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Abstract—This paper considers the downlink beamforming
optimization problem that minimizes the total transmission power
subject to global shaping constraints and individual shaping con-
straints, in addition to the constraints of quality of service (QoS)
measured by signal-to-interference-plus-noise ratio (SINR). This
beamforming problem is a separable homogeneous quadratically
constrained quadratic program (QCQP), which is difficult to solve
in general. Herein we propose efficient algorithms for the problem
consisting of two main steps: 1) solving the semidefinite program-
ming (SDP) relaxed problem, and 2) formulating a linear program
(LP) and solving the LP (with closed-form solution) to find a
rank-one optimal solution of the SDP relaxation. Accordingly, the
corresponding optimal beamforming problem (OBP) is proven
to be “hidden” convex, namely, strong duality holds true under
certain mild conditions. In contrast to the existing algorithms
based on either the rank reduction steps (the purification process)
or the Perron-Frobenius theorem, the proposed algorithms are
based on the linear program strong duality theorem.

Index Terms—Downlink beamforming, LP approach, rank-con-
strained solution, SDP relaxation.

I. INTRODUCTION

D OWNLINK transmit beamforming has recently received
a lot of attention, since techniques of beamforming can

be utilized to achieve higher spectrum efficiency and larger
downlink capacity for a communication system by equipping
the base stations with antenna arrays (see [1]). The base sta-
tions of the system transmit the weighted signals to all intended
co-channel users simultaneously, and the beamforming vectors
(the weights) are jointly designed, one per user, in the opti-
mization problem.

A basic formulation for the optimal downlink beamforming
problem is to minimize the transmission power subject to the
individual quality of service (QoS) constraint of each user as
well as some additional beam pattern constraints. The QoS is
often measured in terms of signal-to-interference-plus-noise
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ratio (SINR). In the seminal work [2] and [3], the optimiza-
tion problem with SINR constraints was solved resorting
to semidefinite program (SDP) relaxation technique and the
Perron-Frobenius theory for matrices with nonnegative entries.
In [4], the authors further considered the optimal beamforming
problem (OBP) additionally with indefinite shaping constraints
(individual shaping constraint termed herein). In [5], we ap-
plied rank reduction techniques to yield an optimum of the
SDP relaxation of the problem with SINR constraints as well as
either two soft-shaping interference constraints or two groups
of individual shaping constraints (i.e., two indefinite shaping
constraints on each user). There are also other early works on
the optimization with QoS constraints, for instance, [6] and [7],
where the authors solved an equivalent virtual uplink formula-
tion of the optimization problem. For multicast beamforming,
we refer to the overview paper [1], the book chapter [8], and
the earlier paper [9].

An alternative formulation for the optimal downlink beam-
forming problem is to maximize the minimum SINR value
among the intended receivers subject to the power budget con-
straint. The resulting optimization problem and the relationship
between the two formulations have been studied in [7] and [4]
for the unicast beamforming case, and in [10] and [11] for the
multicast beamforming case. In addition to the above transmit
beamforming problems, one may refer to the paper [1] for
optimization problems of receive beamforming and network
beamforming.

The beamforming problem we study herein is the power
minimization problem subject to the QoS constraints, global
shaping constraints, and individual shaping constraints. Partic-
ularly, it is of interest to introduce the soft-shaping interference
constraints which belong to a subclass of the global shaping
constraints. Their introduction is motivated as a way to protect
coexisting wireless systems which may operate in the same
spectral band, located in the same area. In words, when op-
timizing the beamforming vectors, we take into account that
the interference level generated from the system of interest to
the users of coexisting systems should be under a very low
level. The individual shaping constraints are introduced to limit
the beam pattern for each individual user, and the motivation
has been addressed in [4]. The problem belongs to a class of
the nonconvex separable quadratically constrained quadratic
program (QCQP), which is known to be NP-hard in general
(e.g., see [8] and [12]). In particular, a convex relaxation of the
optimization problem may or may not be tight; for instance, the
SDP relaxation of the problem could have optimal solutions
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of rank higher than one only, or equal to one as well as higher
than one. Nonetheless, it is possible for us either to find some
instances of the nonconvex QCQP that can still be solved
efficiently, or to find a polynomial approximation algorithm for
some instances of it with a provable and satisfactory approxi-
mation performance guarantee (e.g., see [12]).

In this paper, we aim at establishing another efficient algo-
rithm for the OBP, by which we enlarge the class of “solvable”
instances of the downlink beamforming optimization problem.
The presented algorithms are based on solving the SDP re-
laxation of the beamforming optimization problem and then
solving a formulated linear program (LP) to retrieve a rank-one
solution of the SDP (i.e., an optimal solution of the original
beamforming problem), based on the linear program strong
duality. Specially, the two main contributions of the paper are:
i) simplified algorithms providing a rank-one solution, as well
as a rank-constrained solution with a prefixed rank profile, for
a separable SDP; ii) two more solvable subclasses of the OBP
identified under some mild conditions (besides those subclasses
of the problem discussed in [5]).

In contrast to the iterative procedure of rank reduction (also
known as purification process) for the separable SDPs in [5],
the presented algorithms herein output a rank-one solution by
solving an LP in one single step, thus the implementation is
easier by a standard solver since the algorithms merely involve
solving an SDP and an LP (which in fact has a closed-form solu-
tion). A limitation of [5] is that the rank reduction procedure can
be employed to solve the OBP with up to two soft-shaping in-
terference constraints, while the algorithms herein can be appli-
cable to the problem with no soft-shaping constraints, but with
multiple groups of the individual shaping constraints. Another
major difference is that the rank reduction procedure works on
the primal optimal solution set only, i.e., searching primal op-
timal solutions of lower rank, while the algorithms of this paper
capitalize on some properties of the dual optimal solution to for-
mulate LPs and thus a rank-one solution of the primal SDP is
generated through the dual.

The outline of the paper is as follows. Section II gives the
system model and formulates the optimal downlink beam-
forming problem. The individual shaping constraint and global
shaping constraint are introduced and discussed. In Section III,
we revisit and extend the rank reduction process for separable
SDP from the primal perspective as in [5], while in Section IV
we propose algorithms for separable SDP from the dual per-
spective. In Section V, the algorithms are generalized to cope
with more beam pattern constraints. In Section VI, we sum-
marize particular instances of solvable of the optimal (unicast)
downlink beamforming problem. In Section VII, we present
some numerical results for simulated scenarios of the OBP.
Finally, Section VII draws some conclusions.

