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Abstract—In this paper, we design robust precoders, under
the minimum mean square error (MMSE) criterion, for dif-
ferent types of channel state information (CSI) in multiple-input
multiple-output (MIMO) channels. We consider low-complexity
pre-fixed receivers that may adapt to the channel but are oblivious
to the existence of a precoder at the transmitter. In particular,
three types of CSI are taken into account: i) perfect CSI, ii) sta-
tistical CSI in the form of mean feedback, and iii) deterministic
imperfect CSI assuming that the actual channel is within the
neighborhood of a nominal channel, which leads to the worst-case
robust design that is the focus of this paper. Interestingly, it is
found that, under some mild conditions, the optimal transmit
directions, i.e., the left singular vectors of the precoder, are equal
to the right singular vectors of the channel, the channel mean,
and the nominal channel for perfect CSI, statistical CSI, and the
worst-case design, respectively. Consequently, the matrix-valued
problems can be simplified to scalar power allocation problems
that either admit closed-form solutions or can be efficiently solved
by the proposed algorithm.

Index Terms—Convex optimization, imperfect CSI, MIMO,
MMSE, minimax, robust precoders, worst-case designs.

I. INTRODUCTION

U SING multiple transmit and receive antennas has been
widely known as an effective way to increase the capacity

of wireless communications [1], [2]. The performance of a
multiple-input multiple-output (MIMO) system depends, to
a substantial extent, on the quality of channel state informa-
tion (CSI) available at the transmitter and receiver. Traditional
MIMO transceiver optimization is based on accurate CSI at the
transmitter (CSIT) and CSI at the receiver (CSIR) [3]–[7]. How-
ever, due to many factors such as inaccurate channel estimation,
quantization, erroneous or outdated feedback, and time delays
or frequency offsets between the reciprocal channels, CSI,
especially CSIT, is usually imperfect and partially known in
practice. To improve the robustness of communication systems,
the imperfectness of CSI has to be taken into consideration.

Typically, there are two classes of models to characterize
imperfect CSI: the stochastic and deterministic (or worst-case)
models. The stochastic model usually assumes the channel to be
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a complex random matrix with normally distributed elements,
and the mean and/or the covariance, i.e., the slowly-varying
channel statistics that can be well estimated, are known. The
system design is then based on optimizing the average or outage
performance [8]–[17]. On the other hand, the deterministic
model assumes that the instantaneous channel, although not
exactly known, lies in a known set of possible values, often
called the uncertainty region and defined by some norm. The
size of this region represents the amount of uncertainty on the
channel, i.e., the bigger the region is the more uncertainty there
is. In this case, the goal of the robust design is to guarantee a
performance level for any channel realization in the uncertainty
region, which is achieved by optimizing the worst-case perfor-
mance [18]–[28] and usually leads to a maximin or minimax
problem formulation.

The goal of this paper is to design robust precoders, under
the minimum mean square error (MMSE) criterion, for different
types of CSI, including perfect CSI (as a warm-up), statistical
CSI in the form of mean feedback, and deterministic imperfect
CSI assuming that the actual channel is within the neighborhood
of a nominal channel. Motivated by low-complexity systems, we
consider simple pre-fixed receivers, as in [29]–[31], in the sense
that they are independent of the transmitter but may depend on
the channel, so that the efforts to combat imperfect CSI are un-
dertaken by the transmitter. This separate structure not only re-
duces the computational complexity of the receiver, which is es-
pecially preferable in mobile wireless communication systems,
but also increases the backward compatibility of the receiver
since advanced and complicated techniques can be introduced
at the transmitter without modifying the receiver. Specifically,
the pre-fixed receiver uses an equalizer that depends only on the
channel, or the channel mean, or the nominal channel, but not
the precoder, i.e., the receiver is oblivious to the existence of
the precoder. Therefore, common linear equalizers, such as the
matched filter (MF), the zero-forcing (ZF) and MMSE equal-
izers, can be used. One choice that maximally reduces the com-
putational workload at the receiver, as in [29] and [30], is to use
no equalizer at all.

