.70) and (1.73), using the same steps as in the proof
of Theorem 1.5.

Comparing Theorems 1.5 and 1.6, one infers that conditions for the multiuser
MIMO waterfilling mapping to be a block-contraction in the case of (strictly)
full column-rank channel matrices are stronger than those required when the
channels are full row-rank matrices.

1.3.3.4 Case of full rank channel matrices
In the case in which the (direct) channel matrices are either full row-rank or full
column-rank, we have the following contraction theorem for the WF mapping.

Theorem 1.7 (Contraction property of WF mapping). Suppose that, for each
q ∈ Ω, either rank(Hqq) = nRq

or rank(Hqq) = nTq
. Then, for any given w �

[w1, . . . , wQ]T > 0, the WF mapping defined in (1.39) is Lipschitz continuous on
Q:∥∥WF(Q(1)) − WF(Q(2))

∥∥w
F,block

≤ ‖S̃up
pow‖w

∞,mat

∥∥Q(1) − Q(2)
∥∥w

F,block
, (1.74)

for all Q(1),Q(2) ∈ Q, where ‖·‖w
F,block , ‖·‖w

∞,mat and S̃up
pow are defined in (1.40),

(1.42) and (1.45), respectively. Furthermore, if the following condition is satisfied

‖S̃up
pow‖w

∞,mat < 1, for some w > 0, (1.75)

then, the WF mapping is a block-contraction with modulus β = ‖S̃pow‖w
∞,mat.

1.3.4 Existence and uniqueness of the Nash equilibrium

We can now study game Gpow and derive conditions for the uniqueness of the
NE, as given next.

Theorem 1.8. Game Gpow always admits a NE, for any set of channel matrices
and transmit power of the users. Furthermore, the NE is unique if 6

ρ(S̃up
pow) < 1, (C1)

where S̃up
pow is defined in (1.45).

Proof. The existence of a NE of game Gpow for any set of channel matrices and
power budget follows directly from Theorem 1.2 (i.e., compact convex strategy

6 Milder conditions are given in [24].
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sets and continuous quasiconcave payoff functions). As far as the uniqueness
of the NE is concerned, a sufficient condition is that the waterfilling mapping
in (1.24) be a contraction with respect to some norm (Theorem 1.3). Hence,
the sufficiency of (C1) in the case of full (column/row) rank channel matrices
{Hqq}q∈Ω comes from Theorem 1.7 and the equivalence of the following two
statements [52, Cor. 6.1]: i) there exists some w > 0 such that ‖S̃up

pow‖w
∞,mat < 1;

and ii) ρ(S̃up
pow) < 1.

We focus now on the more general case in which the channel matri-
ces Hqq may be rank deficient and prove that condition (C1) is still
sufficient to guarantee the uniqueness of the NE. For any q ∈ Ω � {q ∈
Ω | rHqq

� rank(Hqq) < min(nTq
, nRq

)} and Q−q � 0, the best-response Q�
q =

WFq(HH
qqR

−1
−q(Q−q)Hqq)−the solution to the rate-maximization problem in

(1.22) for a given Q−q � 0−will be orthogonal to the null space of Hqq,
implying Q�

q = Vq,1Q
�
qV

H
q,1 for some Q

�
q ∈ S

rHqq

+ such that Tr(Q
�
q) = Pq, where

Vq,1 ∈ CnTq×rHqq is a semiunitary matrix such that R(Vq,1) = N (Hqq)⊥. Thus,
the best-response of each user q ∈ Ω belongs to the following class of matrices:

Qq = Vq,1QqV
H
q,1, with Qq ∈ Qq �

{
X ∈ S

rHqq

+ | Tr(X) = Pq

}
.

(1.76)
Using (1.76) and introducing the (possibly) lower-dimensional covariance matri-
ces Qq’s and the modified channel matrices H̃rq’s, defined respectively as

Q̃q �
{

Qq ∈ S
rHqq

+ ,

Qq ∈ S
nTq

+ ,

if q ∈ Ω,

otherwise,
and H̃rq �

{
HrqVr,1,

Hrq,

if r ∈ Ω,

otherwise,
(1.77)

game Gpow can be recast in the following lower-dimensional game G̃pow, defined
as

(G̃pow) :
maximize

Q̃q�0
log det

(
I + H̃H

qqR̃
−1
−q(Q̃−q)H̃qqQ̃q

)
subject to Tr(Q̃q) = Pq,

∀q ∈ Ω, (1.78)

where R̃−q(Q̃−q) � RnRq
+
∑
r �=q

H̃rqQ̃rH̃H
rq. It turns out that conditions guaran-

teeing the uniqueness of the NE of game G̃pow are sufficient also for the uniqueness
of the NE of Gpow.

Observe that, in the game G̃pow, all channel matrices H̃qq are full rank matri-
ces. We can thus use Theorem 1.7 and obtain the following sufficient condition
for the uniqueness of the NE of both games G̃pow and Gpow:

ρ(S̃pow) < 1, (1.79)

with

[
S̃pow

]
qr

�

⎧⎪⎪⎨⎪⎪⎩
ρ
(
H̃H

rqH
�H
qq H�

qqH̃rq

)
, if r �= q, rHqq

= nRq
,

ĩnnrq · ρ
(
H̃H

rqH̃rq

)
ρ
(
H̃�H

qq H̃�
qq

)
, if r �= q, rHqq

< nRq
,

0 if r = q,

(1.80)
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and ĩnnrq is defined as in (1.46), where each Hrq is replaced by H̃rq. The suffi-
ciency of (1.79) for (C1) follows from 0 ≤ S̃pow ≤ S̃up

pow =⇒ ρ(S̃pow) ≤ ρ(S̃up
pow)

[54, Cor. 2.2.22]; which completes the proof.

To give additional insight into the physical interpretation of sufficient condi-
tions for the uniqueness of the NE, we provide the following.

Corollary 1.1. If rank(Hqq) = nRq
for all q ∈ Ω, then a sufficient condition for

(C1) in Theorem 1.8 is given by one of the two following set of conditions:

Low received MUI:
1
wq

∑
r �=q

ρ
(
HH

rqH
�H
qq H�

qqHrq

)
wr < 1, ∀q ∈ Ω, (C2)

Low generated MUI:
1

wr

∑
q �=r

ρ
(
HH

rqH
�H
qq H�

qqHrq

)
wq < 1, ∀r ∈ Ω, (C3)

where w � [w1, . . . , wQ]T is any positive vector.
If rank(Hqq) ≤ nTq

, for all q ∈ Ω, then a sufficient condition for (C1) is given
by one of the two following set of conditions:7

Low received MUI:
1
wq

∑
r �=q

innrq · ρ
(
HH

rqHrq

)
ρ
(
H�H

qq H�
qq

)
wr < 1, ∀q ∈ Ω,

(C4)
Low generated MUI:

1
wr

∑
q �=r

innrq · ρ
(
HH

rqHrq

)
ρ
(
H�H

qq H�
qq

)
wq < 1, ∀r ∈ Ω,

(C5)
where the innrq’s are defined in (1.46). �

Remark 2 - On the uniqueness conditions. Conditions (C2)-(C3) and (C4)-
(C5) provide a physical interpretation of the uniqueness of the NE: as expected,
the uniqueness of the NE is ensured if the interference among the links is suffi-
ciently small. The importance of (C2)-(C3) and (C4)-(C5) is that they quantify
how small the interference must be to guarantee that the equilibrium is indeed
unique. Specifically, conditions (C2) and (C4) can be interpreted as a constraint
on the maximum amount of interference that each receiver can tolerate, whereas
(C3) and (C5) introduce an upper bound on the maximum level of interference
that each transmitter is allowed to generate. Surprisingly, the above conditions
differ if the channel matrices {Hqq}q∈Ω are (strictly) tall or fat.

1.3.5 Distributed algorithms

In this section we focus on distributed algorithms that converge to the NE
of game Gpow. We consider totally asynchronous distributed algorithms, as

7 The case in which some channel matrices Hqq are (strictly) tall and some others are fat or
there are rank deficient channel matrices can be similarly addressed (c.f. [24]).
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described in Section 1.2.2. Using the same notation as introduced in Section 1.2.2,
the asynchronous MIMO IWFA is formally described in Algorithm 2, where Q(n)

q

denote the covariance matrix of the vector signal transmitted by user q at the
n-th iteration, and Tq(Q−q) in (1.82) is the best-response function of user q:

Tq(Q−q) � WFq

(
HH

qqR
−1
−q(Q−q)Hqq

)
, (1.81)

with WFq(·) defined in (1.24). The algorithm is totally asynchronous, meaning
that one can use any arbitrary schedule {τq

r(n)} and {Tq} satisfying the standard
assumptions (A1)-(A3), given in Section 1.2.2.