Notation: We adopt the notation of using boldface for vec-
tors (lower case), and matrices (upper case). The transpose
operator and the conjugate transpose operator are denoted by
the symbols and respectively. is the trace of the
square matrix argument, and denote respectively the identity
matrix and the matrix with zero entries (their size is determined
from the context). The letter represents the imaginary unit (i.e.,

), while the letter often serves as index in this paper.

For any complex number , we use and to denote
respectively the real and the imaginary part of , and
to represent respectively the modulus and the argument of ,
and to stand for the conjugate of . The Euclidean norm of
the vector is denoted by . stands for the largest
eigenvalue of . We employ standing for the inner product

of Hermitian matrices and . The curled inequality
symbol (and its strict form ) is used to denote generalized
inequality: means that is an Hermitian positive
semidefinite matrix ( for positive definiteness). We de-
note by the set of -dimension nonnegative vectors.

II. PROBLEM FORMULATION OF OPTIMAL DOWNLINK

BEAMFORMING PROBLEM

A. System Model

Consider a wireless system where base stations (BSs), each
with an array of antenna elements, serve single-antenna
users over a common frequency band. Each user is assigned to
base station and receives an independent data
stream from the base station. It is assumed that the scalar-
valued data streams , , are temporally white
with zero mean and unit variance. The transmitted signal by the

th base station is , where
is the transmit beamforming vector for user , and the index
set represents the set of users assigned to base
station .

The signal received by user is expressed with the baseband
signal model

(1)

where is the channel vector between base station
and user , and is a zero-mean complex Gaussian noise
with variance . The SINR of user is given by

(2)

where is the downlink channel correla-
tion matrix. Note that (2) defines the average SINR, and it is
a long-term SINR (as opposed to the instantaneous SINR). An-
other application where an expression similar to (2) arises is in a
multiple-input multiple-output (MIMO) communication system
using orthogonal space-time block codes (OSTBC) in combi-
nation with beamforming (cf. [13]); in particular, each term of
the form in (2), , respectively, becomes

, where .

B. Beam Pattern Constraints

In the classical optimal downlink beamforming problem (for
instance, see [2] and [3]), the beamforming vectors are designed
to ensure that each user can retrieve the signal of interest with
the desired QoS, which is usually described by the SINR con-
straint with a prefixed threshold for user .
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Besides, some additional constraints on the beamforming vec-
tors described next may be of interest in a modern wireless com-
munication system.

1) Individual Shaping Constraints: In this paper, we con-
sider the following groups of individual shaping constraints
on the beamforming vectors , (cf. [4])

(3)

where , , are subsets of the index set
of users within the system, and the parameters , ,

, are Hermitian matrices, i.e., may have nega-
tive and/or nonnegative eigenvalues.

Note that the constraints (3) affect each user individually, in
other words, the desired beamforming vector for user is limited
by

where . By properly selecting , one can formu-
late different kinds of constraints on the beamforming vectors
(for example, see [4, Sec. V] for the discussion of various appli-
cations for individual shaping constraints).

2) Global Shaping Constraints: Herein, the following global
shaping constraints (compare with the individual constraints) on
beamforming vectors are considered:

(4)
where matrices are Hermitian. In general, every could
be any Hermitian matrix and we will specify in the later
applications. We now consider some specific constraints that
belong to the global constraints.

Soft-Shaping Interference Constraints. In some scenarios,
it is necessary to limit the amount of co-channel interference
generated along some particular directions, e.g., to protect co-
existing systems (see [14]), defined as follows. Let be the
channel between base station and coexisting system’s user ,

, where we reserve the indexes
for users within the system for which beamforming vectors are
designed. The amount of interference received by coexisting
system’s user from the system is

Let us adopt the notation

(5)

The soft-shaping constraint limiting the amount of interference
received to a given tolerant value is

(6)

Null-Shaping Interference Constraints. By setting
in (6), we guarantee no interference generated at that location;
this type of constraint is termed null-shaping interference con-
straint or, in short, null interference constraint (see [14]). It can
be verified that a null-shaping interference constraint is math-
ematically equivalent to a group of individual equality shaping
constraints, that is

where , , is equivalent to .
Robust Soft-Shaping/Null-Shaping Interference Con-

straints. Suppose that external user is located at relative
to the array broadside of base station . Let the channel between
base station and external user be given by

(7)

where , is the antenna element separa-
tion, and is the carrier wavelength. Note that (7) defines a Van-
dermonde channel vector which arises when a uniform linear
antenna array (ULA) is used at the transmitter under far field,
line-of-sight propagation conditions. The interference power re-
ceived by external user from base stations , ,
is

where . To keep the interference under
threshold value in a small region about , we
may impose the robust soft-shaping interference constraint

(8)

When is small enough, the power received
can be approxi-

mated using the first-order Taylor expansion of the
channel (cf. [15]) as

, where
. Therefore, a parametric way to approx-

imately ensure (8) is to set the response power along the
derivative of the channel to zero:

(9)

on top of the nominal soft-shaping interference constraint

(10)
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C. Optimal Downlink Beamforming Problem and SDP
Relaxation

This paper focuses on the design of downlink beamforming
vectors , , that minimize the total transmit power
at the base stations while ensuring a desired QoS for each user,
as well as global shaping and individual shaping constraints.
Specifically, we consider the beamforming optimization
problem (OBP) shown in (11) at the bottom of the page, which
can be rewritten equivalently into a separable homogeneous
QCQP (see [8]) as (12) shown at the bottom of the page. In [5],
we considered problem (OBP) with two groups of individual
shaping constraints only, while more groups of individual
shaping constraints are involved herein (a total of groups).
Clearly, the problem is a nonconvex separable homogeneous
QCQP problem, which is known to be NP-hard in general (see
[8]), and its SDP relaxation may not be tight. Nevertheless,
there are some instances of separable QCQP (OBP) having
strong duality (see [2]–[4] and [5]). The SDP relaxation of (12)
is (SDR) shown in (13) at the bottom of the page. It is known
that an SDP is convex and that a general-rank solution of it can
be obtained by interior-point methods in polynomial time (see
[16, Ch. 4] for instance) provided it is solvable1. Also there
are several easy-to-use solvers for SDPs. We highlight that
solving (OBP) amounts to finding a rank-one optimal solution

1By “solvable” we mean that the problem is feasible, bounded, and the op-
timal value is attained (e.g., see [16, p. 13]).

of its SDP relaxation problem (SDR); however, retrieving a
rank-constrained (e.g., rank-one) solution2 from a solution of
arbitrary rank is often nontrivial (if possible at all).