For perfect and statistical CSI, the robust precoder designs
are easily-recognized convex problems [32], thus admitting
globally optimal solutions that can be efficiently found in poly-
nomial time using, e.g., an interior-point method [33]. Inter-
estingly, it has been observed that, for the optimal precoders
with both perfect CSI [3]–[7] and statistical CSI [8]–[16], the
transmit directions, i.e., the left singular vectors of the pre-
coder, in many cases are the right singular vectors of either
the channel or the channel mean, hence leading to the eigen-
mode transmission that is carried out through a set of parallel
subchannels or eigenmodes. In this paper, we first show that,
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for both perfect and statistical CSI, the optimal transmit direc-
tions of the MMSE precoder with separate receivers are still
the right singular vectors of the channel or the channel mean
under some mild conditions. Hence, the matrix precoder de-
signs can be simplified to scalar power allocation problems that
have closed-form solutions.

For the worst-case design, as the focus of this paper, we con-
sider an elliptical channel uncertainty region centered at a nom-
inal channel and defined by the weighted Frobenius norm, which
covers the model used in [18]–[28] as special cases. Given that
the formulated minimax problem is not convex, we first trans-
form it into a convex problem, or even further a semidefinite
program (SDP) [34], so that it can be globally and efficiently
solved in practice. In light of the optimality of the eigenmode
transmission for perfect and statistical CSI, one may wonder
whether the channel-diagonalizing structure is still optimal in
the worst-case design. As the most important result, we prove
that the optimal transmit directions for the worst-case design are
the right singular vectors of the nominal channel under some
mild conditions. Therefore, the eigenmode transmission is still
optimal, which is consistent not only with the cases of perfect
and statistical CSI, but also with the recent finding in [35], which
considered maximizing the worst-case received signal-to-noise
ratio (SNR) by choosing the optimal transmit covariance ma-
trix. Consequently, the complicated matrix-valued problem can
also be simplified to a scalar power allocation problem without
losing any optimality. Then, an efficient algorithm based on
primal/dual decomposition methods for optimization [36], [37]
is proposed to solve the simplified problem. Finally, we de-
rive the least favorable channels for both robust and non-robust
MMSE precoders.

The paper is organized as follows. The signal model and the
problem formulation are introduced in Section II. Sections III
and IV address the precoding designs with perfect and statis-
tical CSI, respectively. In Section V, we provide the convex
reformulation for the worst-case design, and prove the opti-
mality of the eigenmode transmission. The power allocation
problem of the worst-case design is solved in Section VI, and
the least favorable channels are derived in Section VII. Sec-
tion VIII provides numerical examples. Finally, we conclude
with Section IX.

Notation: Uppercase and lowercase boldface denote ma-
trices and vectors, respectively. and denote the
set of matrices with real- and complex-valued entries,
respectively, and denotes the ensemble of all positive
semidefinite matrices. represents the ( th, th) element of
matrix . By or , we mean that is a Hermi-
tian positive semidefinite or definite matrix, respectively. The
vectors and contain the diagonal elements and the
eigenvalues of a square matrix , respectively. The operators

, vec , and Tr denote the Hermitian,
inverse, pseudo-inverse, stacking vectorization, and trace oper-
ations, respectively. The maximum eigenvalue of a Hermitian
matrix is represented by . denotes a general norm
of a matrix as well as the Euclidean norm of a vector, while

and represent the Frobenius and spectral norms of
a matrix. Re denotes the real part of a complex value, and

represents the Kronecker product operator.

II. PROBLEM STATEMENT

A. Signal Model

We consider a MIMO channel with transmit and receive
antennas. The transmit signal vector , whose elements
are zero-mean, unit-variance and uncorrelated, i.e., ,
is linearly precoded by so that the received signal
vector can be expressed as

(1)

where is the channel matrix, and is a
white circularly symmetric complex Gaussian noise vector, i.e.,

. At the receiver, a linear equalizer
is used to estimate from , resulting in . Then, the
system performance is measured by the MSE between and ,
which is given by

(2)

Since the number of degrees of freedom is upper bounded by
, we assume that .