Algorithm 2: MIMO Asynchronous IWFA

1 : Set n = 0 and choose any feasible Q(0)
q ;

2 : repeat

3 : Q(n+1)
q =

{
Tq

(
Q(τq(n))

−q

)
, if n ∈ Tq,

Q(n)
q , otherwise;

∀q ∈ Ω (1.82)

4 : until the prescribed convergence criterion is satisfied

Sufficient conditions guaranteeing the global convergence of the algorithm are
given in Theorem 1.9, whose proof follows from results given in Section 1.2.2.

Theorem 1.9. Suppose that condition (C1) of Theorem 1.8 is satisfied. Then, as
n → +∞, the asynchronous MIMO IWFA, described in Algorithm 2, converges
to the unique NE of game Gpow, for any set of feasible initial conditions and
updating schedule satisfying (A1 )-(A3 ).

Remark 3 - Features of Algorithm 2. Algorithm 2 contains as special cases
a plethora of algorithms, each one obtained by a possible choice of the scheduling
of the users in the updating procedure (i.e., the parameters {τq

r(n)} and {Tq}).
Two well-known special cases are the sequential and the simultaneous MIMO
IWFA, where the users update their own strategies sequentially [7, 8, 10, 21] and
simultaneously [7, 8, 10, 62, 55], respectively. Interestingly, since condition (C1)
does not depend on the particular choice of {Tq} and {τq

r(n)}, the important
result coming from the convergence analysis is that all the algorithms resulting
as special cases of the asynchronous MIMO IWFA are guaranteed to globally
converge to the unique NE of the game, under the same set of convergence
conditions. Moreover they have the following desired properties:

- Low complexity and distributed nature: The algorithm can be implemented in a
distributed way, since each user, to compute his best response Tq(·) in (1.81), only
needs to measure the overall interference-plus-noise covariance matrix R−q(Q−q)
and waterfill over the equivalent channel HH

qqR
−1
−q(Q−q)Hqq.



Competitive Optimization of Cognitive Radio MIMO Systems via Game Theory 31

1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20

0.8

1

1.2

1.4

1.6

1.8

2

2.2

2.4

iteration index 

U
se

rs
’ R

at
es

 

 

Sequential IWFA
Simultaneous IWFA

link #6 

link #1 

link #2 

Figure 1.1 Rates of the MIMO links versus iterations: sequential IWFA (dashed line
curves) and simultaneous IWFA (solid line curves).

- Robustness : Algorithm 2 is robust against missing or outdated updates of
secondary users. This feature strongly relaxes the constraints on the synchro-
nization of the users’ updates with respect to those imposed, for example, by the
simultaneous or sequential updating schemes.

- Fast convergence behavior: The simultaneous version of the proposed algorithm
converges in a very few iterations, even in networks with many active secondary
users. As expected, the sequential IWFA is slower than the simultaneous IWFA,
especially if the number of active secondary users is large, since each user is
forced to wait for all the users scheduled ahead, before updating his own covari-
ance matrix. As an example, in Figure 1.1 we compare the performance of the
sequential and simultaneous IWFA, in terms of convergence speed, for a given
set of MIMO channel realizations. We consider a cellular network composed by 7
(regular) hexagonal cells, sharing the same spectrum. For the sake of simplicity,
we assume that in each cell there is only one active link, corresponding to the
transmission from the BS (placed at the center of the cell) to a MT placed in
a corner of the cell. The overall network is thus modeled as eight 4 × 4 MIMO
interference wideband channels, according to (1.1). In Figure 1.1, we show the
rate evolution of the links of three cells corresponding to the sequential IWFA
and simultaneous IWFA as a function of the iteration index n . To make the
figure not excessively overcrowded, we plot only the curves of 3 out of 8 links.
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1.4 Opportunistic Communications under Individual Interference
Constraints

In this section, we focus now on the more general resource allocation problem
under interference constraints as given in (1.6). We start considering power con-
straints (1.2) and individual null constraints (1.5), since they are suitable to
model the white-space filling paradigm. More specifically, the problem formu-
lated leads directly to what we call game Gnull. We also consider an alternative
game formulation, G∞, with improved convergence properties; however, it does
not correspond to any physical scenario so it is a rather artificial formulation.
The missing ingredient is provided by another game formulation, Gα, that does
have a nice physical interpretation and asymptotically is equivalent to G∞ (in
the sense specified next); thus inheriting the improved convergence properties as
well as the physical interpretation. After that, we consider more general oppor-
tunistic communications by allowing also soft shaping interference constraints
(1.6) through the game Gsoft.

1.4.1 Game with null constraints

Given the rate functions in (1.4), the rate maximization game among the sec-
ondary users in the presence of the power constraints (1.2) and the null con-
straints (1.5) is formally defined as:

(Gnull) :
maximize

Qq�0
Rq(Qq,Q−q)

subject to Tr (Qq) ≤ Pq, UH
q Qq = 0

∀q ∈ Ω, (1.83)

where Rq(Qq,Q−q) is defined in (1.4). Without the null constraints, the solution
of each optimization problem in (1.83) would lead to the MIMO waterfilling solu-
tion, as studied in Section 1.3. The presence of the null constraints modifies the
problem and the solution for each user is not necessarily a waterfilling anymore.
Nevertheless, we show now that introducing a proper projection matrix the solu-
tions of (1.83) can still be efficiently computed via a waterfilling-like expression.
To this end, we rewrite game Gnull in the form of game Gpow in (1.22), as detailed
next.

We need the following intermediate definitions. For any q ∈ Ω, given rHqq
�

rank(Hqq) and rUq
� rank(Uq), with rUq

< nTq
w.l.o.g., let U⊥

q ∈ C
nTq×r

U⊥
q be

the semi-unitary matrix orthogonal to Uq (note that R(U
⊥
q ) = R(Uq)⊥), with

rU⊥
q

� rank(U⊥
qq) = nTq

− rUq
and PR(U⊥

q ) = U
⊥
qU

⊥H
q be the orthogonal projec-

tion onto R(U⊥
q ). We can then rewrite the null constraint UH

q Qq = 0 in (1.83)
as

Qq = PR(U⊥
q )QqPR(U⊥

q ). (1.84)
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At this point, the problem can be further simplified by noting that the con-
straint Qq = PR(U⊥

q ) QqPR(U⊥
q ) in (1.83) is redundant, provided that the origi-

nal channels Hrq are replaced with the modified channels HrqPR(U⊥
r ). The final

formulation then becomes

maximize
Qq�0

log det
(
I + PR(U⊥

q )H
H
qqR̃

−1
−q(Q−q)HqqPR(U⊥

q )Qq

)
subject to Tr(Qq) ≤ Pq

∀q ∈ Ω (1.85)

where

R̃−q(Q−q) � Rnq
+
∑
r �=q

HrqPR(U⊥
r )QrPR(U⊥

r )H
H
rq � 0. (1.86)

Indeed, for any user q, any optimal solution Q�
q in (1.85)−the MIMO waterfilling

solution−will be orthogonal to the null space of HqqPR(U⊥
q ), whatever R̃−q(Q−q)

is (recall that R̃−q(Q−q) � 0 for all feasible Q−q), implying R(Q�
q) ⊆ R(U

⊥
q ).

Building on the equivalence of (1.83) and (1.85), we can focus on the game in
(1.85) and apply the framework developed in Section 1.3.1 to fully characterize
game Gnull, by deriving the structure of the Nash equilibria and the conditions
guaranteeing the existence/uniqueness of the equilibrium and the global conver-
gence of the proposed distributed algorithms. We address these issues in the next
sections.

