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Abstract—Consider a downlink communication system where
multiantenna base stations transmit independent data streams
to decentralized single-antenna users over a common frequency
band. The goal of the base stations is to jointly adjust the beam-
forming vectors to minimize the transmission powers while
ensuring the signal-to-interference-noise ratio requirement of
each user within the system. At the same time, it may be necessary
to keep the interference generated on other coexisting systems
under a certain tolerable level. In addition, one may want to in-
clude general individual shaping constraints on the beamforming
vectors. This beamforming problem is a separable homogeneous
quadratically constrained quadratic program, and it is difficult
to solve in general. In this paper, we give conditions under which
strong duality holds and propose efficient algorithms for the
optimal beamforming problem. First, we study rank-constrained
solutions of general separable semidefinite programs (SDPs)
and propose rank reduction procedures to achieve a lower rank
solution. Then we show that the SDP relaxation of three classes
of optimal beamforming problem always has a rank-one solution,
which can be obtained by invoking the rank reduction procedures.

Index Terms—Downlink beamforming, individual shaping
constraints, rank reduction procedure, semidefinite program
(SDP) relaxation, separable homogeneous quadratically con-
strained quadratic program (QCQP), soft-shaping interference
constraints.

I. INTRODUCTION

T RANSMIT beamforming design has been an intensive
research topic in the past decade because the multiple

antennas create a dimension for multiple access, i.e., spa-
tial-division multiple access (see [1] and [2]). The signals for
the different users are weighted and transmitted in a common
channel, by which higher spectral efficiency is gained. The
design problem is the optimization of the beamforming vectors.

Optimal downlink beamforming is typically formulated
in two different ways: one is the minimization of the total
transmission power subject to quality of service (QoS) con-
straints for each user and the other is the maximization of the
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minimal QoS, subject to a power constraint. Both problems
are essentially equivalent; see [3] for the detailed relation
between the two formulations. An elegant approach to solve
the optimal beamforming problem was proposed in [1] (see
also [2]) by using a semidefinite program (SDP) relaxation
technique and the Perron–Frobenius theory for matrices with
nonnegative entries. In [3], the authors extended the problem
by considering the optimal beamforming design problem with
indefinite shaping constraints, termed individual shaping con-
straint herein, in addition to the QoS constraints. There are
other different approaches to solve the optimal beamforming
problem with QoS constraints; see [4] and [5], and references
therein. For optimal downlink beamforming in a multicast
scenario (i.e., sending the same information to several users),
we refer to [7] and references therein.

In a downlink beamforming problem, multiuser interference
can be presubtracted at the base stations by dirty-paper pre-
coding technique (see [8]) as well as be treated as interference
(as in the aforementioned works). For the implementation and
effect of dirty-paper precoding on optimal beamforming and
power control, one may refer to [9] and references therein.

In this paper, we consider an additional type of constraint
termed soft-shaping interference constraint (see [10]) besides
the signal-to-interference-noise ratio (SINR) constraints (i.e.,
the QoS constraints) and the individual shaping constraints.
In modern communications, there are often several coexisting
wireless systems in the region of interest, and these systems
may operate on a common frequency band due to limited
availability of frequency bands. The setup may include multiple
access, peer-to-peer link, or other broadcast channels. Rea-
sonably, when designing downlink beamforming vectors, we
may want to take into consideration that the interference level
generated to the users of coexisting systems should be kept
under the required thresholds. This motivates the introduction
of the soft-shaping constraints on the beamforming vectors.

The beamforming problem formulation based on the min-
imization transmission power subject to these constraints be-
longs to the class of separable homogeneous quadratically con-
strained quadratic program (QCQP) (see [7]), and it may not
have the strong duality property; or, equivalently, its SDP re-
laxation may have only optimal solutions of rank higher than
one. Nevertheless, it is possible to find some instances of a sep-
arable QCQP that can still be solved efficiently (they are termed
“hidden convex” in some optimization literature). In this paper,
we study rank-constrained solutions of general separable SDPs
and propose rank reduction procedures to achieve a rank-con-
strained optimal solution. Based on the study, we show that three
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classes of the optimal beamforming problem have strong du-
ality by arguing that the corresponding SDP relaxation has a
rank-one optimal solution. Particularly, the three main contribu-
tions of the paper include i) conditions under which rank-con-
strained solutions can be efficiently obtained (for which strong
duality holds); ii) practical rank-reduction algorithms to obtain
such solutions in practice; and iii) additional rank-one results for
the SDP relaxation of three classes of the optimal beamforming
problem.

This paper is organized as follows. In Section II, we intro-
duce the system model and formulate the optimal beamforming
problem, which minimizes the transmission power subject to
SINR constraints, soft-shaping interference constraints, and in-
dividual shaping constraints. In Sections III and IV, we study
rank-constrained solutions of general separable SDPs and pro-
pose the rank-reduction procedures. Based on these, we show
that the optimal beamforming problem is solvable under some
mild and different conditions. In Section V, we present some
numerical results for simulated scenarios of the optimal beam-
forming problem. Section VI draws some concluding remarks.

