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Abstract—The computation of the channel capacity of discrete
memoryless channels is a convex problem that can be effi-
ciently solved using the Arimoto-Blahut (AB) iterative algorithm.
However, the extension of this algorithm to the computation of
capacity regions of multiterminal networks is not straightforward
since it gives rise to non-convex problems. In this context, the AB
algorithm has only been successfully extended to the calculation
of the sum-capacity of the discrete memoryless multiple-access
channel (DMAC). Thus, the computation of the whole capacity
region still requires the use of computationally demanding search
methods.

In this paper, we first give an alternative reformulation of
the capacity region of the DMAC which condenses all the non-
convexities of the problem into a single rank-one constraint.
Then, we propose efficient methods to compute outer and inner
bounds on the capacity region of the two-user DMAC by solving
a relaxed version of the problem and projecting its solution onto
the original feasible set. Targeting numerical results, we first
take a randomization approach. Focusing on analytical results,
we study projection via minimum divergence, which amounts to
the marginalization of the relaxed solution. In this case we derive
sufficient conditions and necessary and sufficient conditions for
the bounds to be tight. Furthermore, we are able to show that the
class of channels for which the marginalization bounds match
exactly the capacity region includes all the two-user binary-
input deterministic DMACs as well as other non-deterministic
channels. In general, however, both methods are able to compute
very tight bounds as shown for various examples.

Index Terms—Multiple-access channel (MAC), algorithms,
nonconvex optimization.

I. INTRODUCTION

THE characterization of the capacity of an arbitrary single-
user memoryless channel is a problem that admits a

single-letter representation in the form of a maximization of a
concave function over a convex set, e.g., a probability simplex
for the Discrete Memoryless Channel (DMC). This is a convex
problem that can be efficiently solved in practice (i.e., with
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polynomial time worst-case complexity) [1]. For example, for
the continuous Gaussian channel the solution admits a simple
closed-form characterization [2] whereas for the DMC the
popular practical Arimoto-Blahut (AB) algorithm [3], [4] can
be used.

In contrast, for the general multiuser case we do not even
have a characterization of the capacity region. Although many
major breakthroughs in the field have been achieved (see [5,
Ch. 14] and [6] and references therein), there are many open
problems on single-letter characterizations of capacity regions.
Fortunately, for the multiple-access channel (MAC) we also
have a single-letter representation of the capacity region [7],
[8]. However, this characterization is not generally in the form
of a convex optimization problem. While for the continuous
Gaussian channel convexity holds and the capacity region
can be numerically evaluated in an efficient way [9], for the
discrete memoryless MAC (DMAC) the lack of convexity
prevents us from finding an efficient algorithm to compute
the capacity region in practice. In this context, many authors
have recently contributed toward the computation of the sum-
capacity (or total capacity) of an arbitrary DMAC [10], [11],
and an algorithm for its exact computation has been found
[12].

It was shown in [10] that any two-user DMAC can be
decomposed into a finite number of elementary (2-user binary-
input and binary-output) DMACs for which their total capacity
can be computed using a necessary and sufficient optimality
condition of the input probability distributions. In addition,
[10] showed that for any 2-user non-binary inputs and bi-
nary output DMAC, the total capacity can be determined by
computing the total capacities of the elementary DMACs of
its decomposition, and provided an iterative algorithm. In a
later work, [11] extended the decomposition result for the 𝐾-
user DMAC (with arbitrary input and output alphabets), which
allowed [12] to propose an algorithm for the computation
of the total capacity based on a generalization of the AB
algorithm. Other applications of generalizations of the AB
algorithm can be found in the context of the computation of
channel capacity with side information [13].

Regarding the computation of the whole capacity region
of the DMAC, not much work has been done due to the
intractability of the problem because of its non-convexity.
As a consequence, brute-force algorithms or random search
methods seem to be the only alternative to compute inner
bounds on the capacity region with no quantification on the
suboptimality incurred. In addition to the theoretical relevance
of finding efficient numerical methods for the computation of
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the capacity region of the DMAC, it is worth mentioning also
some implications on the design of practical multiple-access
communication systems:

∙ First, the DMAC has an operational meaning. Regardless
of the underlying physical channel model, the inher-
ently digital nature of communication systems renders
multiple-access channels discrete. In other words, the
use of deterministic constellations at the transmitters plus
quantization of the channel output at the receiver results
in an equivalent end-to-end channel that can be solely
described using a transition probability matrix.

∙ Often, the evaluation of the virtues of practical multiple-
access schemes involves extensive simulation over a large
set of scenarios accounting for different values of system
parameters and/or uncertainties. If computation of the
capacity region were efficient, the computational burden
associated to this performance quantification could be
greatly alleviated.

∙ Finally, since the computation of the capacity region is
frequently related to searching optimal input probability
distributions, these can be used to guide the design of
practical schemes aiming at the maximization of the
achievable rates via structured coding.

In this work, we show that the key difficulty in computing
the capacity region of an arbitrary DMAC can be identified as
a rank-one constraint (a non-convex constraint) in an otherwise
convex optimization problem. Optimization problems with this
kind of constraint arise in areas such as control theory [14]–
[16] and signal processing [17], [18], and cannot be solved
optimally in polynomial time with state of the art knowledge.
Hence, alternative suboptimal methods must be used to obtain
good approximations of the capacity region. One approach
that has reported near optimal performance when dealing
with rank-one constraints in maximum-likelihood single-user
[17], [19] and multiuser [18] detection is the use of relax-
ation methods. Relaxation methods are based on i) replacing
the rank-one constrained problem by an approximate (not
equivalent) tractable convex problem and ii) generating a
potential solution to the original problem from the solution
to the relaxed problem. This way, the use of computationally
demanding algorithms is avoided since efficient interior point
methods can be used to solve the convex approximation of the
problem in polynomial time.

We propose two efficient methods for the computation of
both an inner and an outer bound of the capacity region of
any two-user DMAC. The outer bound follows from removing
the rank-one constraint and corresponds to the achievable
rates in the situation of full transmit cooperation, since user
codewords can thus be arbitrarily correlated. To generate
potential solutions to the original problem, we first focus
on randomization, an approach that has shown near optimal
numerical performance in the previously mentioned areas. In
essence, several rank-one input probability distributions are
generated close (in the mean sense) to the optimal solution
of the relaxed problem and the one yielding the largest
achievable rates is kept. This can be viewed as a random
search algorithm with guidance on the correlation matrix of
the potential solutions.

Pursuing a simpler method that allows for performance

analysis, we then study a deterministic alternative in which the
solution to the relaxed problem is projected onto the feasible
set via a minimum divergence criterion. This criterion yields
a candidate solution which turns out to be the marginalization
of the relaxed solution, a very simple operation scalable
with the number of users. Regarding analytical results, there
exists a class of channels for which this algorithm is able to
compute exactly the capacity region. It comprises the subclass
of channels with identical inner and outer bounds and the
subclass of channels with strict outer bound and tight inner
bound. Given a channel, we derive necessary and sufficient
conditions for checking whether it belongs to the first subclass
and sufficient conditions for verifying whether it belongs to
the second subclass. These conditions are used to show that for
all the two-user binary-input deterministic DMACs as well as
for some non-deterministic channels simple marginalization of
the full cooperation solution achieves capacity. Although we
have not been able to fully characterize analytically the class
of channels for which marginalization is optimal, numerical
simulations for various channels show that both randomization
and marginalization perform indistinguishably to the optimal
solution obtained with a computationally intensive brute-force
full search.

The structure of this paper is as follows. Section II in-
troduces the problem of the computation of the capacity
region of the DMAC and reformulates it as a rank-one
constrained optimization problem. Section III describes the
proposed relaxation-based methods for the computation of
inner and outer bounds on the capacity region: random-
ization and marginalization. Analytical optimality conditions
that determine when the marginalization bounds are tight are
provided in Section IV. Then, the performance of the proposed
algorithms among various channels is numerically compared
to that of a random search method in Section V. Finally,
Section VI concludes the paper.

II. THE CAPACITY REGION AS A RANK-ONE

CONSTRAINED OPTIMIZATION PROBLEM

The computation of the capacity region of an arbitrary
DMAC (a convex set) is a non-convex problem. It can be
formulated in a matrix form that reveals the non-convexity of
the problem as a rank-one constraint.
A. The Problem of the Capacity Region for Two Users

The capacity region 𝒞 of the 2-user DMAC is the convex
hull of the set1 of rate pairs (𝑅1, 𝑅2) satisfying

0 ≤ 𝑅1 ≤ 𝐼(𝑋1;𝑌 ∣𝑋2) (1)

0 ≤ 𝑅2 ≤ 𝐼(𝑋2;𝑌 ∣𝑋1) (2)

𝑅1 +𝑅2 ≤ 𝐼(𝑋1𝑋2;𝑌 ) (3)

for a distribution of the form 𝑃𝑋1𝑋2𝑌 = 𝑃𝑋1𝑃𝑋2𝑃𝑌 ∣𝑋1𝑋2
on

𝒳1×𝒳2×𝒴 , where the input alphabets can be characterized as
𝒳𝑘 = {𝑥(1)𝑘 , . . . , 𝑥

(∣𝒳𝑘∣)
𝑘 }, with ∣𝒳𝑘∣ denoting the cardinality

of 𝒳𝑘, 𝑘 = 1, 2. 𝑃𝑋𝑘
is the input probability distribution

of the 𝑘-th user (𝑘 = 1, 2), and 𝑃𝑌 ∣𝑋1𝑋2
is the given

conditional distribution that characterizes the channel. It is
well known that 𝒞 is a convex set [5, Thm. 14.3.2] and hence,

1The convex hull is strictly necessary for convexification of 𝒞 since
otherwise it may not be convex in general [20].
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maximize
𝑅1,𝑅2,𝑃𝑋1 ,𝑃𝑋2

𝜃𝑅1 + (1 − 𝜃)𝑅2 (4)

subject to 0 ≤ 𝑅1 ≤
∑

𝑥1,𝑥2,𝑦

𝑃𝑋1 (𝑥1)𝑃𝑋2(𝑥2)𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥1𝑥2) log

𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥1𝑥2)∑

𝑥′
1

𝑃𝑋1(𝑥
′
1)𝑃𝑌 ∣𝑋1𝑋2

(𝑦∣𝑥′1𝑥2)
(5)