1.4.1.1 Nash equilibria: existence and uniqueness
To write the Nash equilibria of game Gnull in a convenient form, we need the
following notations and definitions. Given the game in (1.85), we introduce the
set Ω̃ of user’ indexes associated to the rank deficient matrices HqqU⊥

q , defined
as

Ω̃ �
{
q ∈ Ω : rHqqU⊥

q
� rank

(
HqqU⊥

q

)
< min

(
nRq

, rU⊥
q

)}
, (1.87)

and the semi-unitary matrices Vq,1 ∈ C
r

U⊥
q
×r

HqqU⊥
q such that R(Vq,1) =

N
(
HqqU

⊥
q

)⊥
. To obtain weak conditions guaranteeing the uniqueness of the

NE and convergence of the proposed algorithms, it is useful to introduce also:
the modified channel matrices H̃rq ∈ C

nRq×r
HrrU⊥

r , defined as:

H̃rq =
{

HrqU⊥
r Vr,1, if r ∈ Ω̃,

HrqU⊥
r , otherwise,

, ∀r, q ∈ Ω, (1.88)

the interference-plus-noise to noise ratios ĩnnrq, defined as

ĩnnrq �
ρ

(
Rnq

+
∑
r �=q

PrH̃rqH̃H
rq

)
λmin

(
Rnq

) ≥ 1 (1.89)
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and the nonnegative matrices Snull ∈ RQ×Q
+ defined as

[Snull]qr �
{

ĩnnrq · ρ
(
H̃H

rqH̃rq

)
ρ
(
H̃�H

qq H̃�
qq

)
,

0,

if r �= q,

otherwise.
(1.90)

Using the above definitions, the full characterization of the Nash equilibria of
Gnull is stated in the following theorem, whose proof follows similar steps of that
of Theorem 1.8 and thus is omitted.

Theorem 1.10 (Existence and uniqueness of the NE of Gnull). Consider the
game Gnull in (1.83) and suppose w.l.o.g. that rUq

< nTq
, for all q ∈ Ω. Then,

the following hold:

(a) there always exists a NE, for any set of channel matrices, power constraints
for the users, and null shaping constraints;

(b) all the Nash equilibria are the solutions to the following set of nonlinear
matrix-value fixed-point equations:

Q�
q = U⊥

q WFq

(
U⊥H

q HH
qqR

−1
−q(Q

�
−q)HqqU⊥

q

)
U⊥H

q , ∀q ∈ Ω, (1.91)

with WFq(·) and R−q(Q−q) defined in (1.24) and (1.3), respectively;
(c) the NE is unique if 8

ρ(Snull) < 1, (C6)

with Snull defined in (1.90).

Remark 4 - Structure of the Nash equilibria. The structure of the Nash
equilibria as given in (1.91) shows that the null constraints in the transmissions of
secondary users can be handled without affecting the computational complexity:
Given the strategies Q−q of the others, the optimal covariance matrix Q�

q of each
user q can be efficiently computed via a MIMO waterfilling solution, provided
that the original channel matrix Hqq is replaced by HqqU⊥

q . Observe that the
structure of Q�

q in (1.91) has an intuitive interpretation: To guarantee that each
user q does not transmit over a given subspace (spanned by the columns of Uq),
whatever the strategies of the other users are, while maximizing his information
rate, it is enough to induce in the original channel matrix Hqq a null space that
(at least) coincides with the subspace where the transmission is not allowed. This
is precisely what is done in the pay-off functions in (1.85) by replacing Hqq with
HqqPR(U⊥

q ).

Remark 5 - Physical interpretation of uniqueness conditions. Similarly
to (C1), condition (C6) quantifies how small the interference among secondary
users must be to guarantee the uniqueness of the NE of the game. What affects
the uniqueness of the equilibrium is only the MUI generated by secondary users

8 Milder (but less easy to check) uniqueness conditions than (C6) are given in [24].
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in the subspaces orthogonal to R(Uq)’s, i.e., the subspaces where secondary
users are allowed to transmit (note that all the Nash equilibria {Q�

q}q∈Ω satisfy
R(Q�

q) ⊆ R(U⊥
q ), for all q ∈ Ω). Interestingly, one can also obtain uniqueness

conditions that are independent of the null constraints {Uq}q∈Ω: it is sufficient
to replace in (C6) the modified channels H̃rq’s with the original channel matrices
Hrq [63]. This means that if the NE is unique in a game without null constraints,
then it is also unique with null constraint, which is not a trivial statement.

Observe that all the conditions above depend, among all, on the interference
generated by the primary users and the power budgets of the secondary users
through the ĩnnrq’s; which is an undesired result. We overcome this issue in
Section 1.4.2.

1.4.1.2 Distributed algorithms
To reach the Nash equilibria of game Gnull while satisfying the null constraints
(1.5), one can use the asynchronous IWFA as given in Algorithm 2, where the
best-response Tq(Q−q) of each user q in (1.82) is replaced by the following:

Tq(Q−q) � U⊥
q WFq

(
U⊥H

q HH
qqR

−1
−q(Q−q)HqqU⊥

q

)
U⊥H

q , (1.92)

where the MIMO waterfilling operator WFq is defined in (1.24). Observe that
such an algorithm has the same nice properties of the algorithm proposed to
reach the Nash equilibria of game Gpow in (1.22) (see Remark 4 in Section 1.3.5).
In particular, even in the presence of null constraints, the best-response of each
player q can be efficiently and locally computed via a MIMO waterfilling-like
solution, provided that each channel Hqq is replaced by the channel HqqU⊥

q .
Furthermore, thanks to the inclusion of the null constraints in the game the
game theoretical formulation, the proposed asynchronous IWFA based on the
mapping Tq(Q−q) in (1.92) does not suffer of the main drawback of the classical
sequential IWFA [20, 62, 64], i.e., the violation of the interference temperature
limits [2]. The convergence properties of the algorithm are given in the following
theorem (the proof follows from results in Section 1.2.2).

Theorem 1.11. Suppose that condition (C6) of Theorem 1.10 is satisfied. Then,
as n → +∞, the asynchronous MIMO IWFA, described in Algorithm 1 and based
on mapping in (1.92), converges to the unique NE of game Gnull, for any set of
feasible initial conditions and updating schedule satisfying (A1)-(A3).

1.4.2 Game with null constraints via virtual noise shaping

We have seen how to deal efficiently with null constraints in the rate maximiza-
tion game. However, condition (C6) guaranteeing the uniqueness of the NE as
well as the convergence of the asynchronous IWFA depends, among all, on the
interference generated by the primary users (through the innrq’s), which is an
undesired result. In such a case, the NE might not be unique and there is no
guarantee that the proposed algorithms converge to an equilibrium. To overcome
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this issue, we propose here an alternative approach to impose null constraints
(1.5) on the transmissions of secondary users, based on the introduction of vir-
tual interferers. This leads to a new game with more relaxed uniqueness and
convergence conditions. The solutions of this new game are in general different
to the Nash equilibria of Gnull, but the two games are numerically shown to have
almost the same performance in terms of sum-rate.

The idea behind this alternative approach can be easily understood if one
considers the transmission over SISO frequency-selective channels, where all the
channel matrices have the same eigenvectors (the DFT vectors): to avoid the
use of a given subchannel, it is sufficient to introduce a “virtual” noise with
sufficiently high power over that subchannel. The same idea cannot be directly
applied to the MIMO case, as arbitrary MIMO channel matrices have different
right/left singular vectors from each other. Nevertheless, we show how to bypass
this difficulty to design the covariance matrix of the virtual noise (to be added
to the noise covariance matrix of each secondary receiver), so that all the Nash
equilibria of the game satisfy the null constraints along the specified directions.
For the sake of notation simplicity and because of the space limitation, we focus
here only on the case of square nonsingular channel matrices Hqq, i.e., rHqq

=
nRq

= nTq
for all q ∈ Ω. Let us consider the following strategic non-cooperative

game:

(Gα) :
maximize

Qq�0
log det

(
I + HH

qqR
−1
−q,α(Q−q)HqqQq

)
subject to Tr (Qq) ≤ Pq

∀q ∈ Ω,

(1.93)
where

R−q,α(Q−q) � Rnq
+
∑
r �=q

HrqQrHH
rq + αÛqÛH

q � 0, (1.94)

denotes the MUI-plus-noise covariance matrix observed by secondary user q,
plus the covariance matrix αÛqÛH

q of the virtual interference along R(Ûq),
where Ûq ∈ C

nRq×rÛq is a (strictly) tall matrix assumed to be full column-rank
with rÛq

� rank(Ûq) < rHqq
(= nTq

= nRq
) w.l.o.g., and α is a positive constant.

Our interest is on deriving the asymptotic properties of the solutions of Gα, as
α → +∞, and the structure of Ûq’s making the null constraints (1.5) satisfied.

