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Abstract—In this paper, we deal with the problem of con-
strained code optimization for radar space-time adaptive pro-
cessing (STAP) in the presence of colored Gaussian disturbance.
At the design stage, we devise a code design algorithm complying
with the following optimality criterion: maximization of the de-
tection performance under a control on the regions of achievable
values for the temporal and spatial Doppler estimation accuracy,
and on the degree of similarity with a pre-fixed radar code. The
resulting quadratic optimization problem is solved resorting to a
convex relaxation that belongs to the semidefinite program (SDP)
class. An optimal solution of the initial problem is then constructed
through a suitable rank-one decomposition of an optimal solution
of the relaxed one. At the analysis stage, we assess the performance
of the new algorithm both on simulated data and on the standard
challenging the Knowledge-Aided Sensor Signal Processing and
Expert Reasoning (KASSPER) datacube.

Index Terms—Nonconvex quadratic optimization, radar signal
processing, semidefinite programming relaxation, space-time
adaptive processing (STAP), waveform design.

I. INTRODUCTION

I N recent years, various algorithms for radar signal design
that rely heavily upon complicated processing and/or an-

tenna architectures have been suggested. These techniques owe
their genesis to several factors, including revolutionary techno-
logical advances (new flexible waveform generators, high speed
signal processing hardware, digital array radar technology, etc.)
and the stressing performance requirements, often imposed by
defense applications in areas such as airborne early warning
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and homeland security [1]. Increasingly complex operating sce-
narios call for sophisticated algorithms, with the ability to adapt
and diversify dynamically the waveform to the operating en-
vironment in order to achieve a performance gain over classic
radar waveforms [2], [3].

The synthesis of narrowband waveforms with a specified am-
biguity function is considered in [4], [41]. The use of informa-
tion theory to devise waveforms for the detection of extended
radar targets is studied in [5]. The concept of matched-illumi-
nation for optimized target detection and identification has been
the object of [6]–[9] (and references therein). Waveform op-
timization in the presence of colored disturbance with known
covariance matrix is considered in [10] and [11]. Therein, the
idea of optimized waveform under a similarity constraint is in-
troduced. A different radar signal design approach, known as
the radar coding, relies on the modulation of a pulse train pa-
rameters (amplitude, phase, and frequency) in order to synthe-
size waveforms with some specified properties. A substantial
bulk of work is nowadays available in open literature about this
topic [12]–[14].

In [15], focusing on the class of linearly coded pulse trains
(both in amplitude and in phase), the authors propose a code
selection algorithm which maximizes the detection performance
but, at the same time, is capable of controlling both the region of
achievable values for the Doppler estimation accuracy and the
degree of similarity with a pre-fixed radar code. The conceived
algorithm first relaxes the original problem into a convex one
which belongs to the SDP class [16], [17]; then it derives an
optimum code through a rank-one decomposition of an optimal
solution of the relaxed problem.

Nevertheless, in several practical situations, the radar ampli-
fiers usually work in saturation conditions and hence an ampli-
tude modulation might be difficult (even if not impossible) to
perform. To this end, in [18], the authors consider the synthesis
of constant modulus phase coding schemes for radar coherent
pulse trains. They study the cases of both continuous and fi-
nite phase alphabet, and formulate the code design in terms of a
nonconvex, NP-hard, quadratic optimization problem. In order
to approximate the optimal solutions, the authors propose tech-
niques (with polynomial computational complexity) based on
SDP relaxation and randomization.1

In this paper, we consider the problem of constrained code op-
timization for radar space-time adaptive processing (STAP) in
the presence of colored Gaussian disturbance (including clutter,

1SDP relaxation and randomization techniques [19] have also been used in
other signal processing fields. For instance, in maximum likelihood multiuser
detection [20], multiple input multiple output (MIMO) decoding [21], and
transmit beamforming [22].
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jamming, and thermal noise). The importance and the interest
towards this problem stem from the observation that radar STAP
has become very popular in the past few years. Nowadays, there
are at least three excellent documents testifying the state of art
in this research field: [23]–[25]. Furthermore, STAP with appli-
cation to airborne moving target indication (MTI) radars has be-
come a key topic of international conferences. Last but not least,
radar STAP plays an important role in numerous civilian and
military applications such as earth observation, surveillance,
ground moving target indication (GMTI), reconnaissance, and
others [24].

At the design stage, we adopt the classic STAP model of [23]
and focus on transmitted signals belonging to the class of coded
pulse trains. We propose a code selection algorithm which is op-
timum according to the following criterion: maximization of the
detection performance under a control on the regions of achiev-
able values for the temporal and spatial Doppler estimation ac-
curacy, and on the degree of similarity with a pre-fixed radar
code. Actually, this last constraint is equivalent to force a simi-
larity between the ambiguity functions of the devised waveform
and of the pulse train encoded with the pre-fixed sequence. The
resulting optimization problem belongs to the family of non-
convex quadratic programs [16], [17]. In order to solve it, we
first resort to a relaxation of the original problem into a convex
one that belongs to the semidefinite program (SDP) class. Then,
the transmitted code is constructed through the rank-one decom-
position techniques of [26], [27] and applied to an optimal solu-
tion of the relaxed problem. Remarkably, the entire code search
algorithm entails a polynomial computational complexity.