Notation: We adopt the notation of using boldface for vectors
(lower case) and matrices (upper case). The transpose oper-

ator and the complex conjugate transpose operator are denoted
by the symbols and , respectively. is the trace
of the square matrix argument. and denote, respectively, the
identity matrix and the matrix with zero entries (their size is de-
termined from context). The letter represents the imaginary
unit (i.e., ), while the letter often serves as index in
this paper. For any complex number , we use to represent
the modulus of . The Euclidean norm of the vector is de-
noted by . The curled inequality symbol (its strict form

and reverse form ) is used to denote generalized inequality:
means that is an Hermitian positive semidefinite

matrix ( for positive definiteness and for negative
semidefiniteness). The notation stands for the linear space
containing all Hermitian matrices.

II. MOTIVATION AND CONTRIBUTION: DOWNLINK

BEAMFORMING PROBLEM VIA SEMIDEFINITE RELAXATION

A. System Model for the Downlink Beamforming Problem

Consider a wireless system where several base stations serve
a number of single-antenna users over a common frequency
band. Let the number of base stations be , each with an array of

antenna elements,1 and let the number of users of the system
be . Each user is assigned to a base station and receives
an independent data stream from the base station. Let

be the base station assigned to user . It is as-
sumed that the scalar-valued data streams ,
are temporally white with zero mean and unit variance. The
transmitted signal by the th base station is

(1)

1Discussion for base stations equipped with different numbers of antenna el-
ements is trivially the same.

where is the transmit beamforming vector for user
and the index set represents the set of users

assigned to base station .
The signal received by user is expressed with the baseband

signal model

(2)

where is the time-varying channel vector be-
tween base station and user and is a zero-mean com-
plex Gaussian noise with variance . The downlink channel
correlation matrices are defined as

It is assumed that the matrices , are known
at the base stations. The SINR of user is given by

SINR (3)

We highlight that this is a long-term SINR (as opposed to the
instantaneous SINR). If we consider the use of dirty-paper pre-
coding instead of treating the other signals as interference, the
SINR becomes

with some prefixed encoding order for users assigned to every
base station (see [9]).

A typical objective of downlink beamforming design is to
ensure that each user can retrieve the signal of interest with the
desired QoS, which is usually described by SINR with
a given threshold for user . This corresponds to the SINR
constraint in the classical optimal beamforming problem (for
instance, see [1]). Furthermore, additional constraints may be
of interest, as described next.

1) Soft-Shaping Interference Constraints: In many applica-
tions, it is necessary to control the amount of interference gener-
ated along some particular directions, e.g., to protect coexisting
systems (see [10]), defined as follows. Let be the channel
between base station and coexisting system’s user , where
the amount of interference received has to be limited to . Note
that we reserve the indexes , for users within the
system and use the indexes for users of co-
existing systems. Then, the interference constraint is

(4)
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Note that the expectation in (4) is over the signal (rather than
the channel), and thus it is an instantaneous constraint, although
average constraints can be easily considered as well. Evidently,
(4) is tantamount to

(5)

which in turn can be rewritten as

(6)

Using the notation

(7)

we can rewrite (6) as

(8)

This constraint is called soft-shaping interference constraint
(see [10]). To consider average constraints, it suffices to take
the expectation over the channel in (7).

We remark that in the formulation of (8), the matrices
are positive semidefinite and

of rank one. Alternatively, we could define
with an arbitrary rank, where the matrix is such that the
range space identifies the subspaces where the interference level
should be kept under the required threshold.

Interestingly, the soft-shaping interference constraint has an-
other useful interpretation in per-base station power constraint.
If one sets for and , then
the soft-shaping interference constraints corresponds to the total
power transmitted from base station to the coexisting user .

In particular, if is set to be zero in (8) for some , then we
guarantee no interference generated at that location; this type of
constraint is termed null-shaping interference constraint or, in
short, null interference constraint (see [10]).

2) Individual Shaping Constraints: In addition to the SINR
constraints and the soft-shaping interference constraints, we
consider the following two groups of individual shaping con-
straints on the beamforming vectors (see [3]):

(9)

(10)

where and are subsets of the index set of users
within the system and and are the complements of
and , respectively. Also, in (9) and (10), the parameters
and can be any Hermitian matrices. By properly selecting

and , one can formulate different kinds of constraints
on the beamforming vectors (for details, see [3] and references
therein).

Observe that the two main differences between the
soft-shaping interference constraints (excluding null inter-
ference constraints) and the individual shaping constraints are
i) the former affect the beamforming vectors jointly while the
latter is on an individual basis and ii) the matrices and
need not be definite, whereas the matrices in the interference
constraints are positive semidefinite by definition. As a matter
of fact, we point out that a null-shaping interference constraint
is equivalent to a particular case of individual shaping constraint
as well, since with , if and
only if for all .

In addition to the aforementioned SINR and global/indi-
vidual shaping constraints, one can also consider other types
of constraints such as similarity constraints that impose the
beamvector to be not too different from a desired beamvector

: (see [6]).