To this end, we introduce the following intermediate definitions first. For
each q, define the (strictly) tall full column-rank matrix Û⊥

q ∈ C
nRq×r

Û⊥
q , with

rÛ⊥
q

= nRq
− rÛq

= rank(Û⊥
q ) and such that R(Û⊥

q ) = R(Ûq)⊥, and the modified

(strictly fat) channel matrices Ĥrq ∈ C
r

Û⊥
q
×nTr :

Ĥrq = Û⊥H
q Hrq ∀r, q ∈ Ω. (1.95)
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We then introduce the auxiliary game G∞, defined as:

(G∞) :
maximize

Qq�0
log det

(
I + ĤH

qqR̂
−1
−q(Q−q)ĤqqQq

)
subject to Tr (Qq) ≤ Pq

∀q ∈ Ω,

(1.96)
where

R̂−q(Q−q) � Û⊥H
q Rnq

Û⊥
q +
∑
r �=q

ĤrqQrĤH
rq. (1.97)

Building on the results obtained in Section 1.3.1, we study both games Gα and
G∞, and derive the relationship between the Nash equilibria of Gα and G∞, show-
ing that, under milder conditions, the two games are asymptotically equivalent
(in the sense specified next), which will provide an alternative way to impose the
null constraints (1.5).

1.4.2.1 Nash equilibria: existence and uniqueness
We introduce the nonnegative matrices S∞,1, S∞,2 ∈ RQ×Q

+ , defined as

[S∞,1]qr �
{

ρ
(
ĤH

rqĤ
�H
qq Ĥ�

qqĤrq

)
,

0,

if r �= q,

otherwise,
(1.98)

[S∞,2]qr �
{

ρ
(
HH

rqH
−H
qq PR(U⊥

q )H−1
qq Hrq

)
,

0,

if r �= q,

otherwise.
(1.99)

Game Gα: The full characterization of game Gα is given in the following theorem,
whose proof is based on existence and uniqueness results given in Section 1.2
and the contraction properties of the multiuser waterfilling mapping as derived
in Section 1.3.1.

Theorem 1.12 (Existence and uniqueness of the NE of Gα). Consider the game
Gα in (1.93), the following hold:

(a) there always exists a NE, for any set of channel matrices, transmit power of
the users, virtual interference matrices ÛqÛH

q ’s, and α ≥ 0;
(b) all the Nash equilibria are the solutions to the following set of nonlinear

matrix-value fixed-point equations:

Q�
q,α = WFq

(
HH

qqR
−1
−q,α(Q�

−q,α)Hqq

)
, ∀q ∈ Ω, (1.100)

with WFq(·) defined in (1.24);
(c) the NE is unique if

ρ(Spow) < 1, (C7)

with Spow defined in (1.43).
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Remark 6 - On the properties of game Gα. Game Gα has some interesting
properties, namely: i) The Nash equilibria depend on α and the virtual interfer-
ence covariance matrices ÛqÛH

q ’s, whereas uniqueness condition (C7) does not ;
and ii) as desired, the uniqueness of the NE is not affected by the presence of
the primary users. Exploring this degree of freedom, one can thus choose, under
condition (C7), the proper set of α and ÛqÛH

q ’s so that the (unique) NE of the
game satisfies the null constraints (1.5), while keeping the uniqueness property
of the equilibrium unaltered and independent of both ÛqÛH

q ’s and the interfer-
ence level generated by the primary users. It is not difficult to realize that the
optimal design of α and ÛqÛH

q ’s in Gα passes through the properties of game
G∞, as detailed next.

Game G∞: The properties of game G∞ are given in the following.

Theorem 1.13 (Existence and uniqueness of the NE of G∞). Consider the game
G∞ in (1.96) and suppose w.l.o.g. that rÛq

< rHqq
(= nRq

= nTq
), for all q ∈ Ω.

Then, the following hold:

(a) there always exists a NE, for any set of channel matrices, transmit power of
the users, and virtual interference matrices Ûq’s.

(b) all the Nash equilibria are the solutions to the following set of nonlinear
matrix-value fixed-point equations:

Q�
q,∞ = WFq

(
ĤH

qqR̂
−1
−q(Q

�
−q,∞)Ĥqq

)
, ∀q ∈ Ω, (1.101)

with WFq(·) defined in (1.24), and satisfy

R(Q�
q,∞) ⊥ R(H−1

qq Ûq), ∀q ∈ Ω; (1.102)

(c) the NE is unique if

ρ(S∞,1) < 1, (C8)

with S∞,1 defined in (1.98).

Remark 7 - Null constraints and virtual noise directions. Condition
(1.102) provides the desired relationship between the directions of the virtual
noise to be introduced in the noise covariance matrix of the user (see (1.97))−the
matrix Ûq−and the real directions along with user q will not allocate any power,
i.e., the matrix Uq. It turns out that if user q is not allowed to allocate power
along Uq, it is sufficient to choose in (1.97) Ûq � HqqUq. Exploring this choice,
the structure of the Nash equilibria of game G∞ can be further simplified, as
given next.

Corollary 1.2. Consider the game G∞ and the null constraints (1.5) with rHqq
=

nRq
= nTq

and Ûq = HqqUq, for all q ∈ Ω. Then, the following hold:
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(a) all the Nash equilibria are the solutions to the following set of nonlinear
matrix-value fixed-point equations:

Q�
q,∞ = U⊥

q WFq

((
U⊥H

q H−1
qq R−q(Q�

−q,∞)H−H
qq U⊥

q

)−1
)
U⊥H

q , ∀q ∈ Ω,

(1.103)
with WFq(·) defined in (1.24);

(b) the NE is unique if

ρ(S∞,2) < 1, (C9)

with S∞,2 defined in (1.99).

Observe that, since R(Q�
q,∞) ⊆ R(U⊥

q ), any solution Q�
q,∞ to (1.103) will be

orthogonal to Uq, whatever the strategies Q�
−q,∞ of the other secondary users

are. Thus, all the Nash equilibria in (1.103) satisfy the null constraints (1.5).
At this point, however, one may ask: What is the physical meaning of a solution

to (1.103)? Does it still correspond to a waterfilling over a real MIMO channel
and thus to the maximization of mutual information? The interpretation of game
G∞ and its solutions passes through game Gα : we indeed prove next that the
solutions to (1.103) can be reached as Nash equilibria of game Gα for sufficiently
large α > 0.
Relationship between game Gα and G∞: The asymptotic behaviour of the
Nash equilibria of Gα as α → +∞, is given in the following (the proof can be
found in [63]).

Theorem 1.14. Consider games Gα and G∞, with rÛq
< rHqq

(= nTq
= nRq

) for
all q ∈ Ω, and suppose that condition (C7) in Theorem 1.12 is satisfied. Then,
the following hold:

(a) Gα and G∞ admit a unique NE, denoted by Q�
α and Q�

∞, respectively;
(b) the two games are asymptotically equivalent, in the sense that

lim
α→+∞

Q�
α = Q�

∞. (1.104)

Invoking Theorem 1.14 and Corollary 1.2 we obtained the following desired
property of game Gα: Under condition (C7) of Theorem 1.12, the (unique) NE of
Gα tends to satisfy the null constraints (1.5) for sufficiently large α (see (1.103)
and (1.104)), provided that the virtual interference matrices {Ûq}q∈Ω in (1.94)
are chosen according to Corollary 1.2. This approach provides an alternative way
to impose the null constraints (1.5).

1.4.2.2 Distributed algorithms
To reach the Nash equilibria of game Gα while satisfying the null constraints
(1.5) (for sufficiently large α), one can use the asynchronous IWFA as given in
Algorithm 2, where the best-response Tq(Q−q) in (1.82) is replaced by

Tq,α(Q−q) � WFq

(
HH

qqR
−1
−q,α(Q−q,)Hqq

)
, (1.105)
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where the MIMO waterfilling operator WFq is defined in (1.24). Observe that
such an algorithm has the same nice properties of the algorithm proposed to reach
the Nash equilibria of game Gnull in (1.83). In particular, the best-response of each
player q can be still efficiently and locally computed via a MIMO waterfilling-
like solution, provided that the virtual interference covariance matrix αUqUH

q

is added to the MUI covariance matrix R−q(Q−q) measured at the q-th receiver.
The convergence properties of the algorithm are given in the following.