At the analysis stage, we assess the performance of the new
encoding algorithm in terms of detection performance, regions
of estimation accuracies that estimators of the temporal and the
spatial Doppler frequencies can theoretically achieve, and ambi-
guity function. The analysis is conducted both on simulated data
and on the Knowledge-Aided Sensor Signal Processing and Ex-
pert Reasoning (KASSPER) [28] reference STAP datacube.

The results show that it is possible to tradeoff the aforemen-
tioned performance metrics. In other words, detection capabil-
ities can be swapped for desirable properties of the waveform
ambiguity function and/or for enlarged regions of achievable
temporal/spatial Doppler estimation accuracies.

The paper is organized as follows. In Section II, we present
the model for both the transmitted and the received coded
signal; moreover we formulate the code design optimization
problem. In Section III, we introduce the algorithm which
exploits SDP relaxation and provides a solution to the afore-
mentioned problem. In Section IV, we assess the performance
of the proposed encoding method also in comparison with a
standard radar code. Finally, in Section V, we draw conclusions
and outline possible future research tracks.

A. Notation

We adopt the notation of using boldface for vectors (lower
case), and matrices (upper case). is the th
entry of the matrix . The transpose operator and the conjugate
transpose operator are denoted by the symbols and , re-
spectively. is the trace of the square matrix argument,

and denote, respectively, the identity matrix and the matrix
with zero entries, while is the vector with all zeros except 1
in the th position (their size is determined from the context).
The letter represents the imaginary unit (i.e., ), while
the letter often serves as index in this paper. For any complex
number , we use and to denote respectively the real
and the imaginary parts of , and represent the mod-
ulus and the argument of , and stands for the conjugate of

. The Euclidean norm of the vector is denoted by . The
symbols and represent the Hadamard element-wise and
the Kronecker product, respectively [29]. The curled inequality
symbol (and its strict form ) is used to denote generalized
inequality: means that is an Hermitian positive
semidefinite matrix ( for positive definiteness).

II. SYSTEM MODEL AND PROBLEM FORMULATION

The STAP signal model adopted in this paper is that devel-
oped in [23, ch. 1], with the addition of a temporal coding on the
transmitted coherent burst of pulses. Specifically, data are col-
lected by a narrowband antenna array with spatial channels
which, for simplicity, we assume colinear, omnidirectional, and
equally spaced. Each channel receives echoes corresponding
to the returns of a coherent coded pulse train composed of
pulses. It is assumed that the complex envelope of the trans-
mitted signal is

where is the pulse repetition time (PRT),
is the radar code (assumed without

loss of generality with unit norm), is the pulse waveform
of duration and with unit energy, and are respectively
the amplitude and the random phase of .

Following [23], we formulate the problem of detecting a
target in the presence of observables in terms of the following
binary hypothesis test:

(1)

where is the space-time snapshot at the range of
interest, and denote respectively the clutter/interference
and receiver noise vectors which are assumed statistically
independent zero-mean complex circular Gaussian vectors,

is the complex amplitude accounting for both the target
as well as the channel propagation effects, and the target
space-time steering vector, i.e., , with
( -dimensional) and ( -dimensional) being respectively
the temporal and the spatial steering vectors. More precisely
[23], ,

,
with and the normalized temporal and spatial Doppler
frequencies, respectively.

A common measure of a STAP processor performance is the
output signal-to-interference-plus-noise ratio (SINR) [23, pp.
62-69], which, for the optimum filter, is given by

(2)
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where and (
denotes statistical expectation) is the -dimensional
disturbance space-time covariance matrix (due to clutter/inter-
ference and thermal noise). Indeed, due to the Gaussian assump-
tion, maximizing the SINR is tantamount to maximizing the de-
tection performance. The following lemma will be useful in sim-
plifying some of the subsequent expressions and derivations.

Lemma I: Let be a Hermitian matrix,
, . Then,

(3)

where the Hermitian matrix is given by

(4)

Furthermore, 1) if is positive semidefinite, then is pos-
itive semidefinite, 2) if is positive definite, all the entries of

are nonzero, and , then is positive definite, and 3) if
is positive definite, and has at least a zero entry, then is

positive semidefinite.
Proof: See Appendix A.

The goal of this paper is to design the code that maximizes
the output SINR (2), under some constraints that allow control-
ling the region of achievable temporal and spatial Doppler esti-
mation accuracies and force a similarity with a given radar code

(assumed with unit norm). This last constraint is necessary in
order to control the ambiguity function of the transmitted coded
pulse train (as has a good ambiguity function); it can be for-
malized as , where the parameter (with
for unit norm vectors and ) rules the size of the similarity re-
gion2 [15, Sec. III C].

Concerning the region of achievable temporal and spatial
Doppler estimation, the most natural choice would be forcing
upper bounds on the Cramér–Rao bounds (CRBs) on and

for known and unknown temporal and spatial Doppler
frequencies. Unfortunately, this approach leads to intractable
nonconvex constraints. However, this drawback can be cir-
cumvented constraining the CRB on for known and ,
and the CRB on for known and . As we will see, this
formulation still leads to nonconvex constraints which, despite
the previous case, are quadratic. Further developments require
specifying the following:

• the CRB, for known and , with respect to the estima-
tion of is given by [30, Sec. 8.2.3.1]

(5)

with ;
• the CRB, for known and , with respect to the estimation

of is given by

(6)

2If � � �, the similarity constraint vanishes; in practice, this � is quite small.