B. Formulation of the Optimal Beamforming Problem

We consider a beamforming formulation to find the beam-
forming vectors , that minimize the total
transmit power at the base stations

(11)

while ensuring a desired QoS for each user, as well as the
additional constraints on the beamforming vectors previously
described. Specifically, we consider the optimization problem
shown in (12) at the bottom of the page. By rearranging the
first constraints, we can recast the optimal beamforming
problem (OBP) into a separable homogeneous QCQP (see
[7]) as shown in (13) at the bottom of the next page. This is
a nonconvex problem. Furthermore, it was shown in [7] that a
separable homogeneous QCQP problem is NP-hard in general,
and the SDP relaxation for it may not be tight. Nonetheless,
it is possible that some instances of a separable homogeneous
QCQP have strong duality (see [1]–[3]). Note also that (OBP)

(OBP) (12)
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attains its optimality with the first constraints being equality,
i.e., being active.2

C. Semidefinite Program Relaxation

A common approach to deal with nonconvex problems in
practice is to relax the nonconvex constraints to obtain a convex
problem that may approximate the original one (see [11]). Let
us denote by the inner product of Hermitian ma-
trices and . Clearly, . The SDP relaxation
of (13) is shown in (14) at the bottom of the page.

It is seen that adding the rank-one constraints rank
, into (SDR) yields the original problem (OBP), and that

if problem (SDR) has a rank-one optimal solution, say,
, then , is optimal

for the optimal beamforming problem (OBP) [or, in other
words, strong duality holds for (OBP)]. Thus solving (OBP)
amounts to finding a rank-one optimal solution of (SDR). An
SDP is convex and can be solved by interior-point methods in
polynomial time (for example, see [11]), and there are several
easy-to-use solvers available.

D. Solvable Optimal Beamforming Problem

In this paper, we will study a rank-constrained solution of
a separable SDP in more general form than (SDR). Based on
these, we show that several classes of (SDR) have a rank-one
optimal solution. Thus, the corresponding classes of (OBP) are
solvable. In particular, the classes of solvable (OBP) we identify
are with the following parameters.

I) , and . In this case, (OBP) has
SINR constraints, two additional soft-shaping interfer-

ence constraints, and no individual shaping constraint.
II) . In this case, (OBP) has SINR constraints,

two groups of individual shaping constraints, and no soft-
shaping interference constraints.

2If one of the first � inequality constraints, say, the first constraint, is inactive
for the optimal solution ���� � � � � ���� �, then we can always reduce the norm of
��� to get another feasible solution with better objective function value; how-
ever, this contradicts the fact that ���� � � � � ���� � is optimal.

III) , and the parameters and ,
are semidefinite matrices (either positive semidefinite or
negative semidefinite). In this case, (OBP) has SINR
constraints, two additional soft-shaping interference
constraints, and a slightly stricter version of individual
shaping constraints.

III. RANK-CONSTRAINED SOLUTION TO SEPARABLE

SEMIDEFINITE PROGRAM

In this section, we study the separable SDP (SDR) with SINR
constraints and soft-shaping interference constraints only. This
problem can be written in a more general form:

(P0)

(15)
where , i.e., they
are Hermitian matrices (not necessarily positive semidefinite),

, and the design vari-
ables , are Hermitian matrices. Suppose that

is an optimal solution of (P0) with rank profile
rank . In general, there is no control on

the rank profile of an optimal solution. In this section, we study
how to generate another solution with constrained rank from the
solution with arbitrary rank profile. In addition, we investigate a
sufficient condition for a rank-one solution of the separable SDP,
and thus find a class of solvable optimal beamforming problem.

A. Rank-Constrained Solution of Separable SDP

To simplify the analysis, we first consider the problem (P0)
with only equality constraints and then extend conclusions
to (P0) with inequality and/or equality constraints. Thus we
consider

(P1)

(16)

(13)

(SDR) (14)
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The corresponding dual problem is the following SDP:

(D1) (17)

Suppose that (P1) and (D1) are solvable3 and let
be optimal solutions of the problems

(P1) and (D1), respectively (existence is ensured by assuming
that both the primal and dual SDPs have interior points in their
feasible regions, respectively). Notice that they comply with the
complementarity conditions4

(18)

which are equivalent to (due to the positive semidefiniteness of
and )

(19)

Lemma 3.1: Suppose that the separable SDP (P1) and its dual
(D1) are solvable. Then, the problem (P1) has always an optimal
solution such that

rank

Proof: See Appendix A.
We now extend Lemma 3.1 to the separable SDP (P0) with

inequality and/or equality constraints. The dual problem of (P0)
is

(20)

where

is
if is

unrestricted if is
if is

(21)

Suppose that and are
optimal solutions of (P0) and (D0), respectively, and

(22)

3By “solvable,” we mean that the problem is feasible and bounded, and the
optimal value is attained; see [11, p. 1].

4The KKT conditions for SDP (or general linear conic programming) consist
of complementary conditions and primal and dual feasibility only. One may
further refer to [11, Th. 1.7.1, 4)] for strong duality theorem of SDP.