Due to many practical issues, the channel state information,
i.e., , is usually imperfectly known and partially available at
the transmitter and/or receiver. There are typically two kinds
of models to characterize the imperfectness of CSI: the sto-
chastic and deterministic (or worst-case) models. In the sto-
chastic model, the channel is usually assumed to be a complex
random matrix with nonzero-mean and normally distributed el-
ements, and the transmitter knows the channel mean, so it is
often called mean feedback [9]–[16].1 To be more specific, the
channel is regarded as consisting of two components

(3)

where is the channel mean known to the transmitter, and
the elements of are independent and identically-distributed
(i.i.d.), zero-mean, unit-variance, circularly symmetric complex
Gaussian random variables, i.e.,

(4)

On the other hand, the deterministic (or worst-case) model as-
sumes that the actual channel lies in the neighborhood of
a nominal channel known to the transmitter. Specifically,

is assumed to belong to an uncertainty region
defined by some norm , which is an ellipsoid

centered at with the radius (also known to the transmitter).
By introducing the channel error

(5)

can be equally described by .
In this paper, we consider defined by the weighted Frobenius
norm , i.e.,

(6)

1There are also other stochastic models assuming that the covariance or both
the mean and the covariance is available [8], [11], [13], [17].
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where is a given positive definite matrix. The ellipsoid re-
duces to a sphere when , which is the most frequently
used model [18]–[28].

B. Problem Formulation

The focus of this paper is on designing robust precoders for
different types of CSI, so we consider simple pre-fixed receivers
that are independent of the precoder design as in [29]–[31]. This
separate structure lets the transmitter undertake the most com-
putational workload to cope with imperfect CSI, thus decreasing
the receiver’s complexity and meanwhile increasing its back-
ward compatibility. To be more exact, the receiver uses an equal-
izer that is a function of the channel , or the channel mean ,
or the nominal channel , but not the precoder . We formulate
the precoder designs as the following problems.

1) Perfect CSI: With perfect CSI at both ends of the link, the
optimal precoder is the solution to the problem

(7)

which will be solved as a warm-up for the later robust de-
signs.

2) Stochastic CSI: Given the channel statistics, i.e., the
channel mean, the precoding design is based on opti-
mizing the average performance, hence leading to

(8)

and

(9)

where the expectation is taken on the channel modeled
by (3) and (4). Note that accounts for the perfect
CSIR case, while corresponds to the case where
both transmitter and receiver can only access the channel
mean.

3) Worst-case Design: For deterministic imperfect CSI, the
robustness is embodied by a guaranteed performance
level for any channel realization in the uncertainty region.
Therefore, one needs to find the optimal precoder in the
worst channel, leading to

(10)

where can be replaced by defined in (6),
and corresponds to the situation where both trans-
mitter and receiver are subject to deterministic imperfect
CSI [26]–[28]. We note that for , i.e., perfect CSIR,
(10) is still an open problem. The focus of this paper is the
worst-case robust design.

The transmit power constraint, in (7)–(10), is represented by
. We first consider a general set that is a nonempty

compact convex set, covering all common power constraints as
special cases. Then, some particular constraints are considered:

1) Sum Power Constraint: .
2) Maximum Power Constraint:

.

3) Per-antenna Power Constraint:
or

.

III. PERFECT CSI

Given a convex set , the formulation (7) is evidently a
convex problem whose solution can be found in polynomial
time. Nevertheless, in this section, we show that with perfect
CSI, just like [3]–[7], the optimal transmit directions for the
MMSE precoder with a pre-fixed receiver are equal to the
right singular vectors of the equivalent channel under some
mild conditions, which paves the path to finding the optimal
transmit directions for robust precoders later. Then, we provide
the closed-form solutions to the resulting power allocation
problems. Although [29] and [30] have considered similar
problems to (7), only suboptimal results were given.

A. Optimal Transmit Directions

For perfect CSI, the precoding design depends totally on the
equivalent channel . Denote the singular value
decomposition (SVD) of by with

and the diagonal matrix containing the
singular values in decreasing order. Denote
the SVD of by with and
the diagonal matrix containing the singular values

.
Theorem 1: Let ,

where each is a Schur-convex function and component-
wise nondecreasing, and be a function of . Then,

and are optimal for the problem (7).
Proof: By defining with

and , the problem (7) is equivalent
to

(11)

Let . Since
, implying that , then if is feasible,

so is . Hence, we consider without losing any optimality the
following problem:

(12)

Now, we show that the optimal can be made diagonal.
Divide into two parts as , where is a
diagonal matrix containing the diagonal elements of , and
contains the off-diagonal elements. It follows that

(13)

Therefore, given any feasible , one can always achieve a
smaller objective value by using . The only question
is whether is feasible or not. Considering that
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and is majorized by [6], [38], by
exploring the Schur-convexity and componentwise nondecreas-
ingness of , we have ,
so is feasible too. Consequently, we have proved the opti-
mality of the diagonal structure for , which can be achieved
by setting and , resulting in .