Theorem 1.15. Consider games Gα and G∞, with rÛq
< rHqq

(= nTq
= nRq

) for
all q ∈ Ω, and suppose that condition (C7) of Theorem 1.12 is satisfied. Then,
the following hold:

(a) as n → ∞, the asynchronous MIMO IWFA, described in Algorithm 2 and
based on mapping in (1.105), converges uniformly with respect to α ∈ R+

to the unique NE of game Gα, for any set of feasible initial conditions, and
updating schedule satisfying (A1)-(A3);

(b) the sequence Q(n)
α =

(
Q(n)

q,α

)
q∈Ω generated by the algorithm satisfies:

lim
n→+∞

lim
α→+∞

Q(n)
α = lim

α→+∞
lim

n→+∞
Q(n)

α = Q�
∞, (1.106)

where Q�
∞ is the (unique) NE of game G∞.

Remark 8 - On the convergence/uniqueness conditions. Condition (C7)
guaranteeing the global convergence of the asynchronous IWFA to the unique
NE of Gα (for any α > 0) has the desired property of being independent of
both the interference generated by the primary users and the power budgets
of the secondary users, which is the main difference with the uniqueness and
convergence condition (C6) associated to game Gnull in (1.83).

Example 1.1: Comparison of uniqueness/convergence conditions. Since
the uniqueness/convergence conditions given so far depend on the channel matri-
ces {Hrq}r,q∈Ω, there is a nonzero probability that they will not be satisfied for a
given channel realization drawn from a given probability space. To quantify the
adequacy of our conditions, we tested them over a set of random channel matrices
whose elements are generated as circularly symmetric complex Gaussian random
variables with variance equal to the inverse of the square distance between the
associated transmitter-receiver links (flat-fading channel model). We consider a
hierarchical CR network as depicted in Figure 1.2(a), composed of 3 secondary
user MIMO links and one primary user (the base station BS), sharing the same
band. To preserve the QoS of the primary users, null constraints are imposed
on the secondary users in the direction of the receiver of the primary user. In
Figure 1.2(b), we plot the probability that conditions (C6) and (C7) are satisfied
versus the intra-pair distance d ∈ (0; 1) (normalized by the cell’s side) (see Fig-
ure 1.2(a)) between each secondary transmitter and the corresponding receiver
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(assumed for the simplicity of representation to be equal for all the secondary
links), for different values of the transmit/receive antennas. Since condition (C6)
depends on the interference generated by the primary user and the power bud-
gets of the secondary users, we considered two different values of the SNR at the
receivers of the secondary users, namely snrq � Pq/σ2

q,tot = 0dB and snrq = 8dB,
for all q ∈ Ω, where σ2

q,tot is the variance of thermal noise plus the interference
generated by the primary user over all the substreams.

As expected, the probability of the uniqueness of the NE of both games Gnull

and Gα and convergence of the IWFAs increases as each secondary transmitter
approaches his receiver, corresponding to a decrease of the overall MUI. More-
over, condition (C6) is confirmed to be stronger than (C7) whatever the number
of transmit/receive antennas, the intra-pair distance d, and the SNR value are,
implying that game Gα admits weaker (more desirable) uniqueness/convergence
conditions than those of the original game Gnull.

Example 1.2: Performance of Gnull and G∞. As an example, in Figure 1.3,
we compare games Gnull and G∞ in terms of sum-rate. All the Nash equilibria
are computed using Algorithm 2 with mapping in (1.81) for game Gnull and
(1.103) for game G∞. Specifically, in Figure 1.3(a), we plot the sum-rate at the
(unique) NE of the games Gnull and G∞ for the CR network depicted in Figure
1.2(a) as a function of the intra-pair distance d ∈ (0, 1) among the links, for
different numbers of transmit/receive antennas. In Figure 1.3(b), we plot the
outage sum-rate for the same systems as in Figure 1.3(a) and d = 0.5. For each
secondary user, a null constraint in the direction of the receiver of the primary
user is imposed. From the figures one infers that games Gnull and G∞ have almost
the same performance in terms of sum-rate at the NE; even if in the game G∞,
given the strategies of the others, each player does not maximize his own rate,
as happens in the game Gnull. This is due to the fact that the Nash equilibria of
game Gnull are in general not Pareto efficient.

In conclusion, the above results indicate that game Gα, with sufficiently large
α, may be a valid alternative to game Gnull to impose the null constraints (1.5),
with more relaxed conditions for convergence.
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Figure 1.2 (a) CR MIMO system; (b) Probability of the uniqueness of the NE of
games Gnull and Gα and convergence of the asynchronous IWFA as a function of the
normalized intra-pair distance d ∈ (0, 1).
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Figure 1.3 Performance of games Gnull and G∞ in terms of Nash equilibria for the CR
MIMO system given in Figure 1.2(a): (a) Average sum-rate at the NE versus the
normalized intra-pair distance d ∈ (0, 1) for d = 0.5; (b) Cumulative Distribution
Function (CDF) of the sum-rate for the games Gnull (plus-mark dashed-dot blue line
curves) and G∞ (circle-mark solid red line curves).
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1.4.3 Game with null and soft constraints

We focus now on the rate maximization in the presence of both null and soft
shaping constraints. The resulting game can be formulated as follows:

(Gsoft) :

maximize
Qq�0

Rq(Qq,Q−q)

subject to Tr
(
GH

q QqGq

)
≤ P ave

SU,q

λmax

(
GH

q QqGq

)
≤ P peak

SU,q

UH
q Qq = 0

∀q ∈ Ω, (1.107)

where we have included both types of individual soft shaping constraints as
well as null shaping constraints, and the transmit power constraint (1.2) has
been absorbed into the trace soft constraint for convenience. For this, it is nec-
essary that each rGq

� rank (Gq) = nTq
; otherwise there would be no power

constraint along N (GH
q ) (if user q is allowed to transmit along N (GH

q ), i.e.,
N (GH

q ) ∩R(Uq)⊥ �= ∅). It is worth pointing out that, in practice, a trans-
mit power constraint (1.2) in (1.107) will be dominated by the trace shaping
constraint, which motivates the absence in (1.107) of an explicit power con-
straint as (1.2). More specifically, constraint (1.2) becomes redundant whenever
P ave

SU,q ≤ Pq λmin(GqGH
q ). On the other hand, if P ave

SU,q ≥ Pq λmax(GqGH
q ), then

constraint (1.6) can be removed without loss of optimality, and game Gsoft reduces
in the form of game Gnull. In the following, we then focus on the former case only.

1.4.3.1 Nash equilibria: existence and uniqueness
Before studying game Gsoft, we need the following intermediate definitions.
For any q ∈ Ω, define the tall matrix Uq ∈ CnGq×rUq as Uq � G�

qUq (recall

that nGq
≥ nTq

> rUq
), and introduce: the semi-unitary matrix U

⊥
q ∈ C

nGq×r
U

⊥
q

orthogonal to Uq, with r
U

⊥
q

= nGq
− rUq

= rank(U
⊥
q ), the set of modified chan-

nels Hrq ∈ C
nRq×r

U
⊥
r , defined as

Hrq = HrqG�H
r U

⊥
r , ∀r, q ∈ Ω, (1.108)

the interference-plus-noise to noise ratios innrq’s, defined as

innrq �
ρ

(
Rnq

+
∑
r �=q

PrHrqH
H
rq

)
λmin(Rnq

)
≥ 1 q ∈ Ω, (1.109)

and the nonnegative matrix Ssoft ∈ RQ×Q
+ :

[Ssoft]qr �
{

innrq · ρ
(
H

H
rqHrq

)
ρ
(
H

�H
qq H

�
qq

)
,

0,

if r �= q,

otherwise.
(1.110)

These definitions are useful to obtain sufficient conditions for the unique-
ness of the NE of Gsoft. Finally, we introduce for any q ∈ Ω and given nq ∈
{1, 2, . . . , nTq

}, the modified MIMO waterfilling operator WFq : S
nq×nq

+ � X →



Competitive Optimization of Cognitive Radio MIMO Systems via Game Theory 45

S
nq×nq

+ , defined as

WFq (X) � UX

[
μq,XIrX

− D−1
X

]Ppeak
q

0
UH

X , (1.111)

where UX ∈ Cnq×rX and Dq ∈ RrX×rX
++ are defined as in (1.24) and

μq,X > 0 is the water-level chosen to satisfy Tr
{[

μq,XIrX
− D−1

X

]Ppeak
q

0

}
=

min(Pq, rXP peak
q ) (see, e.g., [65] for practical algorithms to compute the water-

level μq,X in (1.111)). Using the above definitions, we can now characterize the
Nash equilibria of game Gsoft, as shown next.