As to the regions of achievable temporal and spatial Doppler
estimation accuracies (denoted as and , respectively), they
can be controlled forcing upper bounds on the respective CRBs
(see [15, Sec. III B] for a discussion in the case of temporal pro-
cessing only and for a pictorial description). To this end, forcing
upper bounds to (5) and (6), for a specified value, results in
lower bounds on the sizes of and . Hence, according to
this guideline, we focus on radar codes complying with

(7)

or equivalently

(8)

(9)

where and are two positive real numbers ruling the upper
bounds on CRBs.

Exploiting Lemma I, the SINR in (2) and the left-hand side
(LHS) of (8) and (9) can be rewritten as

where ,
(be-

cause the first component of is zero), and
.

It follows that the problem of devising the STAP code, under
(8) and (9), the similarity and the energy constraints, can be
formulated as the following nonconvex quadratic optimization
problem (QP):

(10)

which can be equivalently written as

Evidently, problem (10) requires the specification of and
; as a consequence, the solution code depends on these pre-

assigned values. It is thus necessary to provide some guidelines
on the importance and the applicability of the proposed frame-
work. To this end, we highlight the following.

• The performance level which can be obtained through the
optimal solution of (10), in correspondence of the design
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and , represents an upper bound to that achievable by
any practically implementable system.

• The encoding procedure might be applied in a waveform
diversity context, where more coded waveforms on dif-
ferent carriers are transmitted [31]. These waveforms are
chosen frequency orthogonal and each of them is opti-
mized for the detection in a given spatial-temporal fre-
quency bin. At the receiver end, the detector tuned to the
specific bin processes its matched waveform [32].

• A single coded waveform designed for the challenging
condition of slowly moving target close to the clutter ridge
[23] can be transmitted.

• A single coded waveform optimized to an average sce-
nario can be selected. Otherwise stated, the code might
be chosen as the solution to the problem (10) with

, , and replaced by , , and ,
where the expectation operator is over and . If
these last quantities are modeled as independent random
variables, the expectations can be evaluated after some
algebra, i.e., ,

,
,

where and , while is the
matrix with entries . In particular,

if and are modeled as independent random variables
uniformly distributed in and , re-
spectively, we have ,

, with the
function defined as .

• Assume that, after an uncoded (or a possibly standard
coded) transmission, a detection is declared in a given
spatial-temporal Doppler bin. Our coding procedure can
be thus employed to shape the waveform for the next trans-
mission in order to confirm the detection in the previously
identified bin.

III. SOLUTION TO THE OPTIMIZATION PROBLEM

In this section, we demonstrate how to obtain an optimal so-
lution of QP. Toward this, we consider the following enlarged
quadratic problem (EQP):

(11)

where , and claim the following lemma:
Lemma II: Let be an optimal solution of EQP. Then, the

solution is optimal to QP.
Proof: See Appendix B.

This implies that we can construct an optimal solution of QP
from an optimal solution of EQP, and the problems QP and EQP
possess the same optimal value. Now, we are going to find an

optimal solution of EQP. To this end, we exploit the equivalent
matrix formulation

(12)

where .
Problem (12) can be relaxed into an SDP3 problem neglecting

the rank-one constraint [19]. By doing so, we obtain a relaxed
enlarged quadratic problem (REQP)

(13)

The dual problem of REQP, REQPD, is

Throughout the paper, we assume that QP is strictly feasible,
namely there is such that , ,

, and (to this end, it is sufficient to sup-
pose that the initial code is a strictly feasible solution of QP).
We claim that both REQP and REQPD are strictly feasible.4 It
follows, by the weak duality theorem, that REQP is bounded
above and REQPD is bounded below. Also, it follows, by the
strong duality theorem of SDP (for example, see [17, Theorem
1.7.1]), that the optimal values of REQP and REQPD are equal
and attainable at some optimal points. Moreover, the comple-
mentary slackness conditions are satisfied at the optimal points
of the primal and the dual problems. Denote by the optimal
value of the problem . It is known from optimization theory
that REQPD is also the dual problem of EQP. So far, we have
established the following relationships:

As a consequence, solving the SDP problem REQP provides an
upper bound to EQP (or the original problem QP). Furthermore,
as long as we can get a rank-one optimal solution of REQP in

3An SDP is a convex optimization problem that can be efficiently solved in
polynomial time through interior point methods [16], namely iterative algo-
rithms which terminate once a pre-specified accuracy � is reached. The number
of iterations necessary to achieve convergence usually ranges between 10 and
100 [16].

4Further details on the strict feasibility of REQP and REQPD are given in
Appendix C.
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some way, the upper bound is tight; in other words, the SDP re-
laxation of EQP is exact, or equivalently, strong duality for the
nonconvex problem EQP holds (i.e., ).
Therefore, to solve EQP (or QP), it suffices for us to find a
rank-one optimal solution of the SDP problem, which is our
focus in the remainder of the paper.

Before proceeding, let us compare the optimization problem
solved in [15] with that we are faced with in the present paper. In
[15], the authors show strong duality for the following problem:

(14)

and find an optimal solution of (14), resorting to the SDP relax-
ation technique and the special rank-one decomposition proce-
dure of [26]; in other words, (14) has been proven to be a hidden
convex program. The most significant difference between (14)
and (12) (i.e., EQP) is that the former includes only three ho-
mogeneous quadratic constraints, while the latter has four. As a
consequence, strong duality for problem EQP may or may not
hold. In what follows, we identify most cases where the strong
duality is valid, and propose solution procedures, resorting to
either the rank-one decomposition theorem of [26], or the new
rank-one decomposition proposed in [27]. We explicitly high-
light that the techniques used in this paper are far trickier and
more involved than those exploited in [15].