Remark 1: The conditions in Theorem 1 are satisfied by the
sum and maximum power constraints as well as their combina-
tion (intersection of and ), since
and are both Schur-convex func-
tions of the eigenvalues of [6], [38]. Therefore, in the
most common case, the optimal transmit directions (i.e., )
are the right singular vectors of the equivalent channel (i.e.,

). Denote the SVD of by with the
largest singular values in decreasing order,
and the SVD of by with the singular
values . When the receiver uses no equalizer

, the MF , the ZF equal-
izer , or the MMSE equalizer

, we have so that the
optimal transmit directions are the right singular vectors of the
channel , which is consistent with the results in [3]–[7]. Using
Theorem 1, the matrix-valued problem (7) can be simplified to
a scalar power allocation problem whose closed-form solution
will be offered subsequently.

B. Optimal Power Allocation

Provided the conditions in Theorem 1 are satisfied, the
problem (7) reduces to

(14)

where . Due to , the
solution to (14) must be nonnegative, thus satisfying the nonneg-
ativity of singular values. Since (14) is quite a simple problem,
we write down directly its closed-form solution under different
power constraints satisfying the conditions in Theorem 1 as fol-
lows.

1) No Power Constraint : In this case, (7) is a
simple least square (LS) problem leading to the well known
solution , implying that .

2) Maximum Power Constraint : Given
, (14) decouples into separate subprob-

lems, each admitting the solution .
3) Sum Power Constraint : Given

, the solution to (14) is
with the smallest satisfying .

Remark 2: Fundamentally, with a pre-fixed receiver, (7)
is similar to a LS problem, and tends to invert the equivalent
channel . Therefore, the optimal power allocation is mainly
determined by the inverse singular values of the equivalent
channel, suggesting that the MMSE precoder, similar to linear
equalizers, may suffer from the singularity of the channel
because there may not be enough transmit power to compensate
for the singular channel. When the receiver adopts the common

linear equalizers mentioned in Remark 1, the correspondence
between the singular values of the equivalent channel and
the channel , i.e., and , is given by: no equalizer

, the MF , the ZF equalizer , the MMSE
equalizer .

IV. STATISTICAL CSI

The formulations (8) and (9), similar to the perfect CSI case,
are also convex problems given that is a convex set, and thus
can be efficiently solved. Interestingly, it is has been shown in
[8]–[16] that, with perfect CSIR and statistical CSIT of mean
feedback, the transmit directions of the optimal precoder are the
right singular vectors of the channel mean under various criteria.
In this section, we will show that the same transmit directions
are also optimal for the MMSE precoder with a pre-fixed re-
ceiver that has either perfect or imperfect statistical CSIR. Then,
we derive the closed-form solutions to the resulting power allo-
cation problems.

A. Optimal Transmit Directions

Denote the SVD of the channel mean by
with the largest singular values in decreasing
order. Let where is the result of replacing

by in , and denote its SVD by .
Let and denote its SVD by
with the largest singular values in decreasing
order.

Theorem 2: Let ,
where each is a Schur-convex function and componen-
twise nondecreasing. Let , or

, and be a function of . Then, and
are optimal for the problem (8), and and
are optimal for the problem (9).

Proof: We consider first the problem (8). It is easy to see
that and for , and

for , or .
When , using the statistical model (3) and (4), the
objective in (8) can be expressed as

(15)

Then, following the Proof of Theorem 1, one can easily see
that and are optimal for (8). When

, by defining , the objective of
(8) becomes where diag and

. Then, from (13), the optimal has a diagonal struc-
ture, which can be achieved by setting . When

or , however, the proof is
not so straightforward because there is no explicit expression of

. We can find the optimal transmit direc-
tions by using the following lemma.