0 ≤ 𝑅2 ≤
∑

𝑥1,𝑥2,𝑦

𝑃𝑋1 (𝑥1)𝑃𝑋2(𝑥2)𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥1𝑥2) log

𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥1𝑥2)∑

𝑥′
2

𝑃𝑋2(𝑥
′
2)𝑃𝑌 ∣𝑋1𝑋2

(𝑦∣𝑥1𝑥′2)
(6)

𝑅1 +𝑅2 ≤
∑

𝑥1,𝑥2,𝑦

𝑃𝑋1(𝑥1)𝑃𝑋2 (𝑥2)𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥1𝑥2) log

𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥1𝑥2)∑

𝑥′
1,𝑥

′
2

𝑃𝑋1 (𝑥
′
1)𝑃𝑋2(𝑥

′
2)𝑃𝑌 ∣𝑋1𝑋2

(𝑦∣𝑥′1𝑥′2)
(7)

∑
𝑥𝑘

𝑃𝑋𝑘
(𝑥𝑘) = 1 , 𝑃𝑋𝑘

(𝑥𝑘) ≥ 0 ∀𝑥𝑘 ∈ 𝒳𝑘 𝑘 = 1, 2 (8)

(R�
1(θ), R�

2(θ))

n 1 − θ
θ

C

R2

R1

Fig. 1. The boundary of 𝒞 is obtained solving (4)-(8) for each 𝜃 ∈ [0, 1].

by applying the supporting hyperplane theorem [1, Sec. 2.5.2],
the computation of the capacity region can be parameterized
for 𝜃 ∈ [0, 1] as2 (4)-(8) at the top of the page, where
the expressions (5)-(7) correspond to (1)-(3), respectively,
instantiated for the DMAC. Note that the solutions 𝑃 ★

𝑋1
(𝜃)

and 𝑃 ★
𝑋2

(𝜃) generally depend on 𝜃. For each 𝜃, the problem
(4)-(8) computes the intersection between the contour of the
capacity region and a tangent hyperplane with normal vector
n = [𝜃, 1 − 𝜃]𝑇 , as illustrated in Fig. 1. Hence, the capacity
region is computed when (4)-(8) is solved for all 𝜃 ∈ [0, 1] and
the convex hull of {𝑅★

1(𝜃), 𝑅
★
2(𝜃)}∀𝜃∈[0,1] is taken; in other

words, the solutions (𝑅★
1(𝜃), 𝑅

★
2(𝜃)) are rate pairs lying in the

boundary of 𝒞.

B. A Rank-one Constrained Optimization Problem

The problem (4)-(8) of the computation of the capacity
region is non-convex because the constraints (5)-(7) are not
jointly convex in 𝑃𝑋1 and 𝑃𝑋2 . For instance, the right hand
side of the constraint in (7) is not concave (note that it should
be concave for the problem to be convex). To see this, observe
that even though 𝑥 log(1/𝑥) is concave, the composition with

2Unless the logarithm basis is indicated, it can be chosen arbitrarily as long
as both sides of the equation have the same units.

a linear combination of terms of the form 𝑥𝑦 is not3. Similar
reasonings may be applied to the constraints (5) and (6)
to obtain again that the lack of convexity follows from the
product terms 𝑃𝑋1(𝑥1)𝑃𝑋2(𝑥2).

Although the problem (4)-(8) is not jointly convex in
(𝑃𝑋1 , 𝑃𝑋2), it is separately convex in each of the input
probability distributions. This would allow us to perform an
alternate optimization procedure: 𝑃 (0)

𝑋1
→ 𝑃

(0)
𝑋2

→ 𝑃
(1)
𝑋1

→
𝑃

(1)
𝑋2
→ . . ., where 𝑃 (𝑛)

𝑋𝑘
denotes the optimal solution 𝑃𝑋𝑘

at
the 𝑛-th iteration. However, alternate optimization procedures
applied to non-convex problems do not generally converge
to global maxima of the cost function, and for this particular
problem they do not yield acceptable results (as can be verified
by numerical simulations).

Interestingly, we shall see that if we allow the variables
𝑋1 and 𝑋2 to be dependent on each other with joint dis-
tribution 𝑃𝑋1𝑋2 , then problem (4)-(8) becomes convex (re-
call that 𝑥 log(1/𝑥) is a concave function). Using a matrix-
vector notation, each of the input probability distributions
𝑃𝑋𝑘

admits a vector representation of the form p𝑘, where
[p𝑘]𝑖 = 𝑃𝑋𝑘

(𝑥
(𝑖)
𝑘 ), 1 ≤ 𝑖 ≤ ∣𝒳𝑘∣, 𝑘 = 1, 2, while

the joint distribution admits a matrix representation of the
form P, where [P]𝑖,𝑗 = 𝑃𝑋1𝑋2(𝑥

(𝑖)
1 , 𝑥

(𝑗)
2 ), 1 ≤ 𝑖 ≤ ∣𝒳1∣,

1 ≤ 𝑗 ≤ ∣𝒳2∣. Then, we define 𝒫prod as the subset containing
all the product distributions 𝑃𝑋1𝑃𝑋2 of 𝑋1 and 𝑋2, see (9)
at the top of the next page. For any joint probability matrix
P ∈ ℝ

∣𝒳1∣×∣𝒳2∣, P ∈ 𝒫prod is equivalent to rank(P) = 1,
and hence the following simpler equivalent description of
𝒫prod can be given as (10) at the top of the next page,
where ≥ denotes component-wise as well as scalar inequality
indistinctly and 1 is an all-one column vector of appropriate
length. The problem (4)-(8) can now be expressed in terms
of P ∈ 𝒫prod, the joint distribution of 𝑋1 and 𝑋2, and its
marginals p1 and p2, making use of expression (10) and the
fact that

P1 = p1, P𝑇1 = p2, (11)

i.e., that 𝑃𝑋1 and 𝑃𝑋2 are the marginal distributions of 𝑃𝑋1𝑋2 .
The following reformulation of the problem is the key point
of the identification of (4)-(8) as a rank-one non-convex
optimization problem.

3It is sufficient to note that the Hessian of 𝑓(𝑥, 𝑦) = 𝑥𝑦 log(𝑥𝑦) has one
positive and one negative eigenvalue at (𝑥, 𝑦) = (1/

√
2, 1/

√
2).
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𝒫prod =
{
P ∈ ℝ

∣𝒳1∣×∣𝒳2∣
∣∣∣ [P]𝑖,𝑗 = 𝑃𝑋1(𝑥

(𝑖)
1 )𝑃𝑋2 (𝑥

(𝑗)
2 ) for some feasible (𝑃𝑋1 , 𝑃𝑋2) on 𝒳1 ×𝒳2

}
(9)

𝒫prod =
{
P ∈ ℝ

∣𝒳1∣×∣𝒳2∣ ∣∣ rank(P) = 1 , P ≥ 0 , 1𝑇P1 = 1
}

(10)

Proposition 1: The problem (4)-(8) of the computation
of the capacity region of an arbitrary two-user DMAC is
equivalent to the following rank-one non-convex optimization
problem

maximize
𝑅1,𝑅2,P,p1,p2

𝜃𝑅1 + (1− 𝜃)𝑅2 (12)

subject to 0 ≤ 𝑅1 ≤ 𝑓1(P,p2) (13)

0 ≤ 𝑅2 ≤ 𝑓2(P,p1) (14)

𝑅1 +𝑅2 ≤ 𝑓12(P) (15)

P1 = p1 , P𝑇1 = p2 (16)

P ≥ 0 , 1𝑇P1 = 1 (17)

rank(P) = 1, (18)

where 𝑓1, 𝑓2 , and 𝑓12 at the top of the next page are concave
in (P,p2), (P,p1), and P, respectively.

Proof: See Appendix I.
Observe that concavity of 𝑓1, 𝑓2, and 𝑓12 and linearity of (12)
and (16)-(17) imply that, if (18) were ignored, the resulting
problem would be convex. While (17) ensures that P is a
feasible probability matrix, (18) constrains it to 𝒫prod, and
(16) relates P with its marginals.

C. Extension to 𝐾 Users

The formulation of the computation of the capacity region
as a rank-one constrained problem introduced in Section II-B
for two users can be extended to the 𝐾-user case. Using
similar equivalences now involving tensors [21], the rank-one
constraint applies to any number of users.

The capacity region 𝒞 of the 𝐾-user DMAC is the convex
hull of the set of rate tuples (𝑅1, . . . , 𝑅𝐾) satisfying

0 ≤ 𝑅𝒮 < 𝐼(𝑋(𝒮);𝑌 ∣𝑋(𝒮𝑐)), ∀𝒮 ⊆ 𝒩 (22)

for a distribution of the form 𝑃𝑋1...𝑋𝐾𝑌 = 𝑃𝑋1 ⋅ . . . ⋅
𝑃𝑋𝐾𝑃𝑌 ∣𝑋1...𝑋𝐾

on 𝒳1 × . . . × 𝒳𝐾 × 𝒴 , where 𝒩 ≜
{1, 2, . . . ,𝐾}. By defining 𝒮𝑐 = 𝒩 ∖ 𝒮 the complement set
of 𝒮, 𝑋(𝒮) = {𝑋𝑘 : 𝑘 ∈ 𝒮}, and 𝑅𝒮 =

∑
𝑘∈𝒮 𝑅𝑘, the

computation of the capacity region can be parameterized as
(23)-(26) at the top of the next page. The solution to (23)-(26)
for any given 𝜽 = [𝜃1 . . . 𝜃𝐾 ]𝑇 such that 𝜽 ≥ 0 and 1𝑇𝜽 = 1
is a point (𝑅★