The analysis of the relaxed problem REQP and its dual
REQPD is easy as REQP is a convex problem. Indeed, denote
by an optimal solution of REQP, and by an
optimal solution of REQPD. Then, the primal-dual optimal so-
lution pair satisfies the Karush–Kuhn–Tucker
optimality conditions (which are sufficient and necessary, since
SDP is a convex optimization problem and constraint quali-
fication conditions (Slater’s conditions [16]) are satisfied). In
particular, the complementary slackness conditions are

(15)

(16)

(17)

(18)

Further developments require the following rank-one decompo-
sition theorems which have been proved in [26] and [27], re-
spectively.

Proposition I: Suppose that is an complex Her-
mitian positive semidefinite matrix of rank , and are
two given Hermitian matrices. Then, there is a rank-one
decomposition of (synthetically denoted as ),

(19)

such that

(20)

Proof: See [26, Theorem 2.1].
Proposition II: Let be a nonzero com-

plex Hermitian positive semidefinite matrix, and suppose that
for any

nonzero complex Hermitian positive semidefinite matrix of
size . Then,

• if , one can find, in polynomial time, a
rank-one matrix such that (synthetically denoted as

) is in , and

• if , for any not in the range space of , one
can find a rank-one matrix such that is in the linear
subspace spanned by , and

Proof: See [27, Theorem 2.3].
The computational complexity of each rank-one decomposi-

tion theorem requires [26], [27]. In fact, the computation
involves both a Cholesky factorization and suitable rotations.
Hence, the required amount of operations is dominated by that
necessary for the Cholesky decomposition, which is known to
be .

As already pointed out, once a rank-one positive semidefi-
nite matrix satisfying (15)–(18) and feasible to (13) has been
found, we can claim that is an optimal solution of (12),
or equivalently, is an optimal solution of (11). Now, we aim at
finding a procedure to construct a rank-one optimal solution of
REQP from a general rank optimal solution of REQP, which
can always be found by an SDP solver. We claim the following
two main theorems.

Theorem I: Let be an optimal solution of REQP with
. Then, we can find a rank-one optimal solution

of REQP in polynomial time.
Proof: See Appendix D.

Theorem II: Let be an optimal solution of REQP with
. Then, if one of the inequalities is satisfied:

, , or , we can find a
rank-one optimal solution of REQP in polynomial time.

Proof: See Appendix E.
We remark that in Theorem I, the assumption

implies that the size of is greater than or equal to 3, i.e.,
the length of radar code is not smaller than 3, which is practical.
Note that in Theorem II, the size of could be greater than
or equal to 2.

Also, from the proofs, we can deduce the construction pro-
cedure of a rank-one optimal solution of EQP. Actually, the so-
lution procedure for (12) based on the above two theorems is
very different from the solution procedure for (14), introduced
in [15] through the application of Proposition I to any optimal
solution with rank higher than one.

In the following, we summarize the procedure that leads to an
optimal solution of EQP, by distinguishing among three possible
cases.

Case 1: . In this case, a vector with
is an optimal solution of EQP.
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Case 2: . Exploiting Theorem I, we can ob-
tain a rank-one optimal solution of REQP.
Case 3: . Let ,

and . We have to consider two possible
situations:
Case 3.1: One of the inequalities , , or

holds. In this case, we invoke Theorem II to output
a rank-one optimal solution of REQP.
Case 3.2: , , . In this case, we
are not able to judge whether the strong duality is valid
for (13). Nevertheless, we can still provide a procedure
aimed at constructing feasible solutions for (13). Precisely,
according to the last claim of Proposition II, for any vector

, we can obtain a vector such that

(21)

namely feasible for EQP. Hence, given different vectors
, which can be randomly generated so that

, we can get feasible solutions of
EQP and, then, we can select the one which has the largest
objective function value. Besides the randomized way to
generate feasible solutions, which is suboptimal, we can
also consider a deterministic approach. In particular, the
following method provides a feasible solution with a loss
of optimality by :
1) perform the rank-one decomposition

;
2) choose a suboptimal solution from or

, say , such that .
As our simulation shows, the subcase 3.2 happens in less than

0.1% of the experiments (see Fig. 12, and we report the details
of the simulation in Section IV-C).

Summarizing, the STAP code, which is optimum for problem
QP (except for case 3.2), can be constructed according to Algo-
rithm 1, pictorially illustrated in Fig. 1.

Algorithm 1: STAP Coding Algorithm

Input: , , , , , , , , ;
Output: ;

1: solve the SDP problem REQP finding an optimal solution ;

2: evaluate ;
3: if then

4: evaluate such that ;
5: else if then

6: evaluate ;
7: else if then

8: ;
9: end

10: , with .

Fig. 1. Algorithm 1 for STAP coding.

Algorithm 2: EQP Feasible Solution for

Input: , , , , , ,
Output:

1: evaluate , and ;
2: if then

3: evaluate ;

4: if then
5: evaluate ;
6: else
7: evaluate ;
8: end
9: else if then

10: evaluate ;

11: if then
12: evaluate ;
13: else
14: evaluate ;
15: end
16: else if then

17: evaluate ;

18: if then
19: evaluate ;
20: else
21: evaluate ;
22: end
23: else if , and then
24: determine, using Proposition II, feasible solutions ,

;

25: select from such that for
all .
26: end

The computational complexity, connected with the
implementation of the algorithm, is polynomial, since

is the amount of operations involved in
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solving the SDP problem, and is the complexity re-
quired by the decompositions and .