(Observe that for those , with being “ ”) Then
they satisfy the complementary conditions of the SDPs (P0) and
(D0), which are (18) and

(23)

We verify if the current solution fulfills the rank
constraint rank . If the answer is yes, then we
stop; otherwise, by applying the rank reduction procedure pro-
posed in the proof of Lemma 3.1, we can find another solution
of (P0), say, , such that

(i.e., primal feasibility),
, (23) (i.e., the complementary con-

ditions), and the rank constraint rank , are
all satisfied. In other words, the solution is ob-
tained using (P1) (and Lemma 3.1) with the equality constraint
sets matching the optimal solution to (P0). This leads to the next
theorem.

Theorem 3.2: Suppose that the separable SDP (P0) and its
dual (D0) are solvable. Then, the problem (P0) has always an
optimal solution such that

rank (24)

Algorithm 1 summarizes the procedure to produce a rank-
constrained solution of the separable SDP (P0) according to
Theorem 3.2.

At each iteration of Algorithm 1, an undetermined system
of linear equations must be solved. Since the system of linear
equations has equations and real-valued un-
knowns, it can be equivalently rewritten into the form ,
where . Finding a nonzero solution (for

) amounts to finding the null space of matrix A. For a
detailed approach, one may refer to [12], while in Matlab sim-
ulations, one may use the function .

It is known from Pataki [13] (see also [7]) that the separable
SDP (P0), either real-valued case or complex-valued case,5 has
an optimal solution satisfying

rank rank
(25)

However, this rank bound can be improved to (24) for the
complex-valued SDP (P0). We remark that the key to improve
the bound (25) of an optimal solution lies in the fact that the
number of unknowns of the system of linear equations (48) (see
the proof in Appendix A) is , which in turn is due
to the complex-valued Hermitian matrix variables . Conse-

5We say SDP with real-valued parameters and design variables to be real-
valued SDP; in contrast, we say SDP with complex-valued parameters and de-
sign variables to be complex-valued SDP.
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quently, the usual purification technique6 is applicable, and the
basis of Algorithm 1 is an extension of it (see Appendix A for
details).

Algorithm 1: Rank-constrained solution procedure (I) for
separable SDP

Input: ;

Output: an optimal solution with
rank ;

1: solve the separable SDP (P0) finding ,
with arbitrary ranks;

2: evaluate rank , and
;

3: while do
4: decompose ;
5: find a nonzero solution of

the system of linear equations:

where is a Hermitian matrix for all ;
6: evaluate the eigenvalues of for

;
7: determine and such that

8: compute
;

9: evaluate rank , and
;

10: end while

Observe that whenever problem (P0) is nonseparable, i.e.,
, the rank bound (24) of an optimal solution of the

problem (P0) becomes

rank

which coincides with the result in [16, Th. 5.1)] (see also a re-
lated result in [17, Lemma 1]), while the rank bound (25) of an
optimal solution of the problem (P0) becomes

rank rank

which has been well known from [13] as well. This means that
to achieve the same rank of optimal solutions, complex-valued
SDP allows more constraints than real-valued SDP does, as il-
lustrated in Fig. 1.

It follows from Theorem 3.2 that strong duality holds for the
considered rank-constrained SDP, as stated next.

6For purification process of a solution of linear programming, one may
refer to [14, pp. 465–466]; and for purification technique of a solution
of nonseparable SDP, one may refer to [13] (real-valued SDP) or [16]
(complex-valued SDP).

Fig. 1. The numbers of constraints for complex-valued and real-valued SDPs
when they achieve the same rank of optimal solutions.

Corollary 3.3: Suppose that the separable SDP (P0) and its
dual (D0) are solvable. Then, strong duality holds for the fol-
lowing rank-constrained SDP:

rank

(26)

i.e., there is no duality gap between problem (26) and its dual
(D0).7

It is noteworthy that for and , Corollary 3.3
simplifies to the following compact corollary.

Corollary 3.4: If the SDP relaxation of the following QCQP
and its dual are solvable, and , then

(27)

has no duality gap, where , can be any Hermitian ma-
trices.

Observe that if Pataki’s bound (25) is applied, then one can
conclude that the QCQP (27) with only two constraints (i.e.,

) is solvable polynomially. Note also that the problem
solved in [15] belongs to a subclass of (27) by setting

and

and , and
.

7The dual of (26) can be derived by computing the Lagrange dual function
and using the definition of Lagrange dual problem (for example, see [11]) by
treating the rank operator as a function.
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B. Rank-One Solution of Separable SDP

Theorem 3.2 provides a condition for the rank profile of an
optimal solution of problem (P0) but gives no specific rank pro-
file of an optimal solution. Interestingly, it turns out that for
some cases where the constraints of the separable SDP are not
“too much,” there is only one rank profile satisfying (24), for
example, the case of a rank-one optimal solution,8 as illustrated
in the proposition below.

Proposition 3.5: Suppose that the primal problem (P0) and
the dual problem (D0) are solvable. Suppose also that any op-
timal solution of the problem (P0) has no zero matrix com-
ponent.9 If , then (P0) has an optimal solution

with each of rank one.
Proof: See Appendix B.