1(𝜽), . . . , 𝑅
★
𝐾(𝜽)) of the boundary of the capacity

region 𝒞.
Similarly to what happened in the two-user case, the

problem (23)-(26) is not convex because the constraints in
(25) are not jointly convex in (𝑃𝑋1 , . . . , 𝑃𝑋𝐾 ). However,
(23)-(26) can be also reformulated as a rank-one non-convex
optimization problem if we allow 𝑋1, . . ., 𝑋𝐾 to be de-
pendent with distribution 𝑃𝑋(𝒩)

. In doing so, it is useful
to extend the matrix-vector notation of Section II-B using
the tensor P(𝒮) to denote 𝑃𝑋(𝒮)

, where [P(𝒮)]𝑖1,𝑖2,...,𝑖∣𝒮∣ =

𝑃𝑋(𝒮)

(
𝑥
(𝑖1)
𝑘1
, 𝑥

(𝑖2)
𝑘2
, . . . , 𝑥

(𝑖∣𝒮∣)
𝑘∣𝒮∣

)
∀1 ≤ 𝑖𝑗 ≤ ∣𝒳𝑘𝑗 ∣, 1 ≤

𝑗 ≤ ∣𝒮∣, ∀𝒮 = {𝑘1, 𝑘2, . . . , 𝑘∣𝒮∣} ⊆ 𝒩 . 𝑃𝑋(𝒮)
is the

marginalization of 𝑃𝑋(𝒩)
into the codeword set 𝑋(𝒮), i.e.,

𝑃𝑋(𝒮)
(𝑥(𝒮)) =

∑
𝑥(𝒮𝑐)

𝑃𝑋(𝒩)
(𝑥(𝒩 )) or, equivalently in tensor

notation,
∑

𝑖(𝒮𝑐)
P(𝒩 ) = P(𝒮).

Proposition 2: The problem (23)-(26) of the computation
of the capacity region of an arbitrary 𝐾-user DMAC is
equivalent to the following rank-one4 non-convex optimization
problem:

maximize
{𝑅𝑘},{P(𝒮)}∀𝒮⊆𝒩

𝐾∑
𝑘=1

𝜃𝑘𝑅𝑘 (28)

subject to 0 ≤ 𝑅𝒮 ≤ 𝑓𝒮(P(𝒩 ),P(𝒮𝑐)), ∀𝒮 ⊆ 𝒩 (29)∑
𝑖(𝒮𝑐)

P(𝒩 ) = P(𝒮) ∀𝒮 ⊆ 𝒩 (30)

P(𝒩 ) ર 0 ,
∑
𝑖(𝒩)

P(𝒩 ) = 1 (31)

rank(P(𝒩 )) = 1, (32)

where the functions in (33) (see next page), are concave in
(P(𝒩 ),P(𝒮𝑐)).

Proof: This follows from extending the definition of 𝒫prod

(9) to suit the 𝐾-dimensional tensor P(𝒩 ) and noticing that
the functions 𝑓𝒮 are the generalizations of 𝑓1, 𝑓2, and 𝑓12
in (19)-(21) to the 𝐾-user case. Hence, concavity of 𝑓𝒮 also
follows from Proposition 1.

III. RELAXATION METHODS

Propositions 1 and 2 identified the non-convexity of the
problem of the computation of the capacity region of an arbi-
trary DMAC as a rank-one constrained optimization problem,
enabling the design of efficient numerical approaches aiming
at upper and lower bounding the capacity region. For the
sake of simplicity in notation and presentability of subsequent
results, we shall concentrate on the two-user case in the
remainder of the paper. It is understood, however, that the
techniques and results presented next extend naturally to the
general 𝐾-user case with the appropriate considerations.

Rank-one constrained optimization problems, even with
linear matrix inequalities, are non-convex problems that cannot
be solved optimally in polynomial time. Thus, we first choose
to relax (12)-(18) by removing the rank-one constraint (18)
to obtain a tractable, convex problem equivalent to solving
the capacity region of a DMAC with arbitrarily dependent
codewords (full transmitter cooperation). We will denote by
ℛo the outer bound on the true capacity region obtained with
the relaxed problem (12)-(17).

4The 𝐾-dimensional tensor P(𝒩 ) ∈ ℝ
∣𝒳1∣×...∣𝒳𝐾 ∣
+ has rank one if and

only if it can be written as

P(𝒩 ) = p1 ⊗ p2 ⊗ . . .⊗ p𝐾 , (27)

where ⊗ denotes outer product and the vectors p𝑘 ∈ ℝ
∣𝒳𝑘∣
+ admit a

vector equivalence similar to that of Section II-B. Similarly to Lemma 1,
rank(P(𝒩 )) = 1 is equivalent to imposing 𝑃𝑋1...𝑋𝐾

= 𝑃𝑋1
⋅ . . . ⋅ 𝑃𝑋𝐾

.
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𝑓1(P,p2) ≜
∑
𝑖,𝑗,𝑦

[P]𝑖,𝑗𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥(𝑖)1 𝑥

(𝑗)
2 ) log

𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥(𝑖)1 𝑥

(𝑗)
2 )[p2]𝑗∑

𝑖′ [P]𝑖′,𝑗𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥(𝑖′)1 𝑥

(𝑗)
2 )

(19)

𝑓2(P,p1) ≜
∑
𝑖,𝑗,𝑦

[P]𝑖,𝑗𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥(𝑖)1 𝑥

(𝑗)
2 ) log

𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥(𝑖)1 𝑥

(𝑗)
2 )[p1]𝑖∑

𝑗′ [P]𝑖,𝑗′𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥(𝑖)1 𝑥

(𝑗′)
2 )

(20)

𝑓12(P) ≜
∑
𝑖,𝑗,𝑦

[P]𝑖,𝑗𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥(𝑖)1 𝑥

(𝑗)
2 ) log

𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥(𝑖)1 𝑥

(𝑗)
2 )∑

𝑖′,𝑗′ [P]𝑖′,𝑗′𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥(𝑖′)1 𝑥

(𝑗′)
2 )

(21)

maximize
{𝑅𝑘},{𝑃𝑋(𝒮)

}∀𝒮⊆𝒩

𝐾∑
𝑘=1

𝜃𝑘𝑅𝑘 (23)

subject to 0 ≤ 𝑅𝒮 ≤
∑

𝑥(𝒩),𝑦

𝑃𝑋(𝒩)
(𝑥(𝒩 ))𝑃𝑌 ∣𝑋(𝒩)

(𝑦∣𝑥(𝒩 )) log
𝑃𝑌 ∣𝑋(𝒩)

(𝑦∣𝑥(𝒩 ))∑
𝑥′
(𝒮)
𝑃𝑋(𝒮)

(𝑥′(𝒮))𝑃𝑌 ∣𝑋(𝒩)
(𝑦∣𝑥′(𝒮), 𝑥(𝒮𝑐))

(24)

𝑃𝑋(𝒮)
(𝑥(𝒮)) =

∏
𝑘∈𝒮

𝑃𝑋𝑘
(𝑥𝑘), ∀𝒮 ⊆ 𝒩 (25)

𝑃𝑋𝑘
(𝑥𝑘) ≥ 0 ∀𝑥𝑘 ∈ 𝒳𝑘,

∑
𝑥𝑘

𝑃𝑋𝑘
(𝑥𝑘) = 1, ∀𝑘 ∈ 𝒩 (26)

𝑓𝒮(P(𝒩 ),P(𝒮𝑐)) =
∑

𝑖(𝒩),𝑦

[P(𝒩 )]𝑖(𝒩)
𝑃𝑌 ∣𝑋(𝒩)

(
𝑦∣𝑥𝑖(𝒩)

(𝒩 )

)
log

𝑃𝑌 ∣𝑋(𝒩)

(
𝑦∣𝑥𝑖(𝒩)

(𝒩 )

)
[P(𝒮𝑐)]𝑖(𝒮𝑐)∑

𝑖′
(𝒮)

[P(𝒩 )]𝑖′
(𝒮)

,𝑖(𝒮𝑐)
𝑃𝑌 ∣𝑋(𝒩)

(
𝑦∣𝑥𝑖

′
(𝒮)

(𝒮) , 𝑥
𝑖(𝒮𝑐)

(𝒮𝑐)

) (33)

If the optimal solution to the relaxed problem happens to be
rank one, then it will also be an optimal (capacity-achieving)
solution to the original problem. Clearly, this happens in
channels where transmit cooperation does not increase the
achievable rates, rendering cooperation useless. Necessary and
sufficient conditions for this phenomenon are provided in
Section IV-A (Corollary 1) which are essentially derived from
the Karush-Kuhn-Tucker (KKT) conditions of the relaxed
problem.

When the solution to the relaxed problem is not rank one,
it has to be projected onto 𝒫prod to obtain a candidate solution
(not necessarily optimal). Many different ad-hoc approaches
can be applied to approximate an arbitrary joint distribution
P by a reduced rank distribution of the form q1q

𝑇
2 ; based

on simulation and mathematical amenability, however, this
paper will deal with two of them only: randomization and
marginalization.

A. Randomization

A randomization approach generates random samples of
candidate probability vectors (q1,q2) such that 𝔼{q1q

𝑇
2 } =

P★, thus approximating the solution to the relaxed problem in
the mean sense. For each of the generated pairs, the achievable
rates (4)-(8) are evaluated and the pair of distributions yielding
the largest objective value is kept as the solution. This is equiv-
alent to performing a random search on the original problem
with guidance on the correlation matrix of the distributions
under test taken from the relaxed problem.

The nature of the random pairs (q1,q2), which are input
probability distributions, prevents us from easily finding statis-
tics for generating them yielding 𝔼{q1q

𝑇
2 } = P directly.