Theorem 1.16 (Existence and structure of the NE of Gsoft). Consider the game
Gsoft in (1.107), and suppose w.l.o.g. that rGq

= nTq
, for all q ∈ Ω (all matrices

Gq are full row-rank). Then, the following hold:

(a) there always exists a NE, for any set of channel matrices and null/soft shap-
ing constraints;

(b) if, in addition, rUq
< rHqq

and rank(HqqG�H
q U

⊥
q ) = r

U
⊥
q

for all q ∈ Ω, all the

Nash equilibria are the solutions to the following set of nonlinear matrix-
value fixed-point equations:

Q�
q = G�H

q U
⊥
q WFq

(
H

H
qqR

−1
−q(Q

�
−q)Hqq

)
U

⊥H
q G�

q, ∀q ∈ Ω, (1.112)

with WFq(·) and R−q(Q−q) defined in (1.111) and (1.3), respectively.

Proof. The proof of theorem is based on the following intermediate result.

Lemma 1.5. Given SnT
+ � RH = VHΛHVH

H , with rRH
= rank(RH), the solu-

tion to the following optimization problem
maximize

Q�0
log det (I + RHQ)

subject to Tr(Q) ≤ PT ,

λmax(Q) ≤ P peak,

(1.113)

with PT ≤ P peakrRH
, is unique and it is given by

Q� = VH,1

[
μIrRH

− Λ−1
H,1

]Ppeak

0
VH

H,1, (1.114)

where VH,1 ∈ CnT ×rRH is the semi-unitary matrix of the eigenvectors of matrix
RH corresponding to the rRH

positive eigenvalues in the diagonal matrix ΛH,1,

and μ > 0 satisfies Tr
(
[μIrRH

− Λ−1
H,1]

Ppeak

0

)
= PT .

Under rGq
= nTq

, for all q ∈ Ω, game Gsoft admits at least a NE, since it
satisfies Theorem 1.2.

We prove now (1.112). To this end, we rewrite Gsoft in (1.107) in a more
convenient form. Introducing the transformation:

Qq � GH
q QqGq, ∀q ∈ Ω (1.115)
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one can rewrite Gsoft in terms of Qq as

maximize
Qq�0

log det
(
I + PR(U

⊥
q )

G�
qH

H
qqR

−1
−q(Q−q)HqqG�H

q PR(U
⊥
q )

Qq

)
subject to Tr(Qq) ≤ P ave

SU,q

λmax(Qq) ≤ P peak
SU,q

Qq = PR(U
⊥
q )

QqPR(U
⊥
q )

∀q ∈ Ω,

(1.116)
where R−q(Q−q) � Rnq

+
∑
r �=q

HrqG�H
r PR(U

⊥
r )

QrHH
rqG

�
rPR(U

⊥
r )

. Observe now

that the power constraint Tr(Qq) ≤ P ave
SU,q in (1.116) can be replaced with

Tr(Qq) ≤ P
ave
SU,q w.l.o.g., where P

ave
SU,q � min(P ave

SU,q, rU
⊥
q

P peak
SU,q ). Indeed, because

of the null constraint, any solution Q
�
q to (1.116) will satisfy rank(Q

�
q) ≤

r
U

⊥
q

, whatever the strategies Q−q of the others are, implying Tr(Qq) =∑r
U

⊥
q

k=1 λk(Qq) ≤ P ave
SU,q (the eigenvalues λk(Qq) are assumed to be arranged in

decreasing order); which, together to λmax(Qq) ≤ P peak
SU,q , leads to the desired

equivalence. Using rank(HqqG�H
q U

⊥
q ) = r

U
⊥
q

and invoking Lemma 1.5, game in

(1.116) can be further simplified to

maximize
Qq�0

log det
(
I + PR(U

⊥
q )

G�
qH

H
qqR

−1
−q(Q−q)HqqG�H

q PR(U
⊥
q )

Qq

)
subject to Tr(Qq) ≤ P

ave
SU,q

λmax(Qq) ≤ P peak
SU,q

∀q ∈ Ω.

(1.117)
Indeed, according to (1.114) in Lemma 1.5, any optimal solution Q

�
q to

(1.117) will satisfy R(Q
�
q) ⊆ R(U

⊥
q ), implying that the null constraint Qq =

PR(U
⊥
q )

QqPR(U
⊥
q )

in (1.116) is redundant.

Given the game in (1.117), all the Nash equilibria satisfy the following MIMO
waterfilling-like equation (Lemma 1.5):

Q
�
q = WFq

(
PR(U

⊥
q )

G�
qH

H
qqR

−1
−q(Q

�
−q)HqqG�H

q PR(U
⊥
q )

)
(1.118)

= U
⊥
q WFq

(
U

⊥H
q G�

qH
H
qqR

−1
−q(Q

�
−q)HqqG�H

q U
⊥
q

)
U

⊥H
q , ∀q ∈ Ω. (1.119)

The structure of the Nash equilibria of game Gsoft in (1.107) as given in (1.112)
follows directly from (1.115) and (1.119).

Remark 9 - On the structure of the Nash equilibria. The structure of the
Nash equilibria in (1.112) states that the optimal transmission strategy of each
user leads to a diagonalizing transmission with a proper power allocation, after
pre/post multiplication by matrix G�H

q U
⊥
q . Thus, even in the presence of soft

constraints, the optimal transmission strategy of each user q, given the strategies
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Q−q of the others, can be efficiently computed via a MIMO waterfilling-like
solution. Note that the Nash equilibria in (1.112) satisfy the null constrains in
(1.5), since R(U

⊥
q )⊥ = R

(
G�

qUq

)
, implying UH

q G�H

q U
⊥
q = 0 and thus R(Q�

q) ⊥
R (Uq), for all Q−q � 0 and q ∈ Ω.

We provide now a more convenient expression for the Nash equilibria given in
(1.112), that will be instrumental to derive conditions for the uniqueness of the
equilibrium and the convergence of the distributed algorithms. Introducing the
convex closed sets Qq defined as

Qq �
{
X ∈ S

nTq

+ | Tr{X} = P
ave
SU,q, λmax(X) ≤ P peak

SU,q

}
, (1.120)

where P
ave
SU,q � min(P ave

SU,q, rU
⊥
q

P peak
SU,q ), we have the following equivalent expression

for the MIMO waterfilling solutions in (1.112), whose proof is similar to that of
Lemma 1.2 and thus is omitted.

Lemma 1.6 (NE as a projection). The set of nonlinear matrix-value fixed-point
equations in (1.112) can be equivalently rewritten as

Q�
q = G�H

q U
⊥
q

[
−
((

H
H
qqR

−1
−q(Q

�
−q)Hqq

)�

+ cqPN (Hqq)

)]
Qq

U
⊥H
q G�

q, ∀q ∈ Ω,

(1.121)
where cq is a positive constant that can be chosen independent of Q−q (c.f. [63])
and Qq is defined in (1.120).

Using Lemma 1.6, we can study contraction properties of the multiuser MIMO
waterfilling mapping WF in (1.112) via (1.121) (following the same approach as
in Theorem 1.7) and obtain sufficient conditions guaranteeing the uniqueness of
the NE of game Gsoft, as given next.

Theorem 1.17 (Uniqueness of the NE). The solution to (1.121) is unique if

ρ(Ssoft) < 1, (C8)

where Ssoft is defined in (1.110). �

Condition (C8) is also sufficient for the convergence of the distributed algo-
rithms to the unique NE of Gsoft, as detailed in the next section.

1.4.3.2 Distributed algorithms
Similarly to games Gnull and Gα, the Nash equilibria of game Gsoft can be reached
using the asynchronous IWFA algorithm given in Algorithm 2, based on the
mapping

Tq(Q−q) � G�H

q U
⊥
q WFq

(
H

H
qqR

−1
−q(Q−q)Hqq

)
U

⊥H
q G�

q, q ∈ Ω, (1.122)
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where the MIMO waterfilling operator is defined in (1.111) and the modified
channels Hqq ’s are defined in (1.108). Observe that such an algorithm has the
same nice properties of the algorithm proposed to reach the Nash equilibria of
game Gnull in (1.83) (see Remark 4 in Section 1.3.5), such as: low-complexity, dis-
tributed and asynchronous nature, fast convergence behaviour. Moreover, thanks
to our game theoretical formulation including null and/or soft shaping con-
straints, the algorithm does not suffer of the main drawback of the classical
sequential IWFA [20, 62, 64], i.e., the violation of the interference temperature
limits [2]. The convergence properties of the algorithm are given in the following.