In this paper, we will build another approach for the OBP.
The presented approach simply consists of solving an SDP and
an LP. This approach gives a rank-one solution and, more gener-
ally a rank-constrained solution with a prefixed rank profile. We
will summarize all the particular instances of the general QCQP
downlink beamforming problem (OBP) described by a table in
the end of this paper (i.e., Table I in Section VI).

III. SEPARABLE SEMIDEFINITE PROGRAMMING FROM THE

PRIMAL: REVISIT AND EXTENSION

Consider a separable SDP as follows:

(14)
where , , , i.e., they
are Hermitian matrices (not necessarily positive semidefinite),

, , . The dual problem

2A rank-one solution ���� � � � � ���� � of (SDR) means �������� � � 	, ��.

(11)

(12)

(13)
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of (P0) is (15) shown at the bottom of the page, where is
defined according to

if
if
if

(16)
In [5], we aimed at generating a rank-constrained solution of
(P0) from the primal perspective, which means that we update
the primal optimal solutions of the SDP by a rank reduction
procedure while fixing a dual optimal solution. In this section,
we shall elaborate how to get a rank-constrained solution for
problem (P0) with the additional groups of individual semidef-
inite shaping constraints as well as the first (global) con-
straints, from the primal perspective. This section serves the pur-
pose of a revisit and slight extension of [5], and not a major part
of this paper.

A. Revisit and Extension

Suppose that the parameters in problem (P0) comply with

(17)

and that (P0) and (D0) are solvable. Let and
be optimal solutions of

problems (P0) and (D0), respectively. Then, they satisfy the
complementary conditions (see [16, Th. 1.7.1, 4)] for instance)
of SDPs (P0) and (D0):

(18)

(19)

(20)

where (18) is equivalent to , since
and , . Similar to the purification process

introduced in Theorem 3.2 and Algorithm 1 of [5], a rank-con-
strained optimal solution of (P0) can be constructed from a gen-
eral-rank solution, and we have the theorem and algorithm for
(P0).

Theorem 3.1: Suppose that the parameters comply with
(17). Suppose that the separable SDP (P0) and its dual (D0) are
solvable. Then, problem (P0) has always an optimal solution

such that

(21)

Proof: See Appendix A.

As seen from the proof, Algorithm 1 summarizes the rank
reduction procedure.

Algorithm 1: Rank Reduction Procedure for Separable SDP

, , , , ;

an optimal solution with
;

1:solve the separable SDP (P0) finding , with
arbitrary ranks;

2:evaluate , , and ;

3:

4: decompose , ;

5: find a nonzero solution of the system of
linear equations:

where is a Hermitian matrix for all ;

6: evaluate the eigenvalues of for
;

7: determine and such that

8: compute , ;

9: evaluate , , and
;

10:

It is noteworthy that since the feasibility and optimality are
always satisfied in the each iterative step of the purification
process, Algorithm 1 can be applied to problem (P0) with or
without the groups of individual semidefinite shaping con-
straints. Indeed, there is another way to more efficiently cope
with the groups of individual semidefinite shaping constraints.
The inequality constraint is redundant and can be
removed if , and can only be satisfied with equality if

. Observe that is equivalent
. We thus preprocess the individual shaping constraints as fol-

lows: (i) Discard the constraints with
(i.e., by setting these ), and (ii) set if

, and (iii) group them into

(22)

(15)
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where . In words, after this preprocessing,
the groups of individual semidefinite shaping constraints are
turned equivalently into one group of individual constraints. It
is seen that if , then the columns of are in

, that is, can be expressed as , where
the orthonormal columns of span . Hence, by re-

placing in the optimization problem and
optimizing over , the dimension of the search space is de-
creased and the individual semidefinite shaping constraints are
automatically satisfied.

Theorem 3.1 provides an upper bound of the rank profile of
a solution which can be purified. Interestingly, it turns out that
for some cases where the constraints of (P0) are not “too much,”
there is only one rank profile satisfying (21), for example, the
case of a rank-one optimal solution when the number of con-
straints is no more than , as stated in the proposition here.

Proposition 3.2: Suppose that the parameters comply
with (17). Suppose that the primal problem (P0) and the dual
problem (D0) are solvable. Suppose also that any optimal so-
lution of problem (P0) has no zero matrix component. If

, then (P0) has an optimal solution with
each of rank one.

In particular, sufficient conditions guaranteeing that any op-
timal solution has no zero matrix component are the following
(which in fact guarantee that any feasible point has no zero ma-
trix component):

(23)

(24)

(25)
It thus follows from Proposition 3.2 that (P0) has a rank-one op-
timal solution if its parameters satisfy the conditions (23)–(25)
and .

It is easily verified that the beamforming SDP relaxation
problem (SDR) of Section II, with and ,
fulfills conditions (23)–(25), thus it has an optimal solution of
rank one. In other words, the OBP is solvable with SINR
constraints, two additional soft-shaping interference constraints
and groups of individual semidefinite shaping constraints
(an optimal solution is obtained by solving its SDP relaxation
problem (SDR) and calling the rank reduction procedure de-
scribed in Algorithm 1), provided that the SDP relaxation of
(OBP) and its dual are solvable.3

3This means that there is no gap between the SDP relaxation and the original
(OBP), and we see the relation between the solvability of the SDP relaxation
and the solvability of the problem (OBP): If the SDP relaxation is solvable,
then the original (OBP) is solvable, and vice versa (the solvability of the SDP
relaxation follows from the SDP strong duality theorem since the dual of the
SDP relaxation is strictly feasible and the SDP relaxation is feasible due to the
feasibility of the original (OBP)).