Instead, we first choose to approximate P by the convex
combination of 𝑛 rank-one distributions under a minimum
divergence criterion, i.e.,

P ≈
𝑛∑

𝑖=1

𝜆𝑖a𝑖b
𝑇
𝑖 , (34)

where 𝑛 is fixed, and

{𝜆𝑖, a𝑖,b𝑖} = argmin
{𝜆𝑖,a𝑖,b𝑖}

𝐷(P∣∣
𝑛∑

𝑖=1

𝜆𝑖a𝑖b
𝑇
𝑖 ) (35)

subject to
𝑛∑

𝑖=1

𝜆𝑖 = 1, 𝜆𝑖 ≥ 0 1 ≤ 𝑖 ≤ 𝑛 (36)

1𝑇a𝑖 = 1, a𝑖 ≥ 0 1 ≤ 𝑖 ≤ 𝑛 (37)

1𝑇b𝑖 = 1, b𝑖 ≥ 0 1 ≤ 𝑖 ≤ 𝑛, (38)

where 𝐷(⋅∥⋅) in (35) refers to Kullback-Leibler divergence5.
The problem (35)-(38) is not jointly convex in {𝜆𝑖, a𝑖,b𝑖} but
is separately convex in {𝜆𝑖}, {a𝑖}, and {b𝑖}. Thus, a practical
approximation as in (34) can be obtained through an alternate
optimization {𝜆(0)𝑖 } → {a(0)

𝑖 } → {b(0)
𝑖 } → {𝜆(1)𝑖 } → . . .

5The Kullback-Leibler divergence of two probability distributions 𝑃𝑋 , 𝑄𝑋

on 𝒳 is defined as

𝐷(𝑃𝑋∥𝑄𝑋) =
∑
𝑥∈𝒳

𝑃𝑋(𝑥) log
𝑃𝑋(𝑥)

𝑄𝑋(𝑥)

and satisfies 𝐷(𝑃𝑋∥𝑄𝑋) ≥ 0, where 𝐷(𝑃𝑋∥𝑄𝑋) = 0 if and only if
𝑃𝑋 = 𝑄𝑋 .
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until convergence of the objective is achieved6 ((.)(𝑟) denotes
value at the 𝑟-th iteration).

Second, given that 𝑁 random samples (q1,q2) must be
generated, the approximation in the mean sense 𝔼{q1q

𝑇
2 } =

P can be achieved using (34) by drawing, 𝑖 = 1 . . . 𝑛,
𝑁𝜆𝑖 pairs from a pair of independent distributions such that
𝔼{q1} = a𝑖, 𝔼{q2} = b𝑖 (statistical independence implies
𝔼{q1q

𝑇
2 } = a𝑖b

𝑇
𝑖 ). To generate a random vector q with

prescribed average 𝔼{q} = q we use a distribution whose
support Ωq is the largest sphere centered at q such that all
its boundary lies within the probability simplex, as illustrated
in Fig. 2 for the 3-dimensional case. While the radius 𝑟 of
such sphere can be analytically determined resorting to the
point-line and point-plane distance formulas7, its expression
is omitted here for the sake of brevity. As for the distribution
of q, we choose to project a random vector x drawn uniformly
over {x ∈ ℝ

∣𝒳 ∣×1 : ∥x − q∥2 ≤ 𝑟2}8 onto the probability
simplex9, i.e.,

q = x +
1− 1𝑇x

∣𝒳 ∣ 1, (39)

which results in a circularly symmetric distribution with
average q.

The evaluation of the achievable rates (4)-(8) yields the
randomization inner bound, ℛi

rand (see Algorithm 1 for a
pseudocode description).

B. Marginalization

While the numerical performance of randomization is good,
it is at the price of generating many potential solutions at
random. Therefore, it is desirable to explore other simpler
(deterministic) methods retaining most of the accuracy and
also allowing for performance analysis.

To this end, we adopt a projection criterion based also on
the Kullback-Leibler divergence. It has been used in [23]
and [24] as the criterion for approximating joint discrete
probability distributions given a dependence tree, although
here the purpose is different. The use of the information
divergence as the measure that quantifies the quality of the
approximation offers several advantages, the most useful one

6Convergence of the objective value (35) to a number (albeit not necessarily
the optimum value) follows since it cannot increase in the iterations of
alternate maximization and it is lower-bounded by zero. We shall use the
limit value as an approximation of the global minimum of (35)-(38), since its
lack of convexity prevents us from ensuring convergence to the global (and
even to a local) minimum. Notice also that convergence in the objective does
not imply convergence in the sequence {𝜆(𝑡)

𝑖 ,a
(𝑡)
𝑖 ,b

(𝑡)
𝑖 }𝑛𝑖=1. However, once

convergence in the objective is reached to some prescribed tolerance, any of
the potential solutions achieving it is equally useful.

7For instance, when ∣𝒳 ∣ = 3, the radius 𝑟 is set to

𝑟 = min

{
[q]1 + [q]2 − 1√

2
,
[q]1 + [q]3 − 1√

2
,
[q]2 + [q]3 − 1√

2
, ∣∣q∣∣22

}
,

where three point-line distances and one point-point distance formula has
been used. Point-plane formulas arise in higher dimensions.

8To generate a vector x with uniform distribution on the sphere, we generate
random vectors drawn uniformly on the hypercube

[
[q]1 − 𝑟, [q]1 + 𝑟

] ×
. . .× [

[q]∣𝒳∣−𝑟, [q]∣𝒳∣+𝑟
]

until the condition ∥x−q∥2 ≤ 𝑟2 is satisfied.
9The projection onto a simplex usually has a water-filling form [22], but,

since by construction x belongs to the non-negative orthant, it reduces to
(39), where the water level has been analytically found.

10Co(.) denotes convex hull.
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Fig. 2. The support of the randomly generated probability distributions q
is the largest circle centered at 𝔼{q} = q that fits within the probability
simplex.

Algorithm 1 Randomization

1: for each value of 𝜃 ∈ [0, 1] do
2: Solve (12)-(17): (𝑅o

1(𝜃), 𝑅
o
2(𝜃)) = (𝑅★

1, 𝑅
★
2) and

P(𝜃) = P★.
3: Approximate P(𝜃) using (34) for some specified 𝑛:
{𝜆𝑖, a𝑖,b𝑖}𝑛𝑖=1.

4: for 𝑖 = 1 . . . 𝑛 do
5: for 𝑗 = 1 . . .𝑁𝜆𝑖 do
6: Generate according to (39) a random pair

(q1,q2) such that 𝔼{q1} = a𝑖, 𝔼{q2} = b𝑖.
7: Evaluate (4)-(8) using (q1,q2):

(𝑅
(𝑖,𝑗)
1 , 𝑅

(𝑖,𝑗)
2 ).

8: end for
9: end for

10: Choose the best pair: (𝑅i
rand,1(𝜃), 𝑅

i
rand,2(𝜃)) =

max
𝑖,𝑗

𝜃𝑅
(𝑖,𝑗)
1 + (1 − 𝜃)𝑅(𝑖,𝑗)

2

11: end for
12: Randomization inner bound10: ℛi

rand =
Co({(𝑅i

rand,1(𝜃), 𝑅
i
rand,2(𝜃)), ∀𝜃}).

13: Outer bound: ℛo = Co({(𝑅o
1(𝜃), 𝑅

o
2(𝜃)), ∀𝜃}).

being that, for some fixed P (with marginals p̃1 and p̃2), the
pair (p1,p2) that minimizes 𝐷(P∣∣p1p

𝑇
2 ) follows easily from

𝐷(P∣∣p1p
𝑇
2 ) = 𝐷(P∣∣p̃1p̃

𝑇
2 ) +𝐷(p̃1∣∣p1)

+ 𝐷(p̃2∣∣p2) ≥ 𝐷(P∣∣p̃1p̃
𝑇
2 ), (40)

which shows that (p★
1,p

★
2) = (p̃1, p̃2). Therefore, marginal-

ization is the solution to the minimum divergence criterion11.
In order to obtain an approximation of 𝒞, it is sufficient to
solve (12)-(17), take the marginal distributions of the solution,
plug them into (4)-(8), and evaluate (𝑅1, 𝑅2) (the problem
(4)-(8) is convex for fixed input probability distributions).
The solution to (4)-(8) in terms of (𝑅1, 𝑅2) defines the
marginalization inner bound ℛi

marg (see Algorithm 2).

11Another deterministic strategy is to use the singular value decomposition
(SVD) of P to choose q1 and q2 as the suitably normalized left and right
singular vectors associated to the largest singular value. However, numerical
simulations of this method performed over various channels have shown that
it is outperformed by marginalization.
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Algorithm 2 Marginalization

1: for each value of 𝜃 ∈ [0, 1] do
2: Solve (12)-(17): (𝑅o

1(𝜃), 𝑅
o
2(𝜃)) = (𝑅★

1, 𝑅
★
2) and

(p1(𝜃),p2(𝜃)) = (p★
1,p

★
2).

3: Evaluate (𝑅1, 𝑅2) (4)-(8) for fixed distributions
(p1(𝜃),p2(𝜃)): (𝑅i

marg,1(𝜃), 𝑅
i
marg,2(𝜃)) = (𝑅★

1 , 𝑅
★
2).

4: end for
5: Marginalization inner bound: ℛi

marg =
Co({(𝑅i

marg,1(𝜃), 𝑅
i
marg,2(𝜃)), ∀𝜃}).

6: Outer bound: ℛo = Co({(𝑅o
1(𝜃), 𝑅

o
2(𝜃)), ∀𝜃}).

Remark 1: The outer bound ℛo can be tightened using
the algorithm of [12] for the exact computation of the sum-
capacity, denoted by 𝐶sum. In particular, a tighter outer bound
is ℛo ∩ 𝒞sum, where

𝒞sum = {(𝑅1, 𝑅2) ∈ ℝ
2 ∣ 𝑅1 +𝑅2 ≤ 𝐶sum}. (41)

IV. PERFORMANCE ANALYSIS OF MARGINALIZATION

A. Analytical Results

There exists a class of channels for which marginalization
computes optimally the capacity region. Although we have not
been able to fully characterize this class analytically, we have
been able to show that some specific channels belong to it. For
some channels, this can be proved by showing ℛi

marg = ℛo =
𝒞, while for others ℛi

marg = 𝒞 ⊂ ℛo or ℛi
marg ⊂ 𝒞 = ℛo.

We restrict our attention to the two-user case for the sake of
simplicity of the expressions.