Theorem 1.18. Suppose that condition (C8) in Theorem 1.17 is satisfied. Then,
as n → +∞, the asynchronous MIMO IWFA, described in Algorithm 2 and based
on the mapping in (1.122), converges to the unique solution to (1.121), for any
set of feasible initial conditions, and updating schedule satisfying (A1)-(A3).

1.5 Opportunistic Communications under Global Interference
Constraints

We focus now the design of CR system in (1.1), including the global interference
constraints in (1.7), instead of the conservative individual constraints consid-
ered so far. This problem has been formulated and studied in [66]. Because of
the space limitation, here we provide only some basic results without proofs. For
the sake of simplicity, we focus only on block transmissions over SISO frequency-
selective channels. It is well-known that, in such a case, multicarrier transmission
is capacity achieving for large block-length [11]. This allows the simplification
of the system model in (1.1), since each channel matrix Hrq becomes a N × N

Toeplitz circulant matrix with eigendecomposition Hrq = FDrqFH , where F is
the normalized IFFT matrix, i.e., [F]ij � ej2π(i−1)(j−1)/N /

√
N for i, j = 1, . . . , N ,

N is the length of transmitted block, Drq = diag({Hrq(k)}N
k=1) is the diago-

nal matrix whose k-th diagonal entry is the frequency-response of the channel
between source r and destination q at carrier k, and Rnq

= diag({σ2
q(k)}N

k=1).
Under this setup, the strategy of each secondary user q becomes the power

allocation pq = {pq(k)}N
k=1 over the N carriers and the payoff function in (1.4)

reduces to the information rate over the N parallel channels

rq(pq,p−q) =
N∑

k=1

log

(
1 +

|Hqq(k)|2 pq(k)
σ2

q(k) +
∑

r �=q |Hrq(k)|2 pr(k)

)
. (1.123)

Local power constraints and global interference constraints are imposed on the
secondary users. The admissible strategy set of each player q associated to local
power constraints is then

Pq �
{

p :
N∑

k=1

p(k) ≤ Pq, 0 ≤ p ≤ pmax
q

}
, (1.124)
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where we also included possibly (local) spectral mask constraints pmax
q =

(pmax
q (k))N

k=1. In the case of transmissions over frequency-selective channels, the
global interference constraints in (1.7) impose an upper bound on the value of
the per-carrier and total interference (the interference temperature limit [2]) that
can be tolerated by each primary user p = 1, · · · , P , and reduce to [66]

(total interference) :
Q∑

q=1

N∑
k=1

|Hq,p(k)|2 pq(k) ≤ P ave
p,tot

(per-carrier interference) :
Q∑

q=1

|Hq,p(k)|2 pq(k) ≤ P peak
p,k , ∀k = 1, · · · , N,

(1.125)
where Hq,p(k) is the channel transfer function between the transmitter of the
q-th secondary user and the receiver of the p-th primary user, and P ave

p,tot and
P peak

p,k are the interference temperature limit and the maximum interference over
subcarrier k tolerable by the p-th primary user, respectively. These limits are
chosen by each primary user, according to his QoS requirements.

The aim of each secondary user is to maximize his own rate rq(pq,p−q) under
the local power constraints in (1.124) and the global interference constraints in
(1.125). Note that the interference constraints introduce a global coupling among
the admissible power allocations of all the players. This means that now the
secondary users are not allowed to choose their power allocations individually,
since this would lead to an infeasible strategy profile, being the global interference
constraints in general not satisfied. To keep the resource power allocation as
decentralized as possible while imposing global interference constraints, the basic
idea proposed in [66] is to introduce a proper pricing mechanism, controlled
by the primary users, through a penalty in the payoff function of each player,
so that the interference generated by all the secondary users will depend on
these prices. The challenging goal is then to find the proper decentralized pricing
mechanism that guarantees the global interference constraints be satisfied while
the secondary users reaching an equilibrium. Stated in mathematical terms, we
have the following NE problem [66]

(GVI) :

maximize
pq≥0

rq(pq,p−q) −
P∑

p=1

N∑
k=1

λpeak
p,k |Hq,p(k)|2 pq(k) −

P∑
p=1

λp,tot

N∑
k=1

|Hq,p(k)|2 pq(k)

subject to pq ∈ Pq

0 ≤ λp,tot ⊥ P ave
p,tot −

Q∑
q=1

N∑
k=1

|Hq,p(k)|2 pq(k) ≥ 0, ∀p,

0 ≤ λpeak
p,k ⊥ P peak

p,k −
Q∑

q=1

|Hq,p(k)|2 pq(k) ≥ 0, ∀p, k,

(1.126)
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for all q ∈ Ω, where λp,tot and λpeak
p = {λpeak

p,k }N
k=1 are the prices used to keep

the interference temperature limit and the per-carrier interference generated by
the secondary users at the receiver of the p-th primary user under the thresh-
olds P ave

p,tot and {P peak
p,k }N

k=1, respectively. The per-carrier/global interference con-
straints written as in (1.126) state that either the interference constraints are
satisfied with equality and nonnegative associated prices or a price is zero if the
associated interference constraint is strictly satisfied (no punishment is needed
in this case).

1.5.1 Equilibrium solutions: existence and uniqueness

The coupling among the strategies of the players of GVI due to the global inter-
ference constraints presents a new challenge for the analysis of this class of Nash
games that cannot be addressed using results from game theory or game theo-
retical models proposed in the literature [6, 7, 8, 9, 21, 62]. For this purpose, we
need the framework given by the more advanced theory of finite-dimensional VIs
[32, 67] that provides a satisfactory resolution to the game GVI, as detailed next.
We first introduce the following definitions. Define the joint admissible strategy
set of game GVI as

K � P ∩

⎧⎪⎪⎪⎪⎪⎨⎪⎪⎪⎪⎪⎩
p :

Q∑
q=1

N∑
k=1

|Hq,p(k)|2 pq(k) ≤ P ave
p,tot, ∀ p = 1, · · · , P

Q∑
q=1

|Hq,p(k)|2 pq(k) ≤ P peak
p,k , ∀ p = 1, · · · , P, k = 1, · · · , N

⎫⎪⎪⎪⎪⎪⎬⎪⎪⎪⎪⎪⎭
,

(1.127)
with P = P1 × · · · × PQ, and the vector function F : K � p �→ F(p) ∈ RQN

−

F(p) �

⎛⎜⎜⎜⎝
F1(p)

...

FQ(p)

⎞⎟⎟⎟⎠ , where each Fq(p) �
(
− |Hqq(k)|2

σ2
q(k) +

∑
r |Hrq(k)|2 pr(k)

)N

k=1

.

(1.128)
Finally, to rewrite the solutions to GVI in a convenient form, we introduce the
interference-plus-noise to noise ratios innrrq(k), defined as

innrrq(k) � σ2
r(k) +

∑
t |Htr(k)|2 pmax

t (k)
σ2

q(k)
, (1.129)

and, for each q and given p−q ≥ 0 and λ ≥ 0, define the waterfilling-like mapping
wfq as

[wfq (p−q; λ)]k �
[

1
μq + γq(k; λ)

−
σ2

q(k) +
∑

r �=q |Hrq(k)|2pr(k)
|Hqq(k)|2

]pmax
q (k)

0

,

(1.130)
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with k = 1, · · · , N, where γq(k; λ) =
∑P

p=1 |Hq,p(k)|2 (λpeak
p,k + λp,tot) and μq ≥

0 is chosen to satisfy the power constraint
∑N

k=1 [wfq (p−q; λ)]k ≤ Pq (μq = 0 if
the inequality is strictly satisfied).

Theorem 1.19 ([66]). Consider the NE problem GVI in (1.126), the following
hold:

(a) GVI is equivalent to the VI problem defined by the pair (K,F), which is to
find a vector p� ∈ K such that

(p− p�)T F(p�) ≥ 0, ∀p ∈ K, (1.131)

with K and F(p) defined in (1.127) and (1.128), respectively;
(b) there always exists a solution to the VI problem in (1.131), for any given

set of channels, power budgets, and interference constraints;
(c) given the set of the optimal prices λ̂ = {λ̂peak

p , λ̂p,tot}P
p=1, the optimal power

allocation vector p�(λ̂) = (p�
q(λ̂))Q

q=1 of the secondary users at a NE of
game GVI is the solution to the following vector waterfilling-like fixed-point
equation:

p�
q(λ̂) = wfq

(
p�
−q(λ̂); λ̂

)
, ∀q ∈ Ω, (1.132)

with wfq defined in (1.130);
(d) the optimal power allocation vector p� of game GVI is unique if the two

following set of conditions are satisfied:9

Low received MUI:
∑
r �=q

maxk

{
|Hrq(k)|2

|Hqq(k)|2
· innrrq(k)

}
< 1, ∀q ∈ Ω,

Low generated MUI:
∑
q �=r

maxk

{
|Hrq(k)|2

|Hqq(k)|2
· innrrq(k)

}
< 1, ∀r ∈ Ω,

(C9)
with innrrq(k) defined in (1.129).