B. An Application in Multicast Downlink Beamforming

We find another application of Proposition 3.2 in a scenario of
multicast beamforming (e.g., see [10]). Consider a communica-
tion system with a single BS (transmitter) equipped with a -el-
ement antenna array and receivers, each with a single antenna.
Let be the channel correlation matrix between the transmitter
and receiver . Each receiver listens to a single
multicast stream , where is the
total number of multicast groups with being
the index set of the receivers participating in multicast group

. has the following properties: ,
, , and . The trans-

mitted signal at the BS is , where
is the beamforming vector for group and is the data
stream directed to receivers in group (the data streams are
assumed to be temporally white with zero mean and unit vari-
ance and mutually independent). The optimal design of mul-
ticast transmit beamforming is formulated into the minimiza-
tion problem of the total transmission power at the BS subject
to meeting prescribed SINR constraints at each of the re-
ceivers, as well as some soft-shaping interference constraints
[cf. (6)]: Problem (26) shown at the bottom of the page, where

, .
It is known from [9] that problem (26) is NP-hard when
and . When , problem (26) coincides with a

single-BS instance of problem (OBP). It follows from Proposi-
tion 3.2 that the following instances of multicast beamforming
problem (26) are solvable with parameters: (I) ,

, , , ; (II) ,
, , , ; (III) ,

, , , , .

IV. SEPARABLE SEMIDEFINITE PROGRAMMING FROM THE

DUAL PERSPECTIVE

The previous section focuses on rank-constrained solu-
tions of a separable SDP from the primal perspective, in the
sense that in each rank reduction step, an optimal solution of
the primal separable SDP is updated such that the rank sum

is decreased at least by one, while the optimal
solution of its dual remains the same. At the end of the iterative
procedure, it outputs another solution of rank
satisfying .

It turns out that the rank of each matrix component
is however under no control, namely, the rank profile

is not known exactly a priori.
This section aims at another efficient algorithm for a separable
SDP from the dual perspective, in the sense that an optimal

(26)



4260 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 58, NO. 8, AUGUST 2010

Fig. 1. The primal approach ffis based on iterative purification steps (rank re-
duction steps) while the dual approach is based on solving an LP in one single
step. (a) Primal approach. (b) Dual approach.

solution of its dual problem is explored so as to produce
a rank-constrained (e.g., rank-one) solution of the (primal)
separable SDP. Interestingly, the rank profile of the output
solution is controllable by the user in some sense as it will be
later described, and the desired optimal solution can be found
by solving an LP in one single step, which is in contrast to
the iterative rank reduction steps (i.e., the purification steps)
described in Algorithm 1 derived from the primal perspective
(see Fig. 1 for a pictorial comparison).

Consider the following separable SDP and its dual:

(27)
and

(28)
where

(29)

and , , are defined in (16). The complemen-
tary conditions for the primal and dual SDPs (P) and (D) are

(30)

(31)

where and are fea-
sible points of (P) and (D), respectively. In other words, if a fea-
sible primal-dual pair
satisfies (30) and (31), then the pair is optimal.

A. Properties of the Separable SDPs (P) and (D)

Assume that the parameters of problem (P) satisfy

(32)

(33)

In particular, the SINR constraints of OBP [cf. (12)] have their
parameters fulfilling (32) and (33). Due to the assumptions (32)
and (33), problems (P) and (D) have some specific properties,
the proofs of which are based on feasibility and complemen-
tarity of (P) and (D).

Proposition 4.1: Suppose that the parameters of (P) satisfy
(32) and (33), and that both SDPs (P) and (D) are solvable,
with solutions and ,
respectively. Then

(i) , ;
(ii) , and , .

Proof: See Appendix B.
Let us further assume that the parameters satisfy

(34)

and

(35)

Note that (35) implies that , (as-
suming problem (P) is feasible). Particularly, the soft-shaping
interference constraints of (OBP) comply with assumption (35),
and the parameters of the objective function of (OBP) satisfy the
assumption (34).

Proposition 4.2: Suppose that the parameters of (P) satisfy
(32)–(35), and that both SDPs (P) and (D) are solvable, with so-
lutions and , respec-
tively. Then, .

Proof: See Appendix C.
Now, let us investigate some properties of the optimal solu-

tion set of dual SDP (D). We define the set shown in (36) at
the bottom of the page, given . In
the particular case of , the set defined in (36) reduces
to (37), shown at the bottom of the page, and it is seen that

for .
Assume that is an optimal solution of (D)

and (P) is solvable and the parameter assumptions (32) and
(33) are satisfied, it thus follows from Proposition 4.1 that

(36)

(37)
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. Additionally assume that
the parameter assumptions (34) and (35) are fulfilled, it then
follows from the complementary condition (30) that the op-
timal solutions of (P) must be of rank one if the matrices in

are of rank (it is the case, for instance,
when matrices are of rank one, i.e., , where ,

, are the channel vectors).
In addition, the following result gives an explicit character-

ization of the elements of set ,
where is given.

Proposition 4.3: Suppose that is
given and , where the param-
eters , fulfill (32), (34) and (35). Then,

(i) , ,
where ;

(ii) , , amounts
to and , ;

(iii) the set contains only one point with
, .

Proof: See Appendix D.
We remark that when , it follows from Proposition

4.3 (iii) that the optimal solution of problem (D) is unique. In
particular, the dual of the OBP with only SINR constraints (no
soft-shaping constraints) has an unique optimal solution.

B. Rank-One Solution of Separable SDP Via Linear
Programming

Here, we consider the separable SDP (P) with the first con-
straints only (i.e., ) and propose an efficient algorithm by
solving a linear program based on observations of the previous
subsection. From Theorem 3.1, we know that for there
always exists a rank-one solution, which we are about to present
a new way to output. Other interesting results on problem (P) in-
volving more types of constraints will be presented in the next
section. The problem and its dual are

(38)

and

(39)

where and are defined in (29) and (16), respectively,
and we assume that the parameters of problem (P1) satisfy con-
ditions (32)–(34). Observe that the SDP relaxation problem of
the OBP of Section II with only SINR constraints belongs to the
class of problem (P1).

Suppose that both (P1) and (D1) are solvable, and
let and be op-
timal solutions of (P1) and (D1), respectively. It fol-
lows from Proposition 4.1 that , ,
and , , and from Proposition 4.2 that

. In other
words, we can safely change the general inequalities of
problem (P1) into inequalities without loss of generality.
Therefore, from now on we will consider each and
the corresponding in (38) and (39).

It is clear that the set defined in (37) is equivalent to
(40), shown at the bottom of the page. Given the solution

, the corresponding in (40) can be taken as
follows: , , for . In an
alternative way, one may take and .
Indeed, since and (from the complemen-
tary condition (30)), it follows that
and .