Lemma 1 [21]: Let be a diagonal matrix with
the diagonal elements being . There are different
such matrices indexed from to . Let
be an arbitrary matrix and be a diagonal matrix such that

. Then, .
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Now, for , by using , the objec-
tive of (8) becomes

(16)

where we use the fact that has the same distribution
as . Let be a diagonal matrix with the diagonal
elements being , and
where is also a diagonal matrix with
the diagonal elements being . It follows that

(17)

where we use the property that is an orthogonal diagonal ma-
trix, implying that , and

share the same distribution. Therefore, is
invariant with respect to the transformation (the sub-
script is suppressed). Since is a convex function, we
have

(18)

where, from Lemma 1, is a diagonal matrix such that
. Hence, leads to a smaller objective

value than . Moreover, from the Proof of Theorem 1, if is
feasible, so is . Consequently, the optimal should be a di-
agonal matrix that can be achieved by setting ,
leading to . For , one
can proceed in a similar way.

Finally, we consider the problem (9), whose objective can be
explicitly written as

(19)

Therefore, following the Proof of Theorem 1 again, one can
easily find that and are optimal.

B. Optimal Power Allocation

Provided the conditions in Theorem 2 are satisfied, both (8)
and (9) can be simplified to a scalar power allocation problem.
The problem (9), as well as (8) when , reduces to

(20)

where for (9), and for
(8). When , (8) reduces to

(21)

where . When or
, the simplified problem of (8) is

(22)

where for , and

for , and
. The closed-form solutions to the above

problems are given in the following.
1) No Power Constraint : The solution to (20) is

; the solution to (21) is for
and for ; the solution to (22) is .

2) Maximum Power Constraint : Given
, the solution to (20) is

; the solution to (21) is for
and for ; the solution to (22) is

.
3) Sum Power Constraint : Given

, the solution to (20) is
with the smallest satisfying ;

the solution to (21) is for and
for ; the solution to (22) is

the smallest satisfying .

V. WORST-CASE DESIGN

The minimax problem (10), by using the channel error defi-
nition in (5), can be written as

(23)

which corresponds to the situation where both the trans-
mitter and the receiver are subject to deterministic imperfect
CSI [26]–[28]. Note that the worst-case robust MMSE precoder
design with perfect CSIR, i.e., replacing by in
(23), is still an open problem. As a special case of our work,
[22] has considered a spherical uncertainty region
without any power constraint .

It is not difficult to see that the objective value of (23) is
upper bounded by , which is achieved by when

. This means that if the channel uncertainty is too
large, then there is no guarantee of any performance in the worst
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channel. Therefore, the worst-case design is meaningful for
, a reasonable assumption in practice since large channel

uncertainty suggests that the quality of CSI is too poor to be
used.

Different from the cases of perfect and statistical CSI, the
problem (23), at first glance, is not convex and cannot be
easily solved. We will first show that (23) can be equivalently
transformed into a convex problem or even further an SDP [34]
that can be efficiently solved. In light of the optimality of the
eigenmode transmission for perfect and statistical CSI, one
may wonder whether this favorable property still exists in
the worst-case design. In this section, we will prove the most
important result in this paper: for the worst-case design, the
optimal transmit directions are the right singular vectors of the
nominal channel under some mild conditions.

A. Convex Reformulation

We first show that, under a general power constraint, the
minimax problem (23) can be equivalently transformed into
a convex problem or even further an SDP [34] that can be
efficiently solved by some numerical methods, for example the
interior point method [33].

Proposition 1: Let be a function of . Then, the min-
imax problem (23) is equivalent to the following problem:

(24)

where and .
Proof: We first introduce some useful lemmas.

Lemma 2 (Schur’s Complement [39]): Let

be a Hermitian matrix. Then, if and only if
(assuming ), or

(assuming ).
Lemma 3 [21]: Given matrices , and with ,

then

if and only if there exists such that

The minimax problem (23) is equivalent to

(25)

where and

(26)

with and defined in Proposition 1 and . From
Lemma 2, the constraint in (25) can be rewritten as

(27)

which can be alternatively expressed as

(28)

where

From Lemma 3, (28) holds if and only if there exists such that

(29)

indicating the equivalence between (25) and (24).
Remark 3: Clearly, if is a convex set, then (24) is a convex

problem. Furthermore, when equals or , or
any combination (intersection) of them, (24) can be easily trans-
formed into an SDP [34], a very tractable form of convex op-
timization. Note that a similar convex formulation was inde-
pendently obtained in [27] and [28], which only focused on
solving problems through SDPs. For us, the reformulation (24)
will serve as an intermediate step to find the optimal transmit
directions for the worst-case robust MMSE precoder.