The equivalence between the game GVI in (1.126) and the VI problem in
(1.131), as stated in Theorem 1.19(a) is in the following sense: If p� is a solution
of the VI(K,F), then there exists a set of prices λ� = (λ�

p, λ
�
p,tot)

P
p=1 ≥ 0 such

that (p�, λ�) is an equilibrium pair of GVI; conversely if (p�, λ�) is an equilibrium
of GVI, then p� is a solution of the VI(K,F). Finally, observe that condition (C9)
has the same nice interpretations of those obtained for the games introduced so
far: The uniqueness of the NE of GVI is guaranteed if the interference among the
secondary users is not too high, in the sense specified by (C9).

9 Milder conditions are given in [66]
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1.5.2 Distributed algorithms

To obtain efficient algorithms that distributively compute both the optimal
power allocations of the secondary users and prices, we can borrow from the wide
literature of solutions methods for VIs [32, 67]. Many alternative algorithms have
been proposed in [66] to solve game GVI that differ in: i) the signaling among
primary and secondary users needed to be implemented; ii) the computational
effort; iii) the convergence speed; and iv) the convergence analysis. Because of
the space limitation, here we focus only on one of them, based on the Projection
Algorithm with variable steps (for the sake of simplicity, here we use a constant
step size) [67, Alg. 12.1.4] and formally described in Algorithm 3, where the
waterfilling mapping wfq is defined in (1.130).

Algorithm 3: Projection algorithm with constant step size

1 : Set n = 0, initialize λ = λ(0) ≥ 0, and choose the step size τ > 0
2 : repeat
3 : Given λ(n), compute p�(λ(n)) as the solution to the fixed-point equation

4 : p�
q(λ

(n)) = wfq
(
p�
−q(λ

(n)); λ(n)
)

, ∀q ∈ Ω (1.133)

5 : Update the price vectors: for all p = 1, · · · , P , compute

6 : λ
(n+1)
p,tot =

[
λ

(n)
p,tot − τ

(
P ave

p,tot −
Q∑

q=1

N∑
k=1

|Hq,p(k)|2 p�
q(k; λ(n))

)]+

(1.134)

7 : λ
(n+1)
p,k =

[
λ

(n)
p,k − τ

(
P peak

p,k −
Q∑

q=1

|Hq,p(k)|2 p�
q(k; λ(n))

)]+

, ∀k = 1, · · · , N

(1.135)
8 : until the prescribed convergence criterion is satisfied

The algorithm can be interpreted as follows. In the main loop, at the n-th iter-
ation, each primary user p measures the received interference generated by the
secondary users and, locally and independently from the other primary users,
adjusts his own set of prices λ(n)

p accordingly, via a simple projection scheme
(see (1.134) and (1.135)). The primary users broadcast their own prices λ(n)

p ’s
to the secondary users, who then play the game in (1.126) keeping fixed the
prices to the value λ(n). The Nash equilibria of such a game are the fixed-points
of mapping wf = (wfq)q∈Ω as given in (1.132), with λ̂ = λ(n). Interestingly, the
secondary users can reach these solutions using any algorithm falling within the
class of asynchronous IWFA as described in Algorithm 2 (e.g., simultaneous or
sequential) and based on mapping wf = (wfq)q∈Ω in (1.132). Convergence prop-
erties of Algorithm 3 are given in the following.
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Theorem 1.20 ([66]). Suppose that condition (C9) in Theorem 1.19 is satisfied.
Then, there exists some τ0 > 010 such that, as n → +∞, Algorithm 3 converges
to a solution to GVI in (1.126), for any set of feasible initial conditions and
τ ∈ (0, τ0).

Remark 10 - Features of Algorithm 3. Even though the per-carrier and
global interference constraints impose a coupling among the feasible power allo-
cation strategies of the secondary users, the equilibrium of game GVI can be
reached using iterative algorithms that are fairly distributed with a minimum
signaling from the primary to the secondary users. In fact, in Algorithm 3, the
primary users, to update their prices, only need to measure the interference gen-
erated by the secondary users, which can be performed locally and independently
from the other primary users. Regarding the secondary users (see (1.130)), once
γq(k; λ)’s are given, the optimal power allocation can be computed locally by
each secondary user, since only the measure of the received MUI over the N sub-
carriers is needed. However, the computation of γq(k; λ)’s requires a signaling
among the primary and secondary users: At each iteration, the primary users
have to broadcast the new values of the prices and the secondary users estimate
the γq(k; λ)’s, which requires the estimate from each secondary user of the (cross-
)channel transfer functions between his transmitter and the primary receivers.
This estimate can be performed once at the beginning of the transmission and
updated at the rate of the coherence time of the channel.

Example 1.3: Comparison of proposed algorithms. As a numerical example,
in Figure 1.4, we compare some of algorithms proposed in this chapter in terms
of interference generated against the primary users. We consider a CR system
composed of 6 secondary links randomly distributed within an hexagonal cell and
one primary user (the BS at the center of the cell). In Figure 1.4(a) we plot the
power spectral density (PSD) of the interference due to the secondary users at the
receiver of the primary user, generated using the classical IWFA [20, 64, 62], the
IWFA with individual interference constraints (i.e., a special case of Algorithm
2 applied to game Gsoft) that we call conservative IWFA, and the IWFA with
global interference constraints (based on Algorithm 3) that we call flexible IWFA.
For the sake of simplicity, we consider only a constant interference threshold
over the whole spectrum occupied by the primary user, i.e., P peak

p,k = 0.01 for all
k = 1, · · · , N . We clearly see from the picture that while classical IWFA violates
the interference constraints, both conservative and flexible IWFAs satisfy them,
but the global interference constraints impose less stringent conditions on the
transmit power of the secondary users that those imposed by the individual
interference constraints. However, this comes at the price of more signaling from

10 An expression for τ0 is given in [66].
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Figure 1.4 Comparison of different algorithms: (a) Power spectral density of the
interference profile at the primary user’s receiver generated by the secondary users;
(b) worst-case violation of the interference constraint achieved by Algorithm 3
(flexible IWFA).

the primary to the secondary users. Interestingly, for the example considered in
the figure, Algorithm 3 converges quite fast, as shown in Figure 1.4(b), where
we plot the worst-case violation of the interference constraint achieved by the
algorithm versus the number of iterations of the outer loop.
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Finally, in Figure 1.5, we compare the conservative IWFA and the flexible
IWFA in terms of achievable sum-rate as a function of the maximum tolerable
interference at the primary receiver, within the same setup described above (we
considered the same interference threshold P peak for all the subcarriers). As
expected, the flexible IWFA exhibits a much better performance, thanks to less
stringent constraints on the transmit powers of the secondary users.
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Figure 1.5 Conservative IWFA versus flexible IWFA: achievable sum-rate as a function
of the maximum tolerable interference at the primary receiver.

1.6 Conclusions

In this chapter we have proposed different equilibrium models to formulate and
solve resource allocation problems in CR systems, using a competitive optimality
principle based on the NE concept. We have seen how game theory and the more
general VI theory provide the natural framework to address and solve some of
the challenging issues in CR, namely: 1) the establishment of conditions guar-
anteeing that the dynamical interaction among cognitive nodes, under different
constraints on the transmit spectral mask and on interference induced to primary
users, admits a (possibly unique) equilibrium; and 2) the design of decentral-
ized algorithms able to reach the equilibrium points, with minimal coordination
among the nodes. The proposed algorithms differ in the trade-off between per-
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formance (in terms of information rate) achievable by the secondary users and
the amount of information to be exchanged between the primary and the sec-
ondary users. Thus the algorithms are valid candidate to be applied to both main
paradigms having emerged for CR systems, namely the common model and the
spectral leasing approach. Results proposed in this chapter are based on recent
works [6, 7, 8, 10, 24, 63, 66, 68].
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