IV. PERFORMANCE ANALYSIS

The present section is aimed at analyzing the performance
of the proposed encoding scheme. The analysis is conducted
in terms of detection probability , regions of achievable
Doppler estimation accuracies ( and ), and ambiguity
function of the pulse train modulated through the proposed
code . To proceed further we recall that, for a specified value
of the false alarm probability , and for nonfluctuating
target [33], can be evaluated as

(22)

where is the Marcum function of order 1. As bench-
mark code for the detection probability, we consider the uncon-
strained unitary code

(23)

which does not necessarily satisfy the similarity constraints
or spatial/temporal Doppler accuracy constraints. Since that

, where is the
maximum eigenvalue of the matrix argument, the benchmark

can be expressed as

(24)

Analogously, we consider a benchmark CRB for both spatial
and temporal Doppler frequencies, i.e.,

(25)

Notice that, in general, the three values ,
, and are not obtained in

correspondence of the same unitary norm code.
Besides, the ambiguity function of the coded pulse train can

be evaluated as

where , and is the ambiguity
function of an unmodulated pulse [12].

In our scenario, we consider a STAP system with
channels and pulses. Moreover, we fix to . As
to the temporal steering vector , we set the normalized tem-
poral Doppler frequency , while we use the normal-
ized spatial Doppler frequency for the spatial steering
vector . As similarity code , we resort to a generalized
Barker sequence [12, pp. 109-113]: such codes are polyphase

sequences whose autocorrelation function has minimal peak-to-
sidelobe ratio excluding the outermost sidelobe. Examples of
these sequences have been found for all [34], [35],
using numerical optimization techniques. In our simulations, we
choose a unitary norm version of the generalized Barker code
of length 32 reported in [12, p. 111].

In order to compare the performance of our algorithm with
that of the similarity code, we have also evaluated and CRBs
obtained using , i.e.,

(26)

and

(27)

Concerning the inverse disturbance covariance matrix , we
consider the two following scenarios:

1) simulated covariance, according to the disturbance model
described in [23];

2) covariance, from the KASSPER database [28].
Regarding the parameters and , in general, what can be

assigned is the interval of and values which can be ex-
ploited. Evidently, they depend on , , and and must be
smaller than the maximum eigenvalue of and respec-
tively. From a practical point of view, the selection of the quoted
parameters depend on the desired accuracy region (provided it
is compatible with strict feasibility). In the numerical examples,
we have considered a wide variation range for the parameters so
as to better highlight the performance tradeoff due to different
parameters combinations.

Finally, in the numerical simulations, we have exploited the
MATLAB toolbox SeDuMi [36] for solving the SDP relaxation,
and the MATLAB toolbox of [37] for plotting the ambiguity
functions of the coded pulse trains.

A. Simulated Covariance

The disturbance covariance matrix has been simulated
according to the model in [23, ch. 2], as the sum of a clutter term
plus a thermal noise contribution, i.e., ,
where is the clutter covariance and is the thermal
noise level. More precisely, can be obtained using the
general clutter model described in [23, par. 2.6.1]. It accounts
for the effects of velocity misalignment (due to aircraft crab)
and intrinsic clutter motion [23]. A synthetic description of the
principal radar system parameters, used in the simulations, is
reported in Table I (for a more exhaustive list, please refer to
[23]).

In Fig. 2(a), we plot of the optimum code (according to
the proposed criterion) versus for nonfluctuating target,

, , and for several values of . In the same
figure, we also represent both the and the . The
curves show that, increasing , we get lower and lower values
of for a given value. This was expected since the higher

the smaller the feasibility region of the optimization problem
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TABLE I
RADAR SYSTEM PARAMETERS

Fig. 2. (a) � versus ��� for nonfluctuating target, simulated data, � �
�� , � � ��, � � ��, � � ����, � � ����, � � ���, � � �����, and
several values of � � ��	���� ��
���������. Generalized Barker code (solid
curve). � of the proposed code for a given � (dashed curves). Benchmark �
(o-marked dashed curve). (b) � ��  versus ��� for nonfluctuating target,
simulated data, � � ����, � � ����, � � ��, � � ��, � � ���,
� � �����, and several values of � � ��	������
���������. Generalized
Barker code (solid curve).� ��  of the proposed code for a given � (dashed
curves). Benchmark � ��  (o-marked dashed curve).

to be solved for finding the code. Nevertheless, the proposed en-
coding algorithm usually ensures a better detection performance
than the original generalized Barker code.

In Fig. 2(b), is plotted versus for the same
values of as in Fig. 2(a). The benchmark and are
plotted too. The curves highlight that, increasing , better and

Fig. 3. (a) � versus ��� for nonfluctuating target, simulated data, � �
�� , � � ��, � � ��, � � ����, � � ����, � � ���, � � �����, and
several values of � � �
�
��� 
���	�

	�	�. Generalized Barker code (solid
curve). � of the proposed code for a given � (dashed curves). Benchmark �
(o-marked dashed curve). (b) � ��  versus ��� for nonfluctuating target,
simulated data, � � ��, � � ��, � � ����, � � ����, � � ���,
� � �����, and several values of � � �
�
���
���	�

	�	�. Generalized
Barker code (solid curve).� ��  of the proposed code for a given � (dashed
curves). Benchmark � ��  (o-marked dashed curve).

better values can be achieved. This is in accordance
with the considered criterion, because the higher the larger
the size of the region .