Now, let us investigate how to retrieve a rank-one solution of
(P1) from , each component of which could be of
arbitrary rank. We formulate the following LP shown in (41) at
the bottom of the page. Note that vectors are fixed parame-
ters and not part of the optimization. This LP possesses the key
properties that it is feasible (since the solution of
(D1) is feasible to (LP1)) and bounded below (since
and , ). Thus, it follows by the duality theorem of LP

(40)

(41)
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(for example, see [16, Theorem 1.2.2]) that both (LP1) and its
dual (DLP1) are solvable

(42)
Let and be optimal solutions of

(LP1) and (DLP1), respectively. Then, the complementary con-
ditions of (LP1) and (DLP1) are satisfied

(43)

(44)
These two LPs are very useful and we will see that problem
(DLP1) provides rank-one optimal solutions to (P1). To pro-
ceed, let us denote

...
. . .

... and ... (45)

Theorem 4.4: Suppose that the parameters of (P1) satisfy
(32)–(34). Suppose that both (P1) and (D1) are solvable and let

be an optimal solution of (D1). Take
any vectors with , , and formulate
the two LPs (LP1) and (DLP1). Let be an optimal
solution of (DLP1). Then,

(i) , ;
(ii) , ;

(iii) defined in (45) is invertible, and ;
(iv) , where

represents the optimal value of problem ; and
is optimal for (P1).

Proof: See Appendix E.
It follows from Theorem 4.4 that a rank-one solution of (P1)

can be obtained by solving (DLP1), the formulation of which
is based on an optimal solution of (D1), and that (DLP1) has
always the closed-form solution. In other words, a rank-one so-
lution of SDP (P1) can be found by solving its dual and an LP.
Algorithm 2 summarizes the procedure to generate a rank-one
solution of (P1).

Algorithm 2: Procedure for Rank-One Solution of Separable
SDP

, , , , , satisfying
(32)–(34);

with , ;

1:solve the dual SDP (D1), finding ;

2:take unit-norm vectors , ;

3:form the matrix as in (45), and compute ;

4:output , .

We remark that when solving (P1) with the parameter as-
sumptions (32) and (33), Algorithm 1 (from the primal perspec-
tive) gives a solution of rank , i.e., a
rank-one solution (since , ), while the additional pa-
rameter assumption (34) allows us to find a rank-one solution
of (P1) by Algorithm 2 (from the dual perspective). As shall be
seen in the next subsection, the dual approach can also provide a
solution of (P1) with a more arbitrary rank pro-
file satisfying , , where is
a prefixed rank profile.

C. Separable SDP’s Solution With a Given Rank Profile

In this subsection, we show that the above LP approach can
also be used to provide an optimal solution to the separable SDP
(P1) satisfying a prefixed rank profile, not merely rank-one so-
lution. One motivation of imposing a rank profile lies in the ro-
bust design of the multiple transmit beamforming architecture
for a MIMO communication with transmission using OSTBC,
as described in Section II-A. Besides, another motivation comes
from the setting of a cognitive MIMO radio network; in order to
transmit over the same frequency band but without interfering,
a secondary transmitter has an antenna array and uses multiple
beamforming to put nulls over the directions identifying the pri-
mary receivers and make the degradation induced on the pri-
mary users performance null or tolerable (see [14]).

Suppose that , is an optimal solution
of (D1). Let , . It follows
from Proposition 4.1 that and , thus for

. Suppose that a rank profile is given.
The goal now is to find an optimal solution of
problem (P1) such that , .
Since any optimal solution of (P1), together with

, fulfills the complementary condition (30), i.e.,
, , the rank of (i.e., the dimension of the range

of ) cannot be more than . Based on the observation, we
substitute with for each . In particular, when
the rank profile is specified by , , we can output a
desired solution of (P1) with Algorithm 2.

Take any unit norm vectors , ,
, such that are orthogonal vectors,

for each , and formulate the following LP shown in (46) at the
bottom of the next page. Note that a solution of
(D1) is feasible for (LP2), and (LP2) is bounded below (since

and , ), and it follows again by the LP strong
duality theorem that (LP2) and its dual problem (DLP2), shown
in (47) at the bottom of the next page, are solvable.

Similarly to Theorem 4.4, an optimal solution of (DLP2)
yields a rank-constrained solution to (P1).

Theorem 4.5: Suppose that the parameters of (P1) sat-
isfy (32)–(34), and that both (P1) and (D1) are solvable.
Let , , be given positive integers, and let

be an optimal solution of (D1).
Take any unit-norm vectors such that

are orthogonal, , and formulate the LPs
(LP2) and (DLP2). Let
be an optimal solution of (DLP2). Then,

(i) , ;
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(ii) at least one of is positive, for any
;

(iii) , and

is an op-
timal solution of (P1).

Proof: See Appendix F.
It is seen easily that the optimal solution obtained in Theorem

4.5 has rank no more than and at least one, . Algorithm
3 summarizes the procedure to produce an optimal solution of
(P1) complying with a prescribed rank profile. Observe that the
specified rank profile can be achieved only if

; otherwise, we can only achieve as indicated
in Algorithm 3.

Algorithm 3: Procedure for Solution of Separable SDP
Problem With a Given Rank Profile

, , , , satisfying (32)–(34);
the rank profile ;

with , ;

1:solve the dual SDP (D1), finding ;

2: , ;

3:substitute with ;

4:take any vectors , , such that
are orthonormal, for ;

5:form the linear program (DLP2), and solve it, finding ,
, ;

6:output .

V. SEPARABLE SDP WITH INDIVIDUAL SHAPING CONSTRAINTS

VIA LINEAR PROGRAMMING

We consider now a separable SDP problem with additional
individual shaping constraints:

(48)

where the parameters , , , , comply with as-
sumptions (32)–(34) and , . Its dual problem
is shown in (49) at the bottom of the page, where ,

, are defined in (16). In this section, again resorting to an
LP approach, we build an efficient algorithm to find a rank-one
optimal solution of (P2), which is in contrast with the iterative
rank reduction procedure for (P2) with two groups, , of
individual shaping constraints as in [5].

Suppose that both problems (P2) and (D2) are solvable, and
let , be
optimal solutions of (P2) and (D2), respectively. It follows by
the strong duality theorem (e.g., [16, Th. 1.7.1]) that they satisfy
the complementary conditions (18)–(20) with .