It is worth to point out that ℛo is also an outer bound
of the capacity region of the two-user DMAC with feedback
(see [25, Sec. IV]), and it follows that the class of channels
for which ℛi

margℛo is a subset of the class of DMACs
for which feedback does not increase the capacity region.
Although the capacity region of the discrete memoryless MAC
with feedback is not known in general (it is known in the
continuous memoryless Gaussian (scalar) case [25]), there are
some achievability results [26], [27] and a class of DMACs
for which the achievable region of [27] is tight (see [28]). Let
us start first with some optimality conditions that will be key
for obtaining subsequent results.

Lemma 1: Consider a joint probability distribution 𝑃𝑋1𝑋2

satisfying

𝐼(𝑋1;𝑌 ∣𝑋2) + 𝐼(𝑋2;𝑌 ∣𝑋1) ≥ 𝐼(𝑋1𝑋2;𝑌 ). (42)

A necessary and sufficient condition for optimality of such
𝑃𝑋1𝑋2 with respect to the relaxed problem (12)-(17) for any
fixed (𝜃1, 𝜃2) = (𝜃, 1− 𝜃), assuming 𝜃2 ≥ 𝜃1, is12 (43) at the
top of the next page, for all (𝑥1, 𝑥2) ∈ (𝒳1,𝒳2) and some
𝐿o(𝜃1, 𝜃2) ≥ 0. In case (42)-(43) is satisfied by some 𝑃𝑋1𝑋2 ,
all the other optimal distributions, if any, also satisfy (42)-(43)
and share the same objective value 𝐿o(𝜃1, 𝜃2) = 𝑅

★
o(𝜃1, 𝜃2) =

max
(𝑅1,𝑅2)∈ℛo

𝜃1𝑅1 + 𝜃2𝑅2.

Proof: See Appendix II.
Lemma 2: A sufficient condition for optimality of the input

probability distributions 𝑃𝑋1 and 𝑃𝑋2 with respect to the
capacity region for any fixed (𝜃1, 𝜃2) = (𝜃, 1 − 𝜃), assuming

12If 𝜃2 ≤ 𝜃1 the user indexes of 𝜃 and 𝑋 in (43) or (44) must be swapped.

𝜃2 ≥ 𝜃1, is12 (44) at the top of the next page, for all
𝑥𝑘 ∈ 𝒳𝑘, 𝑘 = 1, 2. If (44) is satisfied by some 𝑃𝑋1 , 𝑃𝑋2

all the other optimal distributions, if any, also satisfy (44)
and share the same objective value 𝐿(𝜃1, 𝜃2) = 𝐶★(𝜃1, 𝜃2) =
max

(𝑅1,𝑅2)∈𝒞
𝜃1𝑅1 + 𝜃2𝑅2.

Proof: Lemma 2 follows from the particularization of
Lemma 1 to a product distribution of the form 𝑃𝑋1𝑋2 =
𝑃𝑋1𝑃𝑋2 , which always satisfies (42). Since such product
distribution is a solution to the relaxed problem (12)-(17), it
is capacity-achieving and hence optimal.

Corollary 1: ℛo = 𝒞 if and only if for each (𝜃1, 𝜃2) there
exists at least one pair of distributions satisfying the conditions
in Lemma 2.

Proof: The ‘if’ part is proved by noticing that existence
of input distributions satisfying Lemma 2 for all (𝜃1, 𝜃2)
is equivalent to 𝑅★

o(𝜃1, 𝜃2) = 𝐶★(𝜃1, 𝜃2) ∀(𝜃1, 𝜃2), which
implies ℛo = 𝒞, since both 𝒞 and ℛo are convex sets. The
‘only if’ part follows from the fact thatℛo = 𝒞 implies that for
each (𝜃1, 𝜃2) there must exist at least one product distribution
which is optimal with respect to the relaxed problem. Since
such product distribution satisfies (42), it must also satisfy (43)
and, consequently, Lemma 2.

Corollary 2: ℛi
marg = 𝒞 if for each (𝜃1, 𝜃2) there exist

one or more joint distributions satisfying Lemma 1, all of
them with product distributions induced by their marginals
satisfying Lemma 2.

Proof: While the relaxed problem (12)-(17) may have
multiple solutions not all of them product distributions, Corol-
lary 2 implies that the inner bound ℛi

marg of the capacity
region provided by the relaxation method in Algorithm 1 is
obtained with capacity achieving product distributions for all
(𝜃1, 𝜃2).

Corollary 3: ℛi
marg = 𝒞 = ℛo if and only if for each

(𝜃1, 𝜃2) there exists at least one pair of distributions satisfying
the conditions in Lemma 2 and all the joint (non-product)
distributions satisfying Lemma 1 (if any such distributions
exist) have product distributions induced by their marginals
satisfying Lemma 2.

Proof: This follows from corollaries 1 and 2.

B. Applications

The previous results describe the conditions under which the
bounds provided by the relaxation method in Algorithm 1 are
tight13, and provide us with a test for quantifying optimality
of the marginalization approach. This test can be performed
either analytically through any of the corollaries, or numer-
ically (by checking if the product distribution that achieves
ℛi

marg satisfies the conditions in Lemma 2, for example). In
addition, they can also be used as a tool for deriving new
capacity results or for re-deriving existing ones. In this respect,
the application of Corollary 3 to the binary switching MAC
(BS-MAC) [29], [30] shows that ℛi

marg = 𝒞 = ℛo, giving
an alternative proof of the capacity region of this channel.
Additionally, it was shown in [31] that the capacity region of
the BS-MAC with and without feedback were identical. Since
this result is a necessary condition for allowing the inner and

13Note that the inner and outer bounds are always tight for 𝜃 = 0 and
𝜃 = 1.
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𝜃1𝐷(𝑃𝑌 ∣𝑋1=𝑥1,𝑋2=𝑥2
∣∣𝑃𝑌 ) + (𝜃2 − 𝜃1)𝐷(𝑃𝑌 ∣𝑋1=𝑥1,𝑋2=𝑥2

∣∣𝑃𝑌 ∣𝑋1=𝑥1
)

{
= 𝐿o(𝜃1, 𝜃2) if 𝑃𝑋1𝑋2(𝑥1, 𝑥2) > 0
≤ 𝐿o(𝜃1, 𝜃2) if 𝑃𝑋1𝑋2(𝑥1, 𝑥2) = 0

(43)

𝜃1𝐷(𝑃𝑌 ∣𝑋1=𝑥1,𝑋2=𝑥2
∣∣𝑃𝑌 ) + (𝜃2 − 𝜃1)𝐷(𝑃𝑌 ∣𝑋1=𝑥1,𝑋2=𝑥2

∣∣𝑃𝑌 ∣𝑋1=𝑥1
)

{
= 𝐿(𝜃1, 𝜃2) if 𝑃𝑋1(𝑥1)𝑃𝑋2 (𝑥2) > 0
≤ 𝐿(𝜃1, 𝜃2) if 𝑃𝑋1(𝑥1)𝑃𝑋2 (𝑥2) = 0

(44)

outer bounds to coincide, it could have been also inferred from
the application of Corollary 3 to this channel.

However, the derived analytical conditions for tightness of
the marginalization bounds do not exhaust all the situations
for which the marginalization approach is optimal (Lemma 2
is sufficient but not necessary for a capacity-achieving product
distribution). Thus, it can happen for some channels that none
of the previous results applies but marginalization is still
optimal: it may occur that ℛi

marg = 𝒞 ⊂ ℛo without satisfying
the conditions in Corollary 2. A representative example of this
subclass of channels is the Binary Adder MAC [8] (BA-MAC
or binary erasure MAC, as named in [5, Example 14.3.3]).

The BS-MAC and BA-MAC are the only two non-trivial
channels that characterize the rest of binary-input ternary-
output14 deterministic DMACs, which can be obtained through
isomorphisms of the input and/or output alphabets and/or user
indices in one of these two canonical channels [30]. Hence,
marginalization is tight for all of them and, as shown next, for
a wider class of channels also.

Theorem 1: Marginalization is tight, i.e. ℛi
marg = 𝒞, for all

binary-input deterministic DMACs.
Proof: See Appendix III.

Finally, to show that not all the channels for which
marginalization is tight are deterministic, we study next a
non-deterministic extension of the BS-MAC, the noisy BS-
MAC, for which the outer bound is shown to be tight through
Corollary 1.

Example - The noisy binary-switching MAC: We denote
by noisy binary-switching MAC (nBS-MAC) the binary-input
ternary-output (𝒴 = {0, 1,∞}) multiple-access channel char-
acterized by the transition probability distribution

𝑃 nBS−MAC
𝑌 ∣𝑋1𝑋2

≡

⎡⎢⎢⎣
𝛿/2 𝛿/2 1− 𝛿
𝛿/2 𝛿/2 1− 𝛿
1− 𝜖 𝜖 0
𝜖 1− 𝜖 0

⎤⎥⎥⎦ , (45)

where the columns represent the different elements of 𝒴 and
the rows correspond to the natural ordering of the inputs
(𝑋1, 𝑋2). This non-deterministic extension of the BS-MAC
adds two random behaviors to the channel: i) a noisy switch,
that with probability 𝛿 is not able to maintain open the circuit
and outputs equally likely bits, and ii) a binary symmetric
channel with error probability 𝜖 when the switch is closed. The
BS-MAC is hence obtained by particularizing (𝛿, 𝜖) = (0, 0).