In Fig. 3(a), we plot versus for nonfluctuating target,
, , and for several values of . Also in this

case, we can notice a gain of the proposed encoding scheme over
the classic generalized Barker code. However, the gain slightly
reduces as the parameter increases, since the feasibility re-
gion becomes smaller and smaller.

In Fig. 3(b), we plot , and
versus for the same values of the parameters considered in
the previous figure. We observe that increasing , we slightly
enlarge the region of achievable spatial Doppler accuracy.
Moreover, the proposed encoding technique assures a larger
than the generalized Barker code.

Summarizing, the joint analysis of Figs. 2 and 3 shows that
a tradeoff can be realized between the detection performance
and the estimation accuracy of both the temporal and the spatial
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Fig. 4. (a) � versus ��� for nonfluctuating target, simulated data, � �

�� , � � ��, � � ��, � � ����, � � ����, � � ���, � � ���,
and several values of � � ��� �������������������	�. Generalized Barker
code (solid curve). � of the proposed code for a given � (dashed curves).
Benchmark � (o-marked dashed curve). (b) Ambiguity function modulus of
the generalized Barker code 			 with 
 � �
 .

Doppler frequencies. Additionally, there exist codes capable of
outperforming the generalized Barker code both in terms of
and sizes of and .

The effects of the similarity constraint are analyzed in
Fig. 4(a). Therein, we set , , and consider sev-
eral values of . The plots show that increasing worse and
worse values are obtained; this behavior can be explained
observing that the smaller the larger the size of the similarity
region. However, this detection loss is compensated for an
improvement of the coded pulse train ambiguity function, as
we can see in Fig. 5(a)–(d), where the modulus of that function
is plotted assuming rectangular pulses, and . For
comparison purposes, the ambiguity function modulus of
is plotted in Fig. 4(b). The plots highlight that the closer to
1 the higher the degree of similarity between the ambiguity
functions of the devised and pre-fixed codes. This is due to
the fact that increasing is tantamount to reducing the size
of the similarity region. In other words, we force the devised
code to be similar and similar to the pre-fixed one and, as a
consequence, we get closer and closer ambiguity functions.

In the previous figures, we have fixed two parameters, and
have changed the other in order to analyze the impact on the
performance of a particular constraint. In Fig. 6, we analyze the
joint effect of the three parameters, so as to show that there are
situations where the proposed encoding method can outperform
the generalized Barker coding in terms of , , and

. In particular, in Fig. 6(a) we plot , in Fig. 6(b)
, and in Fig. 6(c) versus , assuming

. Evidently, for the considered
values of the parameters, the proposed code, whose ambiguity
function is plotted in Fig. 7, outperforms the generalized Barker
in terms of , , and .

As to the robustness of the proposed method, we study the
behavior of the algorithm when a mismatch on the temporal
or spatial Doppler is present. In particular, we design two
codes, one assuming and , and another
where and are modeled as random parameter uniformly
distributed in the interval [ 1/3; 1/3], i.e.,
and . We analyze the performance when

(left column) or (right column) ranges in the interval
[ 1/2; 1/2]. In Fig. 8(a) and (b), we plot the versus
for 14 dB and . We can
notice that the proposed method outperforms the generalized
Barker code almost everywhere for the case of a spatial or
temporal Doppler mismatch. In other words, simulations indi-
cate that the novel encoding method shares an intrinsic robust
behavior.

B. Covariance From the KASSPER Database

In this subsection, we use the ground clutter covariance ma-
trix from the range cell number 10 of the KASSPER [28] dat-
acube. This dataset contains many real-world effects including
heterogeneous terrain, subspace leakage, array errors, and many
ground targets. It refers to a California site characterized by
large mountains and moderate density of roads. The chosen ma-
trix is loaded with the thermal noise covariance matrix and then
the sum is inverted to get . As in the previous scenario, we
set the clutter-to-noise ratio to 30 dB.

In Fig. 9(a) and (b), we study the effect of the parameter
on and . In particular, in Fig. 9(a), we plot of the
optimum code versus for nonfluctuating target, ,

, and for several values of . In the same figure,
we also represent both and . We can observe a
similar behavior as in the simulated case of Section IV-A: in-
creasing , we get lower and lower values of for a given
value. Moreover, our proposed encoding scheme can achieve a
better detection performance than the classic generalized Barker
code. In Fig. 9(b), is plotted versus for the same
values of as in Fig. 9(a). The benchmark and
are plotted too. As expected, the curves show that increasing
better and better values can be obtained.

In Fig. 10(a), we plot versus for nonfluctuating target,
, , and for several values of . It is evi-

dent that an increase of the parameter leads to a slight dete-
rioration of detection performances. This can be explained ob-
serving that the feasibility region becomes smaller and smaller
as increases.
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Fig. 5. (a) Ambiguity function modulus of code which maximizes the SINR for � � ��, � � �� , � � ���, � � ���, � generalized Barker code, and
� � ������. (b) Ambiguity function modulus of code which maximizes the SINR for � � ��, � � �� , � � ���, � � ���, � generalized Barker code,
and � � ����	�. (c) Ambiguity function modulus of code which maximizes the SINR for � � ��, � � �� , � � ���, � � ���, � generalized Barker code,
and � � ����		. (d) Ambiguity function modulus of code which maximizes the SINR for � � ��, � � �� , � � ���, � � ���, � generalized Barker
code, and � � �.