Let us highlight some properties of the primal and dual op-
timal solutions as next proposition.

Proposition 5.1: Suppose that the parameters of
(P2) satisfy (32)–(34), and that both (P2) and (D2) are

(46)

(47)

(49)
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solvable, with solutions and
, respectively. Then,

(i) , ;
(ii) , and , ;

(iii) and , .
Proof: See Appendix G.

From the above proposition, we observe that either changing
all general inequalities to or changing all
to will not lose any generality in problem (P2). Thus, from
now on we consider every and the corresponding

in (48) and (49).

A. Individual Semidefinite Shaping Constraints

We consider separable SDP (P2) with individual shaping con-
straints where each is semidefinite, i.e., all satisfy (17).

Let and
be optimal solutions of (P2) and (D2), respectively.

We can take a unit-norm vector , , since
, , and the formulate the LP

problem shown in (50) at the bottom of the page, and its dual

(51)

We state some important properties of the LPs in the theorem.
Theorem 5.2: Suppose that the parameters of (P2)

comply with (32), (33), and (17). Suppose that both
(P2) and (D2) are solvable and let and

be optimal solutions
of (P2) and (D2), respectively. Take any unit-norm vectors

, , and formulate the LPs (LP1)
and (DLP1). Then,

(i) (LP1) is bounded below, and is feasible for
(LP1) (i.e., both (LP1) and (DLP1) are solvable).

Let be an optimal solution of (DLP1) and suppose
that , , fulfill (34). Then,

(i) , , and ,
, and where is defined in (45);

(ii) , and
is an optimal solution of (P2).

Proof: See Appendix H.
Algorithm 4 summarizes the procedure to produce a rank-one

optimal solution of (P2).

Algorithm 4: Procedure for Rank-One Solution of
Separable SDP Problem With Individual Semidefinite
Shaping Constraints

, , , , , ,
, satisfying (32)–(34) and (17);

an optimal solution of (P2), with
, ;

1:solve SDPs (P2) and (D2), finding solutions ,
and ;

2:take unit-norm vectors ,
;

3:form the matrix as in (45), and compute ;

4:output , .

It is interesting to remark that the optimal value of problem
(50) is no less than that of problem (41), due to the fact that

and the choice of in (50) and (41) is different.
Also, it is noted that a rank-one solution of (P1) with individual
semidefinite shaping constraints can be output by applying the
preprocess procedure introduced in Section III-A (the paragraph
containing (22)) and Algorithm 2.

We point out that like in Section IV-C, it is possible to con-
sider an arbitrary rank profile with the difference
that one has to solve (D2) and (P2) in Step 1 of Algorithm 3.

B. Individual Indefinite Shaping Constraints

In this subsection, we consider the separable SDP (P2) where
some of the individual shaping constraints are indefinite. In par-
ticular, assume

(52)

but with indefinite , , , i.e., they could be any Her-
mitian matrix. We highlight that the SDP relaxation problem
of the OBP of Section II with SINR constraints, null-
shaping interference constraints and two groups of individual
indefinite shaping constraints, belongs to this class of problem.
By some specific rank-one matrix decomposition [17], we will
show that problem (P2) with individual shaping constraints (52)
have a rank-one solution, which can be generated from an op-
timal solution of (DLP1). Let us quote the useful matrix decom-
position theorem in order to proceed.

Lemma 5.3 [17]: Suppose that is a complex Her-
mitian positive semidefinite matrix of rank , and , are
two given Hermitian matrices. Then, there is a rank-one

(50)
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TABLE I
SOLVABLE INSTANCES OF OPTIMAL MULTIUSER DOWNLINK BEAMFORMING PROBLEM (OBP)

decomposition of , (synthetically denoted as ),
such that

.
Let and

be optimal solutions of (P2) and (D2) respec-
tively, and let and ,

.
It follows by Lemma 5.3 that we can find a rank-one decom-

position for each such that

Observe that , . Then, take
, , and formulate linear

program (LP1) and its dual (DLP1), as displayed in (50) and
(51) respectively. We claim problem (P2) has some properties
similar to those in Theorem 5.2 with parameters satisfying (32),
(33), and (52).

Theorem 5.4: Suppose that the parameters of (P2)
comply with (32), (33) and (52). Suppose that both
(P2) and (D2) are solvable, and let and

be optimal solutions of
(P2) and (D2) respectively. Perform the rank-one decomposi-
tion for each , yielding ,
where , so that ; take vectors

from , , and formulate the LPs
(LP1) and (DLP1). Then,

(i) (LP1) is bounded below, and is feasible for
(LP1) (i.e., (LP1) and (DLP1) are solvable).

Let be an optimal solution of (DLP1). Suppose
that , , fulfill (34). Then,

(i) , , and ,
, and , where is defined in

(45);
(ii) , and

is an optimal solution of (P2).
Proof: See Appendix I.

Algorithm 5 summarizes the procedure to produce a rank-one
optimal solution of (P2):

Algorithm 5: Procedure for Rank-One Solution of Separable
SDP Problem With Individual Indefinite Shaping Constraints

, , , , , ,
, satisfying (32)–(34) and (52);

an optimal solution with
, ;

1:solve SDPs (P2) and (D2), finding solutions ,
and ;

2:perform the rank-one decompositions , ,
outputting

, where ;

3:take vectors , ;

4:form the matrix as in (45), and compute ;

5:output , .

Last, we mention that it is possible to generate a rank-con-
strained solution of (P2) with a given rank profile
using Algorithm 3, but with the difference that in Step 1 of Al-
gorithm 3 one has to solve (D2) and (P2) and additionally im-
plement the specific rank-one decompositions.

VI. SUMMARY OF SOLVABLE INSTANCES OF OBP

In this section, we summarize all known solvable instances
of the general QCQP downlink (unicast) beamforming problem
(OBP) (see Table I), as well as an account of the complexity of
the algorithms.

We remark that when problem (OBP) has soft-shaping
constraints (in additional to SINR constraints and individual
shaping constraints), only the primal method (cf. Algorithm 1)
can be employed (the dual-based Algorithms 2, 4, and 5 cannot
be used). When the problem has no soft-shaping constraints, the
dual-based method is preferred due to its lower computational
complexity as elaborated next.