Proposition 3: The outer bound is tight for the nBS-
MAC, ℛo = 𝒞, and one capacity-achieving pair of dis-
tributions achieving the boundary point (𝑅★

1(𝜃), 𝑅
★
2(𝜃)) =

14When we refer to 𝑀 -ary output DMACs we assume that ∣𝒴∣ = 𝑀 and
all the 𝑀 values of the output alphabet can be exhausted by at least one input
(i.e., there are not dummy output letters).
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Fig. 3. The capacity region 𝒞 of the nBS-MAC, in [bit/ch. use], for different
values of 𝛿 and 𝜖. Note that (𝛿, 𝜖) = (0, 0) corresponds to the BS-MAC.

argmax(𝑅1,𝑅2)∈𝒞 𝜃𝑅1 + (1− 𝜃)𝑅2 is

𝑃 ★
𝑋1

(1; 𝜃) = 𝑝(𝛿, 𝜖; 𝜃) = 1− 𝑃 ★
𝑋1

(0; 𝜃),

𝑃 ★
𝑋2

(0; 𝜃) = 𝑃 ★
𝑋2

(1; 𝜃) = 1/2, (46)

where

𝑝(𝛿, 𝜖; 𝜃) =
𝐴(𝛿, 𝜖; 𝜃)− 𝛿/(1− 𝛿)

𝐴(𝛿, 𝜖; 𝜃) + 1
(47)

if 0 < 𝜃 ≤ 1/2 and
𝑝(𝛿, 𝜖; 𝜃) = {0 ≤ 𝑝 < 1 : 𝐵(𝑝, 𝛿, 𝜖; 𝜃) = 𝜃(ℎ(𝛿)− ℎ(𝜖) + log(2))}

(48)
otherwise, see (49)-(51) on the next page, where ℎ(𝑥) ≜
−𝑥 log(𝑥)− (1−𝑥) log(1−𝑥) is the binary entropy function.

Proof: The proof follows from the application of Corol-
lary 1 to this channel. See Appendix IV.
Fig. 3 shows the capacity region of the nBS-MAC for several
values of 𝛿 and 𝜖. Typically, when 𝛿 is small, sender 1 has
access to the channel in much better conditions than sender 2,
which is reflected in the shape of the capacity regions. Thus,
when 𝜃 is small, the rate of sender 2 is prioritized and hence
sender 1 “opens the tap" for the transmission of information
of 𝑋2 by setting a large value for 𝑝(𝛿, 𝜖; 𝜃). When 𝜃 increases,
the tap is progressively closed towards a value that maximizes
𝑅1.

V. NUMERICAL RESULTS

To start with, we analyze the numerical performance of
randomization and marginalization over three different binary-
inputs ternary-output non-deterministic two-user DMACs,
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𝐴(𝛿, 𝜖; 𝜃) =
(
exp(ℎ(𝛿) + (1− 1/𝜃)ℎ(𝜖))2(1/𝜃−1)

) 1
1−𝛿

(49)

𝐵(𝑝, 𝛿, 𝜖; 𝜃) = (1− 𝜃)(1− 𝛿) log 𝛿 + (1− 𝛿)𝑝
(1− 𝛿)(1− 𝑝) (50)

+ (2𝜃 − 1)
(
(1− 𝜖 − 𝛿/2) log 𝛿 + (2 − 2𝜖− 𝛿)𝑝

(1− 𝛿)(1 − 𝑝) + (𝜖− 𝛿/2) log 𝛿 + (2𝜖− 𝛿)𝑝
(1 − 𝛿)(1− 𝑝)

)
(51)
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Fig. 4. Bounds of the capacity region for DMAC1 (left) and DMAC2 (right). Units are [bit/ch. use].

which we name DMAC1, DMAC2, and DMAC3, characterized
respectively by the transition probability distributions in (52).
The columns represent the different elements of 𝒴 = {0, 1, 2},
and the rows correspond to the natural ordering of the inputs.
While DMAC1 is the multiple-access channel example used
in [12] to illustrate the behavior of the algorithm for the com-
putation of the sum-rate capacity, DMAC2 and DMAC3 have
been chosen randomly. For each of the channels we compute
the randomization and marginalization bounds described in
Section III, and use algorithm in [12] to compute 𝒞sum. As
for the randomization bound, 𝑁 = 500 randomly generated
product distributions have been tested for each 𝜃 using the
approximation (34) with 𝑛 = 4. Additionally, we consider the
achievable region of a random search algorithm, denoted by
ℛi

rs, as a benchmark (see Algorithm 3).
Fig. 4 shows the bounds for DMAC1 and DMAC2. DMAC1

is another example of a non-deterministic channel for which
ℛo, ℛi

marg, and ℛi
rand coincide, and hence 𝒞 can be effectively

computed with the proposed methods. As for DMAC2 and
DMAC3, which represent a more general situation, the bounds

15[x]+ denotes the component-wise application of the operator [𝑥]+ ≜
max{𝑥, 0}.

Algorithm 3 Random search

1: Set (𝑁, 𝜎2) = (500, 1/9).
2: for each value of 𝜃 ∈ [0, 1] do
3: Set (𝑅1(𝜃), 𝑅2(𝜃), 𝑓

★,p1(𝜃),p2(𝜃)) = (0, 0, 0,0,0).
4: Set (p(0)

1 ,p
(0)
2 ) = (1/∣𝒳1∣,1/∣𝒳2∣).

5: for 𝑗 = 1 . . .𝑁 do
6: Generate (r

(𝑗)
1 , r

(𝑗)
2 ) i.i.d. ∼ 𝒩 (0, 𝜎2) of lengths

∣𝒳1∣ and ∣𝒳2∣, respectively.
7: Update15 p

(𝑗)
𝑘 = [p

(𝑗−1)
𝑘 + r

(𝑗)
𝑘 ]+ and normalize

p
(𝑗)
𝑘 := p

(𝑗)
𝑘 /(1𝑇p

(𝑗)
𝑘 ), 𝑘 = 1, 2.

8: Evaluate (4)-(8) using (p
(𝑗)
1 ,p

(𝑗)
2 ):

(𝑅★
1(𝜃), 𝑅

★
2(𝜃)).

9: if 𝜃𝑅★
1 + (1− 𝜃)𝑅★

2 > 𝑓
★ then

10: (𝑅1(𝜃), 𝑅2(𝜃), 𝑓
★,p1(𝜃),p2(𝜃)) =

(𝑅★
1 , 𝑅

★
2, 𝜃𝑅

★
1 + (1− 𝜃)𝑅★

2 ,p
(𝑗)
1 ,p

(𝑗)
2 ).

11: end if
12: end for
13: end for
14: ℛi

rs = Co({(𝑅1(𝜃), 𝑅2(𝜃)), ∀𝜃}).

𝑃
(1)
𝑌 ∣𝑋1𝑋2

≡

⎡⎢⎢⎣
0.2 0.3 0.5
0.7 0.2 0.1
0.5 0.1 0.4
0.3 0.4 0.3

⎤⎥⎥⎦ , 𝑃
(2)
𝑌 ∣𝑋1𝑋2

≡

⎡⎢⎢⎣
0.4 0.1 0.5
0.3 0.2 0.5
0.5 0.4 0.1
0.2 0.8 0

⎤⎥⎥⎦ , 𝑃
(3)
𝑌 ∣𝑋1𝑋2

≡

⎡⎢⎢⎣
0.1 0.2 0.7
0.3 0.5 0.2
0.3 0.4 0.3
0.8 0.1 0.1

⎤⎥⎥⎦ (52)
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Fig. 5. Bounds of the capacity region for DMAC3 . Units are [bit/ch. use].

do not coincide and 𝒞 cannot be directly evaluated. However,
if we consider ℛo∩𝒞sum we are able to obtain a much tighter
outer bound. Regardless of the tightness of ℛo, the accu-
racy of the sum-capacity offered by the proposed relaxation
methods is remarkable for all the channels. The performance
of marginalization and randomization is indistinguishable, as
shown by appropriate zooms in Figs. 4 and 5, while the
behavior of the random search is irregular and in general much
worse. To achieve similar performance, it requires a number
of distributions under test orders of magnitude above that of
randomization.

Next, Fig. 6 explores the performance of randomization as
a function of the number of samples, 𝑁 . By fixing 𝜃 = 0.75
in DMAC1, we evaluate the weighted-sum rate achieved by
several tries of the randomization method as a function of the
number of samples. While no performance guarantee can be
a priori given, 𝑁 = 500 samples seems to be a reasonable
tradeoff between performance and complexity in this case.
Nevertheless, this has to be compared to marginalization,
which is able to provide excellent performance at no com-
putational cost, hence rendering it a reasonable choice to be
used in practical applications.

Finally, we explore the effect of quantization of the channel
output on a Gaussian MAC of the form

𝑌 = ℎ1𝑋1 + ℎ2𝑋2 + 𝑍, (53)

where the users’ pathloss is different, ℎ1 = 1 and ℎ2 = 0.35.
To model the situation where users can either transmit a BPSK
symbol or remain silent, with every action carrying informa-
tion, we choose to use ternary alphabets, i.e. 𝒳1 = 𝒳2 =
{−1, 0, 1}. Thus, the AWGN is drawn 𝑍 ∼ 𝒩 (0, 1/

√
snr),

incurring in the slight abuse of notation of using snr to denote
the signal-to-noise ratio experienced by either user when a
BPSK symbol is transmitted. Quantization of the channel out-
put 𝑌 to 𝑏 bits results in a discrete end-to-end channel where
the size of the output alphabet is ∣𝒴∣ = 2𝑏 and the conditional
probability distribution depends on the quantization bins. In
particular, we perform uniform quantization of 𝑌 over the
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Fig. 6. Weighted sum-rate 𝜃𝑅1 + (1 − 𝜃)𝑅2 in [bit/ch. use] achieved by
the outer bound, the marginalization inner bound, and several tries of the
randomization inner bound as a function of the number of samples, 𝑁 , for
DMAC1 and 𝜃 = 0.75.

interval [−2 − 3/
√
snr, 2 + 3/

√
snr]. For each choice of snr

and 𝑏, the resulting transition probability distribution is used
to compute the achievable rates.

In this setup, Fig. 7 (left) studies the behavior of the
weighted sum rate 𝜃𝑅1+(1−𝜃)𝑅2 achieved by the marginal-
ization method when user 2 has a larger weight, 𝜃 = 0.2.
While the tightness of marginalization depends on snr and
𝑏, we can say that, in practical terms, marginalization is
optimal for 𝑏 ≥ 4. Next, we focus on the optimal codeword
distributions resulting from the marginalization method. Given
the symmetry of (53), their structure is always of the form

𝑃𝑋𝑘
(0; 𝜃) = 𝛾𝑘,

𝑃𝑋𝑘
(−1; 𝜃) = 𝑃𝑋𝑘

(1; 𝜃)

= (1− 𝛾𝑘)/2, 𝑘 = 1, 2 (54)

for some 0 ≤ 𝛾𝑘 ≤ 1. It hence suffices to study the behavior of
𝑃𝑋𝑘

(0, 𝜃), 𝑘 = 1, 2, only. From the curves of Fig. 7 (right), it
follows that i) for low snr, the weighted sum rate is maximized
when both users are always active; ii) as snr increases, user 1
has to remain silent a fraction of channel uses that decreases
with the number of quantization bits, 𝑏. This can be used as
a guideline to design explicit multiple-access techniques that
tune the degree of activity of user 1 as a function of snr and
𝑏.