Observe that if Pataki’s rank bound (25) is applied in the proof
of Proposition 3.5, we get that (P0) has a rank-one solution when

only.
The assumption in Proposition 3.5 that any optimal solution

has no zero matrix component is important. Sufficient condi-
tions that guarantee this are the following (which in fact guar-
antee that any feasible point of problem (P0) has no zero matrix
component):10

(28)

(29)

(30)

(31)

Thus, from Proposition 3.5, (P0) has a rank-one optimal solution
if the parameters of (P0) satisfy the conditions (28)–(31) and

.
Corollary 3.6: Suppose (28)–(31) are satisfied. Then, the fol-

lowing separable QCQP can be solved polynomially (e.g., with
Algorithm 1):

(32)

8Rank-one solution of a separable SDP means an optimal solution of the
problem with each matrix component of rank-one.

9Throughout this paper, by saying that a solution ���� � � � � ���� � has no zero
matrix component, we mean each ��� is not equal to the zero matrix for any
� � �� � � � � �.

10Suppose that the parameters of the constraints of problem (P0) satisfy
(28)–(31). If there is a feasible point ���� � � � � ���� � such that ��� � �, then
the left-hand side of the first constraint is nonpositive while the right-hand side
� � �, and thus a contradiction arises.

where , provided that its SDP relaxation and its dual
are solvable.

It is easily verified that the optimal beamforming problem
(OBP) described in Section II, with and

, belongs to (32) with the conditions (28)–(31) all fulfilled.
Therefore such optimal beamforming problem is solvable, and
an optimal solution is obtained by solving its SDP relaxation
(SDR) and calling the rank reduction procedure described in Al-
gorithm 1. In this case, (OBP) has SINR constraints, two ad-
ditional soft-shaping interference constraints, and no individual
shaping constraints.

It is also noteworthy that the optimal beamforming problem is
solvable with SINR constraints and one similarity constraint
imposing the beamvector for internal user to be not too far
from a desired beamvector : (see [6]). In
particular, such a similarity constraint can be rewritten equiva-
lently as two homogeneous quadratic constraints, and thus the
optimal beamforming problem is a special case of (32).

IV. RANK-CONSTRAINED SOLUTION TO SEPARABLE SDP
WITH INDIVIDUAL SHAPING CONSTRAINTS

In this section, we consider the SDP (P0) with additional in-
dividual shaping constraints as shown in (33) at the bottom of
the page, where

, and the matrix parameters in the
individual shaping constraints are the same as those in (9) and
(10). Problem (P2) is clearly more general than the SDP relax-
ation (SDR). We will investigate procedure of producing a so-
lution of (P2) satisfying some rank constraint and then present
a sufficient condition for the existence of a rank-one solution
of (P2). The optimization tools to be used in the section include
modified procedures of rank reduction (developed in Section III)
and a specific rank-one decomposition technique (see [16]).

A. Rank-Constrained Solution Procedures

For the ease of analysis, we again consider problem (P3) with
the first constraints being equality constraints, as shown in
(34) at the bottom of the next page. The dual problem of (P3) is
shown in (35) at the bottom of the next page. Let

be optimal
solutions of the problems (P3) and (D3), respectively. Thus, they
satisfy the complementary conditions

(36)

(37)

(38)

(33)
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It is clear that by invoking Theorem 3.2, we can get an optimal
solution of (P3) with

rank (39)

Now, we derive tighter upper bounds for the rank of an optimal
solution, resorting to the rank-one decomposition technique [16,
Th. 2.1]. As shall be seen in the next section, the new upper
bounds lead to rank-one solution arguments of the separable
SDP (P2). To proceed, let us quote the rank-one decomposition
theorem in [16] as the following lemma.

Lemma 4.1: Suppose that is an complex Hermi-
tian positive semidefinite matrix of rank and are two

given Hermitian matrices. Then, there is a rank-one
decomposition of (synthetically denoted as ),

, such that

.
Given a general rank optimal solution of (P3), we can obtain

another optimal solution with a constrained rank, as stated in
the next two lemmas, and the construction of such desired rank-
constrained solution can be found in the proofs.

Lemma 4.2: Suppose that the separable SDP (P3) and its
dual (D3) are solvable. Then, problem (P3) has a solution

such that

rank (40)

Proof: See Appendix C.
Observe that, as compared to Theorem 3.2 (and Lemma 3.1),

the expression in (40) does not contain the square in the ranks.

Now, we consider a slightly stricter version of the individual
shaping constraints for the case when there are pairs of pa-
rameters , for some , having the
property that and are semidefinite for all (meaning that
each is either positive semidefinite or negative semidefinite,
and each is either positive semidefinite or negative semidef-
inite). In particular, the condition that means no addi-
tional assumptions on any .