We now compare the computational complexity of the
primal and dual methods when solving the beamforming
problem (OBP) with only SINR constraints. The primal method
consists of solving the separable SDP, which has a worst-case
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complexity of , where is the
desired accuracy of the solution (cf. [16]), and the iterative rank
reduction procedure, each step of which contains a eigenvalue
decomposition that requires flops and

finding the null space of (i.e., solving the system
of linear equations ) that requires flops with

. The dual method requires solving the same
separable SDP and finding the vectors in the respective null
spaces and computing the closed-form solution of the LP which
involves flops. As to finding ’s, it can be done very
efficiently by simply computing the eigenvector corresponding
to the maximum eigenvalue of (instead of the null space
of the dual solution4) and that can be done efficiently with
the power iteration method (see [18, pp. 330–332]), whose
computational complexity is . Although the
primal method has a higher complexity, it solves a separable
SDP (outputting a rank-constrained solution) which has more
flexibility on the parameter restrictions, e.g., all do not have
to be positive definite, the inequality directions of the global
shaping constraints [cf. (4)] can be arbitrary, and parameters

in the global shaping constraints can be any Hermitian
matrix, and so forth.

VII. NUMERICAL EXAMPLES

The present section is aimed at illustrating the effectiveness of
the proposed downlink algorithms for the optimal beamforming
problem. We consider a simulated scenario with a base station
feeding signals simultaneously to three single-antenna users,
i.e., and in problem (OBP). The users are placed
at , and relative to the array broad-
side of the base station. The channel covariance matrix for users

is generated according to (see [3])

(53)

, where is the angular spread of local
scatterers surrounding user (as seen from the base station) and

represents the number of transmit antenna elements equipped
in the base station. The noise variance is set for each
user. The SINR threshold value for all the three users is set to a
common . We make use of the optimization package CVX (see
[19]) to solve the SDPs.

1) Simulation Example 1: In this example, we present sim-
ulation results when problem (OBP) has multiple null interfer-
ence constraints beside the SINR constraints, and show how the
total transmission power is affected by the number of null in-
terference constraints. In addition to internal users, we consider
six (i.e., , ) external users belonging to other
coexisting wireless systems, and they are located respectively
at , , relative to the array broadside of
the base station with antenna elements. The channel
between the base station and external user is given by (as-
suming a uniformly spaced array at the base station):

(54)

4It is not necessary to characterize the whole null space, whose cost would be
higher.

Fig. 2. Minimal transmission power versus the threshold of SINR, with dif-
ferent numbers of null interference constraint.

where , (i.e., the antenna
elements are spaced half a wavelength). This corresponds to
problem (OBP) with SINR constraints and
null interference constraints (or, equivalently, six groups of in-
dividual shaping constraints). Fig. 2 illustrates the minimal total
transmission power versus the required SINR for the cases of
no null interference constraint, two null interference constraints
(with and ), four null interference constraints
(with and in addition to and ), and six
null interference constraints (with and in
addition to , ). It can be seen from the figure that
higher and higher total transmission power is required to satisfy
null interference constraints for more and more external users,
as well as the same SINR level to the three internal users.

2) Simulation Example 2: This example shows the
results for problem (OBP) where the base station is
equipped with antenna elements and nine
null interference constraints for nine external users at

, to-
gether with the three SINR constraints, are involved. In order
to illustrate the effect of the additional null interference con-
straints, we evaluate the power radiation pattern of the base
station, for , according to

(55)

where is a triple of optimal beamvectors, and
is defined in (54). Fig. 3 displays the radiation pattern of the
base station with the SINR threshold value (the minimal
required transmission power is 15.95 dBm).

3) Simulation Example 3: In this example, we consider the
robust null-shaping interference constraint [cf. (8)] in the direc-
tion of an external user (say, located at ), and this can be re-
alized by adding two null interference constraints:

(56)

and

(57)
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Fig. 3. Radiation pattern of the base station, for the problem with three SINR
constraints and nine null-shaping interference constraints and � � ��. The
required transmit power is 15.95 dBm.

where

(58)

and and is the same as the one in
(54). To better control the robust region of the null-shaping in-
terference around external user , we introduce two more null
interference constraints for the external user

(59)

for . In other words, there are four
constraints [i.e., (56), (57), and (59)] describing a robust null-
shaping interference constraint around user . Assume that the
base station has transmit antennas, and three external
users located, respectively, at are consid-
ered beside the three internal users. For external user

, we impose only one null interference constraint on it,
while for external users and , we im-
pose one robust null interference constraint on each of them.
Therefore, the resulting optimal beamforming problem has three
SINR constraints and nine null interference constraints. Fig. 4
depicts the radiation pattern of the base station (the required
minimal transmission power is 16.94 dBm). As expected, the
power radiated over and is sufficiently
lower so that it is almost negligible.

VIII. CONCLUSION

In this paper, we have considered the optimal beamforming
problem minimizing the transmission power subject to SINR
constraints, global and individual shaping interference con-
straints (e.g., to protect other users from coexisting systems).
Although the problem belongs to the class of separable ho-
mogeneous QCQP which is typically hard to solve in general,
we have proposed efficient algorithms for the beamforming

Fig. 4. Radiation pattern of the base station, for the problem with three SINR
constraints, one null interference constraint, two robust null interference con-
straint, and� � �. The required transmit power is 16.94 dBm.

problem. The presented algorithms mainly consist of solving
the SDP relaxation of the problem, formulating an LP by using
the properties of optimal solution of the dual SDP, and solving
the LP (with closed-form solution) to find a rank-one optimal
solution of the separable SDP. The proof is based on the LP
strong duality. The resulting algorithms can output a rank-one
solution, as well as a rank-constrained solution with a prefixed
rank profile. Based on these, we have identified the subclasses
of the optimal beamforming problem that are “hidden” convex,
in the sense that the corresponding SDP relaxation has always
a rank-one optimal solution.

APPENDIX

A. Proof of Theorem 3.1

Proof: The proof is just slightly different from that of
[5, Lemma 3.1] (see [5, pp. 675–676]) when checking the
primal feasibility and complementarity (optimality) in each
iteration of the purification process (rank reduction procedure).
Precisely, we need to additionally verify ,

, and , , ,
where , and

. Indeed, if , then ,
and ; if ,
then it is evident that . Since all columns of
are in , hence , .