In Fig. 10(b), we plot , , and
versus for the same values of the parameters considered
in the previous figure. The curves highlight that increasing
lower and lower values can be achieved.

Finally, in Fig. 11, we plot versus for nonfluctuating
target, , , and for several values of . We can
notice that the closer to 1, the closer to , namely the
performances of the proposed code and the generalized Barker
code end up coincident.

In conclusion, , , and exhibit a similar
behavior both with simulated and KASSPER covariance data.
Moreover, the proposed analysis shows that it is possible to re-
alize a tradeoff among the three parameters , , and to in-
crease the detection performance, or to improve the Doppler es-
timation accuracy, or to shape the ambiguity function.

C. Occurrence of Subcase 3.2

In this subsection, we analyze the typical rank of an optimal
solution of the SDP problem REQP. First of all, we have to
deal with the finite precision of MATLAB implementation of the
encoding algorithm. To this end, we introduce the
function, namely the number of eigenvalues of the matrix
greater than the positive threshold . For a positive semidefinite

matrix , represents a good numerical estimation of
the rank of , as . Moreover, we have to distinguish a tight
constraint from a strict constraint. In this case, we consider the
constraint as practically tight if the difference of the two sides of
the inequality is less than . Performing 10 000 instances of the
problem REQP (with clutter covariance matrix from the range
cell number 10 of the KASSPER datacube, , ,

, , generalized Barker sequence, , ,
and randomly chosen),5 in less than 1% of the cases, we get
an optimal solution with . For those particular
situations, we have also controlled the constraints, and in less
than 10% of the cases, we have all the three constraints prac-
tically tight (namely, case 3.2 described in Section III). Sum-
marizing, in less than 0.1% of the instances, we have a subop-
timal solution of the original QP problem. This trend holds for
all the considered values of the parameter .6 Furthermore, most
of the instances presents a , even if the number
decreases as the precision tends to 0 (and consequently the
occurrence of the event increases). Thus, we

5� is a uniformly distributed random variable in the interval

� ���� �� ���� ��, � in 
� ���� �� ���� ��, and � in [0;1], with
� ��� representing the minimum eigenvalue of the argument.

6Notice that additional results obtained changing ��� and ��� randomly in the
10 000 experiments also agree with the aforementioned behavior.
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Fig. 6. (a) � versus ��� for nonfluctuating target, simulated data, � � �� , � � ��, � � ��, � � ����, � � ����, and �� � � � � � �
�����	� 
���������. � of the proposed code (dashed curves). Benchmark � (o-marked dashed curve). (b) � �� � versus ��� for nonfluctuating target,
simulated data, � � ����, � � ����, � � ��, � � ��, and �� � � � � � � �����	�
���������. � �� � of the proposed code (dashed curves). Benchmark
� �� � (o-marked dashed curve). (c) � �� � versus ��� for nonfluctuating target, simulated data, � � ��, � � ��, � � ����, � � ����, and
�� � � � � � � �����	�
���������. � �� � of the proposed code (dashed curves). Benchmark � �� � (o-marked dashed curve).

Fig. 7. Ambiguity function modulus of proposed code for� � ��,	 � �	 ,
� generalized Barker code, and �� � � � � � � �����	�
���������.

can conclude observing that a duality gap between the original
problem QP and the relaxed problem REQP (namely an optimal
solution of rank 2 and all the constraints tight) is very rare, and
even for high precision (i.e., ), it happens in less than
0.1% of the cases. The analysis is summarized in Fig. 12.

V. CONCLUSION

In this paper, we have addressed the problem of code design
for radar STAP, assuming that the overall disturbance compo-
nent, which contaminates the useful signal, is a colored com-
plex circular Gaussian vector. We have considered the class of
linearly coded pulse trains and have determined the radar code
which maximizes the detection performance under a constraint
on the region of achievable values for the temporal and spatial
Doppler estimation accuracy and forcing a similarity constraint
with a given radar code exhibiting some desirable properties.

The optimization problem, we have been faced with, is
nonconvex and quadratic. In order to solve it, we have first
performed a relaxation into a convex SDP problem. Then, ap-
plying appropriately the rank-one decomposition theorems of
[26] and [27] to an optimal solution of the relaxed problem, we
have determined an optimal code. Remarkably, the proposed
code design procedure requires a polynomial computational
complexity.

At the analysis stage, we have assessed the performance of
the new algorithm both on simulated data and on the KASSPER
reference STAP datacube. The analysis has been conducted in
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Fig. 8. Robustness analysis for ��� � �� dB, nonfluctuating target, simulated data, � � ��, � � ��, �� � � � � � � ������ ���	� 
���, � � 
��� and
� � ������ ��� (left column), � � 
��� and � � ��������� (right column). Proposed code for � � 
��� and � � 
��� (dashed curves), Generalized
Barker code (solid curves), Proposed code for � � � ��������� and � � � ��������� (dashed–dotted curves). (a) 	 versus � ; (b) 	 versus � ; (c)
� �� � versus � ; (d) � �� � versus � ; (e) � �� � versus � ; (f) � �� � versus � .

terms of detection performance, regions of estimation accura-
cies that unbiased estimators of the temporal and the spatial
Doppler frequencies can theoretically achieve, and ambiguity
function. The results have highlighted the tradeoff existing
among the aforementioned performance metrics. Otherwise
stated, detection capabilities can be traded with desirable prop-
erties of the coded waveform and/or with enlarged regions of
achievable temporal/spatial Doppler estimation accuracies.