VI. CONCLUSIONS

The computation of the capacity region 𝒞 of the DMAC
is a nonconvex problem. A matrix formulation has been
used to concentrate the non-convexity into a matrix rank-one
constraint. Since problems with this type of constraint cannot
be solved optimally with the current state of the art, suboptimal
yet practical methods for the computation of 𝒞 have been
proposed: randomization and marginalization. These methods,
which provide inner and outer bounds of 𝒞, are optimal for
a class of DMACs for which the capacity region can then
be efficiently computed. In particular, analytical optimality
conditions for marginalization have been obtained which have
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Fig. 7. Weighted sum-rate 𝜃𝑅1 + (1 − 𝜃)𝑅2 in [bit/ch. use] for 𝜃 = 0.2 achieved by the outer bound (dashed lines) and the marginalization inner bound
(solid lines) (left), and the resulting optimal probability of the idle state for both users (right) as a function of the signal-to-noise ratio snr and the number
of quantization bits 𝑏.

been used to show tightness of the bounds for all the binary-
input deterministic DMACs but also other non-deterministic
channels such as the nBS-MAC.

APPENDIX A
PROOF OF PROPOSITION 1

First, note that the functions 𝑓1, 𝑓2, and 𝑓12 in (19)-
(21) simplify to the right hand sides of (5), (6), and (7),
respectively, when the vector-matrix formulation is used for
some P ∈ 𝒫prod with marginal distributions p1 and p2.
Equivalence between (4)-(8) and (12)-(18) is hence proved
thanks to constraint (16) and the equivalence of (17)-(18)
and P ∈ 𝒫prod. Regarding the concavity of the function
𝑓1(P,p2) we can rewrite (19) as (55). See next page. The term
𝐻(𝑌 ∣𝑋1, 𝑋2) is linear in P and thus concave. The second
term of (55) is jointly concave in (𝑃𝑋2𝑌 ,p2) (by the same
arguments that ensure the convexity of the divergence [5, Thm.
2.7.2]), but since 𝑃𝑋2𝑌 is linear in P, it is also concave in
(P,p2), so is the function 𝑓1(P,p2).

It follows by symmetry of (19) and (20) that the function
𝑓2(P,p1) is jointly concave in (P,p1). Finally, the function
𝑓12 (21) can be shown to be concave resorting to the concavity
of the mutual information of a DMAC with respect to the input
distribution, in this case represented by P. □

APPENDIX B
PROOF OF LEMMA 1

Consider the relaxed problem (12)-(17). Since it is convex
and satisfies Slater’s conditions, the KKT conditions are
necessary and sufficient for optimality of any (P,p1,p2) [1].
Taking its partial Lagrangian without relaxing the constraints
(16)-(17),

ℒ̃(𝑅1, 𝑅2,p1,p2,P;𝝀) = 𝜃𝑅1 + (1− 𝜃)𝑅2

+𝜆1(𝑓1(P,p2)−𝑅1) + 𝜆2(𝑓2(P,p1)− 𝑅2)

+ 𝜆(𝑓12(P)−𝑅1 −𝑅2),(56)

and setting its derivatives with respect to 𝑅1 and 𝑅2 equal to
zero we obtain

𝜆★1 = 𝜃 − 𝜆 , 𝜆★2 = (1 − 𝜃)− 𝜆. (57)

Using (57), (56) admits a simplified form that does not show
dependency on (𝑅1, 𝑅2),

ℒ̃(p1,p2,P;𝜆) ≡ ℒ̃(𝑅1, 𝑅2,p1,p2,P; [𝜆★1 𝜆
★
2 𝜆])

= 𝜆(𝑓12(P)− 𝑓1(P,p2)− 𝑓2(P,p1))

+ 𝜃𝑓1(P,p2) + (1− 𝜃)𝑓2(P,p1). (58)

By grouping the primal optimization variables in y ≜
(p1,p2,P), an explicit definition of the feasibility domain
𝒟 ≜ {y ∣ (16)-(17) are satisfied} simplifies the application of
the saddle-point property as

min
0≤𝜆≤min{𝜃,1−𝜃}

max
y∈𝒟

ℒ̃(y;𝜆) = max
y∈𝒟

min
0≤𝜆≤min{𝜃,1−𝜃}

ℒ̃(y;𝜆),
(59)

where we have used 0 ≤ 𝜆 ≤ min{𝜃, 1−𝜃} according to dual
feasibility (𝝀 ર 0) and (57). The dependence of ℒ̃(y;𝜆) on
𝜆 in the inner minimization of the RHS of (59) is linear (58)
and hence its optimal value satisfies

𝜆★(y) ≡ 𝜆★(𝜑(y)) =
{

0 if 𝜑(y) > 0
min{𝜃, 1− 𝜃} if 𝜑(y) < 0

,

(60)
where 𝜑(y) ≜ 𝑓12(P) − 𝑓1(P,p2) − 𝑓2(P,p1)

16. Thus, the
optimal value of the problem is

max
y∈𝒟

ℒ̃(y;𝜆★(y)) = ℒ̃(y★;𝜆★(y★)). (61)

Let us now restrict the proof to the 0 ≤ 𝜃 < 1/2 case for
the sake of simplicity (similar results are obtained for the case
1/2 ≤ 𝜃 < 1, and are included in the conditions of Lemma 2).
To compute the optimal value (61) we need to know the sign of
𝜑(y★) and adjust 𝜆★ accordingly. However, y★ depends in turn
on 𝜆★ through the maximization of ℒ̃(y;𝜆★(y)). Therefore,
to obtain the optimal y★ we should first maximize ℒ̃(y;𝜆★ =
min{𝜃, 1 − 𝜃} = 𝜃) subject to 𝜑(y) ≤ 0, then maximize
ℒ̃(y;𝜆★ = 0) subject to 𝜑(y) > 0, and select the y yielding
the maximum objective value among both hypothesis.

Let us start hypothesizing 𝜑(y★) ≤ 0, which implies 𝜆★ = 𝜃
(60) and simplifies (58) to

ℒ̃(y;𝜆★ = 𝜃) = 𝜃𝑓12(P) + (1 − 2𝜃)𝑓2(P,p1), (62)

16If 𝜑(y) = 0, 𝜆★(y) can take any value, but it is irrelevant since it does
not affect the result.
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𝑓1(P,p2) =
∑
𝑖,𝑗

[P]𝑖,𝑗

(∑
𝑦

𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥(𝑖)1 𝑥

(𝑗)
2 ) log𝑃𝑌 ∣𝑋1𝑋2

(𝑦∣𝑥(𝑖)1 𝑥
(𝑗)
2 )

)
︸ ︷︷ ︸

−𝐻(𝑌 ∣𝑋1=𝑥
(𝑖)
1 ,𝑋2=𝑥

(𝑗)
2 )

+
∑
𝑗,𝑦

(∑
𝑖

[P]𝑖,𝑗𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥(𝑖)1 𝑥

(𝑗)
2 )

)
︸ ︷︷ ︸

≡𝑃𝑋2𝑌 (𝑥
(𝑗)
2 ,𝑦)

log
[p2]𝑗∑

𝑖′ [P]𝑖′,𝑗𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥(𝑖′)1 𝑥

(𝑗)
2 )

= −𝐻(𝑌 ∣𝑋1𝑋2)−
∑
𝑗,𝑦

𝑃𝑋2𝑌 (𝑥
(𝑗)
2 , 𝑦) log

𝑃𝑋2𝑌 (𝑥
(𝑗)
2 , 𝑦)

[p2]𝑗
(55)

which should be maximized under the constraint 𝜑(y) ≤ 0.
Instead, we shall perform an unconstrained maximization of
(62) and later impose that the solution satisfies non-positivity
of 𝜑. Thus, we aim at finding a solution to the problem

maximize
p1,p2,P

𝜃𝑓12(P) + (1− 2𝜃)𝑓2(P,p1) (63)

subject to P1 = p1 , P𝑇1 = p2 (64)

P ર 0 , 1𝑇P1 = 1, (65)

whose Lagrangian is

ℒ(y;Φ,𝝂1,𝝂2, 𝜂) = 𝜃𝑓12(P) + (1− 2𝜃)𝑓2(P,p1)

+ 1𝑇 (Φ⊙P)1 (66)

+ 𝝂𝑇
1 (P1− p1) + 𝝂𝑇

2 (P
𝑇1− p2)

+ 𝜂(1𝑇P1− 1), (67)

where Φ ∈ ℝ
∣𝒳1∣×∣𝒳2∣
+ , 𝝂𝑘 ∈ ℝ

∣𝒳𝑘∣ for 𝑘 = 1, 2, 𝜂 ∈ ℝ,
and ⊙ denotes Hadamard (element-wise) product. Setting the
derivatives of (66)-(67) with respect to p1 and p2 equal to
zero, the optimal {𝝂𝑘} become

𝝂★
1 = (1 − 2𝜃) log(𝑒)1, 𝝂★

2 = 0. (68)

Finally, plugging (68) into (66)-(67) and setting its derivative
with respect to [P]𝑖,𝑗 equal to zero, (69) at the top of the next
page follows. Now, by complementary slackness, we know
that [Φ]𝑖,𝑗 [P]𝑖,𝑗 = 0 which forces