B. Proof of Proposition 4.1

Proof: (i) First of all, we show , . In fact, suppose
that , then one has the contradiction

due to the parameter conditions (32) and (33).
(ii) Now, we show , and , . Suppose

, for some , say ; then ,
from the complementary condition (30). However, this is not
possible since we have shown the fact that , .
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C. Proof of Proposition 4.2

Proof: Since , , and
, , hence, for those with

, for those with , and for
. In order to show , ,

we shall first prove the fact that for (or
more precisely, for ).

Assume, without loss of generality, that , , ,
, , , for some .

Then, , together with
, ,

is feasible for problem (D), and has the objective function
value . Thus

cannot be optimal, which is a contradiction.
Therefore, we have , . Let us check
the feasibility of . In-
deed, for , one has

, where the first
relation is due to , and the second is due to the

assumption that , , for ,
. For , one also has

, due
to for , for ,
(32), (34), and (35).

Now we wish to prove . Suppose that
one of , say , then

, which is a con-
tradiction to that we have shown in Proposition 4.1.

It follows from (31) that ,
.

D. Proof of Proposition 4.3

Proof: Since ,
and the assumptions (32), (35), (34) are valid,

hence, it follows from (36) that each has at least one positive
eigenvalue.

(i) Suppose is defined by the point
as in set , and let

Clearly, , . Then, we have

(60)

Recall that each , , has at least one positive
eigenvalue, thus , .
From (60), it follows that
leads to , for (for either the case
that is positive semidefinite and nonzero, or the case
that has both positive and negative eigenvalues). Since

(from the definition of ), then
, .

(ii) From (60), we see that
implies and , , and that

implies , , and
that implies ,

.
(iii) Suppose that there exists

such that .
Then it follows from (i) that , .
Let , and suppose that

without loss of generality (otherwise let
). Also suppose that

, . It follows that

, which would
imply .
But this is not possible since .

It follows from the proof of (ii) that the set
is a singleton and contains the point: See the equation at the
bottom of the page.

E. Proof of Theorem 4.4

Proof: (i) Since both (LP1) and (DLP1) are solvable, we
suppose that is an optimal solution of (LP1). Thus,

and satisfy the complementary con-
ditions (43) and (44).

To proceed, we claim that any feasible point of
(LP1) must be positive, i.e., , . To see this,
assume that , then by the parameter assumptions, one has
the contradiction

Consequently, every must be positive. Now, from (44), this
implies that , .

(ii) Note that each has at least one positive eigenvalue
and , , from (41). Indeed, if some is neg-
ative semidefinite, then problem (P1) is infeasible, which con-
tradicts the assumption that (P1) is solvable. Also
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, , since
and (from Proposition 4.2). It follows that

, since and ( )
from the parameter assumptions (32) and (33).

(iii) We claim that satisfying (i) and (ii) must be unique,
i.e., the solution for the system of and is
unique. Suppose that is another solution for the system,
and let . Without loss of generality,
we assume that and ; thus we have

, , which implies that
and , . Then one gets the contradiction

.
Suppose that the square matrix is singular, then there is a

nonzero such that , and since , we have that
for sufficiently small . This implies that the vector

is a solution for the system of and , which
is not possible since the system has only one solution. Therefore,

is invertible, which yields . If , then
(DLP1) has no optimal solution, which is contradictory to the
solvability of (DLP1).

(iv) It suffices to prove the inequality chain
. It is clear that

and , due to strong
duality. Notice that the optimal solution of (D1) is
also feasible for (LP1), and that (D1) and (LP1) have the same
objective function, then we can assert that .
Likewise, observing that is feasible
for (P1), we conclude that . Therefore, we
arrive at . Further,
it is easily verified that is optimal for (LP1) and

is optimal for (P1).

F. Proof of Theorem 4.5

Proof: This proof is similar to that of Theorem 4.4.
(i) Assume that is an optimal solution of (LP2).

Thus, , together with the solution , complies
with the complementary conditions of (LP2) and (DLP2)

(61)

, and

(62)

It is easily seen from (46) that any feasible point
of (LP2) is positive, i.e., , (due to a similar argument to

the second paragraph of the proof of Theorem 4.4). Thus ,
. It follows from (62) that

(ii) Suppose that , , are zero.
It follows from (i) that

, which is not true since the
left-hand side (LHS) is nonpositive and the right-hand side
(RHS) is positive. We thus conclude that at least one element
of is positive, .

(iii) The proof is similar to the proof of (iii) of Theorem 4.4,
and thus omitted.

G. Proof of Proposition 5.1

Proof: Applying Proposition 4.1 (with )
to (P2) and (D2), one concludes that (i) and (ii) hold. It follows
from (18)–(20) that and ,

. Indeed, from (18) and (20), we have

which means that cannot be zero for any
(otherwise, say , then and

which is not possible).

H. Proof of Theorem 5.2

Proof: (i) It is easily seen that (LP1) is bounded below, due
to the constraints and the assumptions . Now, we
wish to show that the solution of (D2) is feasible
for (LP1).

Since , , hence
. Com-

bining the complementary condition in (20)
with the fact that yields

(63)

Therefore, , and
accordingly is feasible for (LP1).

Since (LP1) is bounded below and feasible, hence it follows
by the strong duality theorem for LP that both (LP1) and (DLP1)
are solvable.

(ii) The proof is completely similar to those of (i), (ii), and
(iii) of Theorem 4.4, and we skip it here.

(iii) It is easily seen that fulfills the
individual shaping constraints, that is, ,

, . This, together with (ii), gives that
for feasible to (P2), hence,

we have . Since the optimal solu-
tion of (D2) is feasible for (LP1), hence,

. Thus, we arrive at the inequality chain
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, and it is
easily seen that is optimal to (P2).

I. Proof of Theorem 5.4

Proof: (i) We show that is feasible to (LP1).
Observe that the vectors ,

, have the property

It thus follows from the complementary condition
(20) that and
from (63) that Hence

Therefore, is feasible to (LP1). It is evident that
(LP1) is bounded below.

(ii) The proof is the same as that of (ii) of Theorem 5.2.
(iii) From the proof of (iii) of Theorem 5.2, we know that

satisfies the individual semidefinite
shaping constraints, i.e.,

Further, the solution also satisfies the indefinite
shaping constraints, i.e.,

As a matter of fact,

This combining with (ii) leads to that
is feasible for (P2). By the same argument as the last
paragraph of the proof of Theorem 5.2, we conclude that

, and that
and are optimal for (P2)

and (LP1), respectively.
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