Lemma 4.3: Suppose that the separable SDP (P3) and its dual
(D3) are solvable, and suppose that , for ,
for some , are semidefinite. Then, the
problem (P3) has a solution such that

rank rank

Proof: See Appendix D.
From Lemma 4.3, one can see that individual constraints de-

fined by semidefinite matrices do not contribute to the loss of
the square in the rank, which is very desirable. Note also that
when , Lemma 4.3 coincides with Lemma 4.2.

Lemma 4.3 can be extended to the general separable SDP
(P2). Observe that the dual problem of (P2) is as shown in (41)
at the bottom of the page, where each is defined in the same
way as (21).

Theorem 4.4: Suppose that the separable SDP (P2) and its
dual (D2) are solvable and that , for , for
some , are semidefinite. Then, problem (P2)
has a solution such that

rank rank (42)

(34)

(35)

(41)
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Algorithm 2 contains the procedure for generating a rank-
constrained solution of (P2).

Algorithm 2: Rank-constrained solution procedure (II)
for separable SDP with additional individual shaping
constraints

Input:
;

Output: an optimal solution with
rank rank ;

1: solve the separable SDP with shaping constraints (P2)
finding , with arbitrary rank;

2: evaluate rank , and
;

3: while do
4: perform decomposition , for

, and call the rank-one decomposition
and output , for

;
5: find a nonzero solution

of the system of linear equations:

where is an Hermitian matrix for
, and is an real-valued

diagonal matrix for ; let be
eigenvalues of for .

6: determine and such that

7: compute
;

8: evaluate rank , and
;

9: end while

We remark that in the above rank-reduction procedure, a key
fact leading to the new rank bound (42) is related to the fact that
each real-valued diagonal matrix has free variables
and each Hermitian matrix has real-valued free

variables. Whenever the optimization variables are real-valued,
the reduction matrices , are changed from
being Hermitian to symmetric. This leads to the rank bound

rank rank
rank

for Theorem 4.4 in the setting of real-valued design variables,
since each symmetric reduction matrix has
free variables. Again, when , it reduces to nonseparable
case or coupled case.

In a similar vein to Corollary 3.3, we claim strong duality
for a rank-constrained separable SDP with individual shaping
constraints as the following corollary.

Corollary 4.6: Suppose that the separable SDP (P2) and
its dual (D2) are solvable, and suppose that , for

, for some , are semidefinite.
Then, the rank-constrained separable SDP shown in the equa-
tion at the bottom of the page has zero duality gap with the dual
problem (D2).

In particular, Corollary 4.5 means that a class of homoge-
neous nonseparable QCQP is solvable polynomially, as stated
in the next corollary.

Corollary 4.6: Suppose that the SDPs (P2) and (D2) are solv-
able, with and . If and are semidefinite, then
the following QCQP is solvable polynomially:

where .

B. Rank-One Solution of General Separable SDP

If the assumption of Proposition 3.5 is valid, i.e., if any op-
timal solution of (P2) has no zero matrix compo-
nent (or, equivalently, rank ), then, recalling (39),
we can find an optimal solution of (P2) with

rank

A rank-one solution can then be guaranteed for some choices
of and , for example, , or

. Nonetheless, capitalizing on Theorem 4.4, we claim that the

rank rank
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separable SDP (P2) does have a rank-one solution if some mild
assumptions are imposed.

Proposition 4.7: Suppose that problems (P2) and (D2) are
solvable. Suppose also that any optimal solution
of problem (P2) has no zero matrix component. Then, (P2) has
a rank-one solution if one of two assumptions
holds:

• ;
• and , for all , are semidef-

inite.
Proof: See Appendix E.

Recall that conditions (28)–(31) ensure that every feasible
point of (P2) has no zero matrix component, and this leads to
the next corollary.

Corollary 4.8: Suppose (28)–(31) are satisfied. Then, the sep-
arable QCQP as shown in (43) at the bottom of the page can be
solved polynomially (e.g., with Algorithm 2), where either

• ;
• and , for all , are semidef-

inite;
as long as its SDP relaxation and its dual are solvable.

Accordingly, the optimal beamforming problem (OBP) of
Section II, with , is solvable, provided that the corre-
sponding SDP relaxation (SDR) and its dual are solvable; an
optimal solution of (OBP) can be returned by solving (SDR)
and calling Algorithm 2 with . In this case, (OBP) has
SINR constraints, two groups of individual shaping constraints,
and no soft-shaping interference constraints.

Likewise, if the specific (SDR) and its dual are solvable, then
(OBP) is solvable, with and the parameters
and , being semidefinite matrices. An optimal
solution (OBP) can be output by solving the SDP (SDR) and
calling Algorithm 2 with . In this case, (OBP) has
SINR constraints, two soft-shaping interference constraints, and
a slightly stricter version of individual shaping constraints. In
particular, the SDP [a special case of (SDR)] shown in (44) at
the bottom of the page has a rank-one solution, with
and , provided that both the problem and its
dual are solvable. In fact, the last two constraints are individual
shaping constraints.

V. NUMERICAL RESULTS

In this section, we provide some numerical examples illus-
trating the performance of the algorithms for the optimal down-
link beamforming problem.