[Φ]𝑖,𝑗

{
= 0 if [P]𝑖,𝑗 > 0
≥ 0 if [P]𝑖,𝑗 = 0

, (70)

and allows us to rewrite (69) as (71) (see next page). It can
be shown that any P with marginals p1,p2 satisfying (71) for
some 𝜂 ∈ ℝ has an associated objective value 𝜃 log(𝑒) − 𝜂.
Let us impose that such a solution to the unconstrained maxi-
mization of (62) satisfies also 𝜑(y) ≤ 0 (the constraint of the
current hypothesis under test). We now show by contradiction
that the objective value of any distribution with 𝜑(y) > 0
is strictly lower. Suppose that the optimal distribution, with
optimal objective value 𝑅★

o , is such that 𝜑(y★) > 0. In this
case, 𝜆★ = 0 from (60), which results in the objective function

ℒ̃(y;𝜆★ = 0) = 𝜃𝑓1(P,p2) + (1− 𝜃)𝑓2(P,p1), (72)

which is maximized by y★ under the constraint 𝜑 > 0. Then,
since

𝑓1(P,p2) = 𝑓12(P)−𝑓2(P,p1)−𝜑(y★) < 𝑓12(P)−𝑓2(P,p1)
(73)

(74) on next page follows by assumption, which contradicts
optimality. Therefore, a probability distribution y with 𝜑(y) ≤
0 satisfying (71) is optimal, its objective value is 𝜃 log(𝑒)−𝜂 =

𝑅★
o , and invalidates the existence of other optimal solutions

with 𝜑(y) > 0. Thus, provided such distribution exists (71)
and 𝜑(y) ≤ 0 becomes necessary for optimality. As a final
remark, note that (42) and 𝜑(y) ≤ 0 are equivalent statements
thanks to the equivalence of the functions 𝑓1, 𝑓2, and 𝑓12 and
mutual information. □

APPENDIX C
PROOF OF THEOREM 1

Consider each feasible value of the size of the output
alphabet ∣𝒴∣ ≤ 4:

∙ Binary output - None of the binary-input binary-output
deterministic DMACs has a capacity region dominating
the timesharing line joining the points (log 2, 0) and
(0, log 2)17. Since marginalization is tight for 𝜃 ∈ {0, 1}
and ℛi

marg is convexified using the convex hull operation
it follows that ℛi

marg = 𝒞.
∙ Ternary output - The arguments of Section IV-B and the

results of [30] allow us to extrapolate the tightness of
marginalization from the BS-MAC and the BA-MAC to
all the ternary output DMACs.

∙ Quaternary output - The unique arbitrary distribution
maximizing simultaneously 𝐼(𝑋1;𝑌 ∣𝑋2), 𝐼(𝑋2;𝑌 ∣𝑋1),
and 𝐼(𝑋1𝑋2;𝑌 ) is 𝑃𝑋1𝑋2(𝑥1, 𝑥2) = 1/4 ∀𝑥1, 𝑥2 ∈
{0, 1}, which is a product distribution. Hence, ℛi

marg =
ℛo = 𝒞. □

APPENDIX D
PROOF OF PROPOSITION 3

It is sufficient to show that there exists a product distribution
satisfying Lemma 2 for any 0 < 𝜃 < 1. Let us simplify
notation by using 𝑃𝑋𝑘

(1) = 𝑝𝑘 = 1 − 𝑝𝑘, 𝑘 = 1, 2, and
assume arbitrarily that 𝑝2 = 𝑝2 = 1/2.

In the 0 < 𝜃 ≤ 1/2 case the distributions 𝑃𝑌 =
{

𝛿
2𝑝1 +

𝑝1/2,
𝛿
2𝑝1 + 𝑝1/2, (1− 𝛿)𝑝1

}
, 𝑃𝑌 ∣𝑋1=0 = {𝛿/2, 𝛿/2, 1− 𝛿},

and 𝑃𝑌 ∣𝑋1=1 = {1/2, 1/2, 0} with the arbitrary assumption
𝑝1, 𝑝1 > 0 reduce (44) to (75) on next page. By setting the
left hand sides of (75) equal to each other, we arrive at

𝜃(1− 𝛿) log 𝛿𝑝1 + 𝑝1
(1 − 𝛿)𝑝1 = 𝜃ℎ(𝛿)+(1−𝜃)(log 2−ℎ(𝜖)), (76)

17The capacity region is upper-bounded by 𝑅𝑘 ≤ 𝐻(𝑌 ∣𝑋𝑘) ≤ 𝐻(𝑌 ) ≤
log 2, 𝑘 = 1, 2, and 𝑅1 + 𝑅2 ≤ 𝐻(𝑌 ) ≤ log 2, which defines the triangle
joining the points (0, 0), (log 2, 0), and (0, log 2).
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∑
𝑦

𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥(𝑖)1 𝑥

(𝑗)
2 )

(
𝜃 log

𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥(𝑖)1 𝑥

(𝑗)
2 )∑

𝑖′,𝑗′ [P]𝑖′,𝑗′𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥(𝑖′)1 𝑥

(𝑗′)
2 )

+ (1− 2𝜃) log
[p1]𝑖𝑃𝑌 ∣𝑋1𝑋2

(𝑦∣𝑥(𝑖)1 𝑥
(𝑗)
2 )∑

𝑗′ [P]𝑖,𝑗′𝑃𝑌 ∣𝑋1𝑋2
(𝑦∣𝑥(𝑖)1 𝑥

(𝑗′)
2 )

)
= 𝜃 log(𝑒)− 𝜂 − [Φ]𝑖,𝑗 (69)

𝜃𝐷(𝑃𝑌 ∣𝑋1=𝑥1,𝑋2=𝑥2
∣∣𝑃𝑌 ) + (1− 2𝜃)𝐷(𝑃𝑌 ∣𝑋1=𝑥1,𝑋2=𝑥2

∣∣𝑃𝑌 ∣𝑋1=𝑥1
)

{
= 𝜃 log(𝑒)− 𝜂 if 𝑃𝑋1𝑋2(𝑥1, 𝑥2) > 0
≤ 𝜃 log(𝑒)− 𝜂 if 𝑃𝑋1𝑋2(𝑥1, 𝑥2) = 0

(71)

𝑅★
o = ℒ̃(y★;𝜆★ = 0) = max

y∈𝒟:𝜑(y)>0
ℒ̃(y;𝜆★ = 0) < max

y∈𝒟
(𝜃𝑓12(P) + (1− 2𝜃)𝑓2(P,p1)) = 𝜃 log(𝑒)− 𝜂 (74)

𝐶★(𝜃) =

{
𝜃
(
𝛿 log 𝛿

𝛿𝑝1+𝑝1
+ (1 − 𝛿) log 1−𝛿

(1−𝛿)𝑝1

)
(𝑥1, 𝑥2) ∈ {(0, 0), (0, 1)}

𝜃
(
𝜖 log 2𝜖

𝛿𝑝1+𝑝1
+ (1− 𝜖) log 2(1−𝜖)

(1−𝛿)𝑝1

)
+ (1 − 2𝜃)(log 2− ℎ(𝜖)) (𝑥1, 𝑥2) ∈ {(1, 0), (1, 1)} (75)

which is satisfied by 𝑝1 = 1 − 𝑝1 = 𝑝(𝛿, 𝜖; 𝜃) as defined in
(47). For the case 1/2 < 𝜃 < 1, the conditional distribu-

tions 𝑃𝑌 ∣𝑋2=0 =
{

𝛿
2𝑝1 + (1 − 𝜖)𝑝1, 𝛿2𝑝1 + 𝜖𝑝1, (1 − 𝛿)𝑝1

}
,

𝑃𝑌 ∣𝑋2=1 =
{

𝛿
2𝑝1 + 𝜖𝑝1,

𝛿
2𝑝1 + (1 − 𝜖)𝑝1, (1 − 𝛿)𝑝1

}
, and

the same arbitrary assumption 𝑝1, 𝑝1 > 0 allow us to rephrase
(44) as

(1− 𝜃)(𝛿 log 𝛿

𝛿𝑝1 + 𝑝1
+ (1− 𝛿) log 1− 𝛿

(1 − 𝛿)𝑝1
)

+ (2𝜃 − 1)
(𝛿
2
log

𝛿

𝛿𝑝1 + 2(1− 𝜖)𝑝1 +
𝛿

2
log

𝛿

𝛿𝑝1 + 2𝜖𝑝1

+ (1 − 𝛿) log 1− 𝛿
(1− 𝛿)𝑝1

)
= 𝐶★(𝜃) (77)

for (𝑥1, 𝑥2) ∈ {(0, 0), (0, 1)} and

(1 − 𝜃)((1− 𝜖) log 2(1− 𝜖)
𝛿𝑝1 + 𝑝1

+ 𝜖 log
2𝜖

(1− 𝛿)𝑝1
)

+(2𝜃 − 1)
(
(1− 𝜖) log 2(1− 𝜖)

𝛿𝑝1 + 2(1− 𝜖)𝑝1
+𝜖 log

2𝜖

𝛿𝑝1 + 2𝜖𝑝1

)
= 𝐶★(𝜃) (78)

for (𝑥1, 𝑥2) ∈ {(1, 0), (1, 1)}. By setting the left hand sides
of (77)-(78) equal to each other and using 𝑝1 = 1 − 𝑝1 we
obtain

𝐵(𝑝1, 𝛿, 𝜖; 𝜃) = 𝜃(ℎ(𝛿)− ℎ(𝜖) + log 2), (79)

where 𝐵(𝑝1, 𝛿, 𝜖; 𝜃) is defined in (51). Since

𝐵(0, 𝛿, 𝜖; 𝜃) = 𝜃(1−𝛿) log
𝛿

1− 𝛿
≤ 𝜃ℎ(𝛿)

(𝑎)

≤ 𝜃(ℎ(𝛿)−ℎ(𝜖)+log 2),

(80)
where (a) follows from the entropy upper bound ℎ(𝜖) ≤ log 2,
and

lim
𝑝1→1

𝐵(𝑝1, 𝛿, 𝜖; 𝜃) = +∞ > 𝜃(ℎ(𝛿) − ℎ(𝜖) + log 2), (81)

it follows by continuity that an optimum 𝑝1 ∈ [0, 1) satisfying
(79) exists for any 1/2 ≤ 𝜃 < 1. □
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