Possible future research tracks might concern the possibility
to make the algorithm adaptive with respect to the disturbance
covariance matrix, namely to devise techniques which jointly
estimate the code and the covariance. Moreover, it should be
investigated the introduction in the code design optimization
problem of constraints related to the probability of correct target
classification as well as of knowledge-based constraints, ruled
by the a priori information that the radar has about the sur-
rounding environment. Finally, it might also be of interest to
consider the case of a MIMO system [38]–[40] equipped with
multiple transmitters (possibly not colocated) and/or receivers,
and of an over-the-horizon (OTH) radar scenario.

APPENDIX

A. Proof of Lemma I

Proof: Since ,
which

can be recast as with given by (4). It is evident that
implies . Moreover, if , all the entries of

are nonzero, and (i.e., at least one of its component is
nonzero), then, for any nonzero , and,
as a consequence, ,
namely . Finally, if and at least one entry of is
equal to zero, then shares at least a column and a row with all
zero entries, implying .

B. Proof of Lemma II

Proof: First, we note that an optimal solution of EQP or QP
must exist, since the feasible sets are compact and the objective
function of EQP or QP is continuous. It is easily seen that any
rotation of , say , is optimal for EQP (this ob-
servation is always true for quadratically constrained quadratic
optimization with homogeneous objective and constraint func-
tions). Denoting by , we claim that is op-
timal for QP. To this end, we first observe that

, thus is a feasible
solution of QP. Second, we note that the feasibility region of
EQP is larger than that of QP; accordingly, the optimal value of
EQP is greater than or equal to the optimal value of QP. Since
we have found a feasible solution of QP, which has the ob-
jective function value equal to the optimal value of EQP, hence

is optimal for QP.
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Fig. 9. (a) � versus ��� for nonfluctuating target, real data, � � �� ,
� � ����, � � ����, � � ����, � � �����, and several values of
� � ��	���� ����������
���. Generalized Barker code (solid curve). � of
the proposed code for a given � (dashed curves). Benchmark � (o-marked
dashed curve). (b) � ��  versus ��� for nonfluctuating target, real data,
� � ����, � � ����, � � ����, � � �����, and several values of
� � ��	��������������
���. Generalized Barker code (solid curve).
� ��  of the proposed code for a given � (dashed curves). Benchmark
� ��  (o-marked dashed curve).

C. Strict Feasibility of REQP and REQPD

The strict feasibility of REQP is due to the assumption that
QP is strictly feasible. In fact, suppose that there is such that

, , , and .
Evidently, is also a strictly feasible solution of EQP. Now, we
further assert that for sufficiently small ,

is strictly feasible to REQP. Indeed, is positive definite, and
, for any . Moreover, for sufficiently small

, we have
, ,

. The
strict feasibility of REQPD is immediate by setting
to be any number greater than the largest eigenvalue of

for given , , and
.

Fig. 10. � versus ��� for nonfluctuating target, real data, � � ����,
� � ����, � � ���, � � �����, and several values of � �
��
���������������	�. Generalized Barker code (solid curve). � of
the proposed code for a given � (dashed curves). Benchmark � (o-marked
dashed curve). (b) � ��  versus ��� for nonfluctuating target, real
data, � � ����, � � ����, � � ���, � � �����, and several values
of � � ��
���������������	�. Generalized Barker code (solid curve).
� ��  of the proposed code for a given � (dashed curves). Benchmark
� ��  (o-marked dashed curve).

Fig. 11. � versus ��� for nonfluctuating target, real data, � � �� ,
� � ����, � � ����, � � ���, � � ����, and several values of � �
�����
	
����

	��. Generalized Barker code (solid curve). � of the pro-
posed code for a given � (dashed curves). Benchmark � (o-marked dashed
curve).
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Fig. 12. ���� ������, over 10000 random experiments, for different values of
� � ��	 � �	 � �	 � �	 �.

D. Proof of Theorem I

Proof: The quadruple
is always , since for

any nonzero . Thus, we can exploit Proposition II. The
vector complies with

(28)

This implies that is feasible to (13). Now, we check
that satisfies the optimality conditions (15)–(18) as
well. To see this, we observe that , which means
that there is such that .

We claim that satisfies the first optimality condi-
tion (15). Indeed,

Moreover, complies with the optimality conditions
(16)–(18), since

and

and

Therefore, is an optimal solution of (13).

E. Proof of Theorem II

Proof: Suppose that , without loss of generality, be-
cause discussion for either the case or the case
is similar. Then, , , and

. By Proposition I, there is a rank-one decomposition
of such that

or equivalently,

Let and . Then,
. Since , then ,

, and .
We claim that at least one of and

is true. In fact, assume, ab absurdo, that

This implies , which is in contrast with the assumption
. Now, pick up the one between and which satis-

fies , , say . It is easily seen
that is feasible to REQP and satisfies the optimality
conditions (15)–(18), namely it is an optimal solution of REQP.
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