For simplicity, we simulate a scenario with a single base sta-
tion serving three users, i.e., , in problem (OBP). Each
user is equipped with a single antenna, and the base station has

antenna elements. The users are located at
and relative to the array broadside. The

channel covariance matrix for users is generated ac-
cording to (see [2])

(45)

, where is the angular spread of
local scatterers surrounding user . The noise variance is set to

for users . The SINR threshold values
are set to . In addition, we consider two
external users from another coexisting wireless system, located
at and , relative to the array broadside of the
base station. The channel between the base station and the two
external users is given by (assuming a uniformly spaced array
at the base station)

(46)

where and is the antenna element sep-
aration (we set ). This gives two additional soft-
shaping interference constraints in the optimal beamforming
problem (OBP).

In order to illustrate the effect of these two additional soft-
shaping interference constraints (or null-shaping interference
constraints), we evaluate the power radiation pattern of the base
station, for , according to

where is an optimal solution of the problem (OBP)
and is defined in (46). We make use of the optimization
solver (see [18]) to solve the SDPs.

(43)

(SDR1) (44)
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Fig. 2. Radiation pattern of the transmitter for the problem with SINR con-
straints only. The required transmit power is 16.10 dBm.

Fig. 3. Radiation pattern of the transmitter for the problem with two additional
soft-shaping interference constraints �� � �� � �� � �� � � � ��� dBW,
and � � ��� dBW. The required transmit power is 19.05 dBm.

Example 1: In this example, we set the tolerable values for
the two external users are and , respec-
tively, that is, , in problem
(OBP).

Fig. 2 shows the optimal radiation pattern of the base station
in the case that (OBP) in (12) has only the SINR constraints
without the soft-shaping interference constraints (the minimal
required transmit power is 16.10 dBm). As can be seen, the in-
terference generated at the locations of the two external users
( and ) is high. Fig. 3 shows the radia-
tion pattern when soft-shaping interference constraints are in-
cluded in (OBP) to protect the two external users, in addition
to the SINR constraints. In this case, as expected, the radiation
power in the directions of the two external users is below the pre-
scribed values and , at the cost of an increase of the minimal

Fig. 4. Radiation pattern of the transmitter for the problem with two additional
null-shaping interference constraints and two additional soft-shaping interfer-
ence constraints �� � ��� � �� � �� � �� � �� � �� � �� � � � ���

dBW, � � ��� dBW, � � �	
� dBW, � � �	
� dBW. The required
transmit power is 20.81 dBm.

transmit power from 16.10 to 19.05 dBm. In other words, in the
former case (as shown in Fig. 2), the minimal transmit power is
lower but with no control on the radiation power towards the two
external users; in the latter case (as shown in Fig. 3), the min-
imal transmit power is higher but with being able to keep the
radiation power towards the two external users under the given
tolerable values, respectively. The tradeoff is evident from op-
timization standpoint: the feasible region in the former case is
larger than the one in the latter case, and thus the minimal value
in the former case is less than the minimal value in the latter
case.

Example 2: In this case, we consider four external users from
other wireless systems, located at

and , with tolerable values
and , respectively. The SINR

threshold values for the three internal users are the same as those
used in Example 1. Therefore, the problem considered in the ex-
ample is tantamount to (OBP)’s having three SINR constraints,
two soft-shaping interference constraints (i.e., ), and
two null-shaping interference constraints (or, equivalently, two
group of individual shaping constraints with
and ).

Fig. 4 shows the optimal radiation pattern of the base sta-
tion with all types of constraints (the minimal required transmit
power is 20.81 dBm).

Example 3: In this example, we compare the minimal re-
quired transmit power transmitted at the base station for dif-
ferent SINR threshold values, which we set to

. We consider two external users from other wireless systems,
located at and , respectively, with toler-
able values set to . In other words,

in problem (OBP). Fig. 5 displays the
minimal required transmit power versus for the cases of null
interference constraints, soft-shaping interference constraints,
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Fig. 5. Minimal transmission power versus the threshold value of QoS.

and no interference constraints. It can be observed that the re-
quired power is larger with null-shaping interference constraints
than with soft-shaping interference constraints (as the null con-
straints are more stringent than the soft ones).

Example 4: This example considers interference constraints
robust to uncertainty in the direction of an external user. This
can be easily achieved by inducing an interference constraint
not just along the estimated channel but also along its
derivative (see [19])

where and is the same as the one in
(46). In particular, the derivative shaping constraint is

(47)

In addition to the three internal users, we consider in this
example three external users from other wireless systems,
located at , with tol-
erable values ,
respectively. For external user 3, we add the derivative
shaping constraint (47) with . This problem is
equivalent to (OBP) with

.
Fig. 6 exhibits the optimal radiation pattern of the base station
(the required transmit power is 16.38 dBm). As can be seen,
the power radiated around is maintained below the
tolerable value.

VI. CONCLUSION

In this paper, we have considered the optimal downlink beam-
forming problem that minimizes the transmission power sub-
ject to SINR constraints for users within the system, as well
as soft-shaping interference constraints to protect other users

Fig. 6. Radiation pattern of the transmitter for the problem with �� � ��� �
�� � �� � �� � �� � � � ��� dBW, � � ���	 dBW, � � �
� dBW,
and � � ���	 dBW. The required transmit power is 16.38 dBm.

from coexisting systems, and individual shaping constraints.
The problem belongs to the class of separable homogeneous
QCQP. For this reason, we have studied rank-constrained so-
lutions of general separable SDPs and proposed efficient rank
reduction procedures. Based on these, we have shown that three
classes of the optimal beamforming problem (OBP) are solvable
by arguing that the corresponding SDP relaxation has always
a rank-one optimal solution. The solution can be generated by
solving the SDP relaxation and invoking the rank reduction pro-
cedure. Numerical examples have been conducted to illustrate
the flexibility of the proposed framework of rank-constrained
SDP in the context of downlink beamforming.

APPENDIX

A. Proof of Lemma 3.1

Proof: Suppose and
are optimal solutions of the problems (P1) and (D1),

respectively. Let rank . By decom-
posing , we get

We consider the following system of linear equations:

(48)

where is an -by- Hermitian matrix. Note that there
are real-valued unknowns11 in the entries of the com-
plex-valued ; therefore the system (48) has equations and

unknowns.

11The number of unknowns for a real part of� is � �� � 
���, and the
number of unknowns for imaginary part of� is �� � 
�� ��.
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If , then there is a nonzero solution of the system
of linear (48), say, . Let , be
eigenvalues of . Let and be such that

Thus it is easily seen that the matrices

Let . Then
we claim that the new , have the following
properties:

• rank reduced of at least one: ,
where rank ;

• primal feasibility:
, and ;

• complementarity (optimality):
, due to the fact

that .
In other words, the feasible solution is optimal
for problem (P1).

Now check if . If it is the case, repeat the
above rank-deduction procedure; else, then stop, and we have

. This proves the theorem.

B. Proof of Proposition 3.5

Proof: By assumption, any given optimal solution
of problem (P0) has no zero matrix component,

i.e., rank . It follows by Theorem 3.2 that problem
(P0) has an optimal solution such that

rank

This implies rank , for .

C. Proof of Lemma 4.2

Proof: Suppose and
are optimal solutions of the prob-

lems (P3) and (D3), respectively. Let
rank , and .

Assume that ; and without loss of generality, we sup-
pose that (if some , then keep the component

always). It follows by the rank-one decomposition in
Lemma 4.1 that for each , there is a rank-one decomposition
of

such that

Applying the same rank reduction procedure as that in the proof
of Lemma 3.1, we let

. . .

be real-valued diagonal matrices (instead of Hermitian ma-
trices), which satisfy the system of linear equation

and let and be such that

Now we verify that the solution

has the following properties.
• Rank reduced of at least one: ,

where rank .
• Complementarity (optimality) conditions: since

, then
; further, we have

Indeed, since

then

• Primal feasibility:
, and ; also

if
if
if

(49)
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if
if
if

(50)

As a matter of fact, if , then
, due to ; and

similarly, ,
if .

In other words, the feasible solution is optimal
for problem (P3) and is of rank reduced at least by one. Repeat
the above procedure, starting from employing the rank-one de-
composition lemma, if . Then, at the end, we
get an optimal solution , of problem (P3), with

rank .

D. Proof of Lemma 4.3

Proof: If , the lemma has been proven by Lemma
4.2. Now, we only show the case of , and for ,
the proof is completely similar. Suppose and

are op-
timal solutions of problems (P3) and (D3), respectively. Let

rank ,
and . Assume that ; and .

Like the proof of Lemma 4.2, apply the rank-one decompo-
sition in Lemma 4.1 for , and find

such that

Compute any decomposition . We let be
an Hermitian matrix with eigenvalues
and be a diagonal matrix with real-valued elements

. Assume that they satisfy the linear
equation system

and let and be such that

Set

We verify that the new solution has the following properties.
• Rank reduced at least by one.
• Complementary conditions: clearly,

, and , and
(as shown in the proof of Lemma

4.2). Now suppose and then we have to check

(note that there is no need to check it if
). If , then , and this implies

, which in turn means that and
. If , we have either

or ; in the former case, it follows that
, and then ; in the latter case,

due to , and thus .
Similarly, we have if .

• Primal feasibility: evidently,
, and . From the proof of Lemma 4.2

[see (49) and (50)], we can see that , fulfill
the individual shaping constraints. Now we need to verify

, where . If , then
, and then ; if ,

then in case of , and in
case of . Also is confirmed by an
equal argument.

Consequently, the solution is optimal for (P3)
and is of rank reduced by one at least. Repeat the above
rank-reduction procedure; at the end, we get an optimal solu-
tion with rank rank .

E. Proof of Proposition 4.7

Proof: By assumption, any optimal solution has
rank . If , then applying
Theorem 4.4 with gives that there is an optimal solution

such that

rank

This means that rank .
If and , for all , are semidef-

inite, then applying Theorem 4.4 with leads to the fact
that there is an optimal solution such that

rank

This also means that rank .
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