B. Optimal Transmit Directions

Denote the SVDs of and by and
with and

where the diagonal matrices contain the sin-
gular values and , respectively. Denote the SVD
of by and let be a diagonal ma-
trix containing the largest singular values in
decreasing order. Denote the eigenvalue decomposition (EVD)
of by with the eigenvalues
in decreasing order and with

and .
Theorem 3: Let , where

each is a Schur-convex function and componentwise
nondecreasing, and be a function of . Let
and . Then, and are optimal for
the minimax problem (23).

Proof: Through defining and ,
and using and , the minimax problem (23)
can be expressed as

(30)
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which, by introducing , amounts to

(31)

Following the proof of Proposition 1, (31) can also
be equivalently transformed into the form of (24) with

and .
Divide into two parts as with

and . Then, it follows that
and

. Consequently, the equiva-
lent form of (24) can be explicitly written as (32), shown at the
bottom of the page. Observe that if satisfies the linear matrix
inequality (LMI) in (32), so does . Following the
Proof of Theorem 1, it can be shown that , which implies
that we can set without losing any optimality and focus
on the following problem:

(33)

where and .
Now we show that the optimal can be diagonal. Let

be a diagonal matrix with the diagonal elements being
, and where

is also a diagonal matrix with the diagonal el-
ements being . Replacing by in and leads
to

(34)

and

(35)

where we use the properties that is a diagonal matrix,
and . Hence, the LMI in (33) amounts to

(36)

indicating that if satisfies the LMI in (33), so does
(the subscript is suppressed). Since the feasible set defined
by a LMI is convex, given any feasible , the convex com-
bination is also inside this set,
where is a diagonal matrix such that
from Lemma 1. Moreover, from the Proof of Theorem 1, we
know , so is feasible

as well. Therefore, the optimal has a diagonal structure that
can be achieved by setting and , leading to

.
Remark 4: The conditions on the power constraint and uncer-

tainty region in Theorem 3 are satisfied in the most common sit-
uation—the sum and maximum power constraints with a spher-
ical uncertainty region [18]–[28]. The condition
is satisfied by using common linear equalizers at the receiver,
e.g., no equalizer , the MF , the
ZF equalizer , the MMSE equalizer

. Consequently, Theorem 3 indicates that
the eigenmode transmission (over the nominal channel) is still
optimal for the worst-case design, hence complying with the
cases of perfect and statistical CSI. Interestingly, it has been
found recently in [35] that maximizing the worst-case received
SNR leads to the same optimal transmit directions.

VI. OPTIMAL POWER ALLOCATION FOR WORST-CASE DESIGN

In this section, the optimal power allocation for the worst-
case robust design will be derived. First, by using the optimal
transmit directions found in the previous section, the matrix-
valued precoder design can be simplified to a scalar power allo-
cation problem as follows.

(32)
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Proposition 2: Provided the conditions in Theorem 3 are sat-
isfied, (23) and (24) can be simplified to the following problem:

(37)

where

(38)

is jointly convex in and defined as its limit2 on the
boundary of for , and each is a
Schur-convex function and componentwise nondecreasing, and

.
Proof: See Appendix A.

This means that, if in addition each is a
convex function of , then (37) is a convex problem and can be
numerically solved very efficiently. But we will go deeper by
showing that in the case of no power constraint, there exists a
closed-form solution to (37); for the sum and maximum power
constraints, an efficient method is available to solve (37).

A. No Power Constraint

Theorem 4: Let , and ,
and are ordered decreasingly. Then, the solution to the
problem (37) is

(39)

where , and such that
with and

. The optimum value of (37) is
.

Proof: See Appendix B.
Corollary 1: Provided the conditions in Theorems 3 and 4 are

satisfied, the worst-case robust precoder is if ,
where is the equivalent nominal channel.

Remark 5: One situation, where the conditions in Theorems
3 and 4 are satisfied, is that there is no power constraint at the
transmitter and no equalizer at the receiver. It seems that the
assumption of no transmit power constraint makes Theorem 4 of
little practical use. However, one will see that (39) can be used to
guess a good initial point for the algorithm to solve (37) under
the sum and maximum power constraints. Note that a similar
solution was also obtained in [22] that considered only a special
case of our framework.

2The limit of � �� � ��, as �� � �� � ��� �� from the interior of ��� � �� �
� � �� �	 �, is � when � � 	 � �� � � � �� �
 ; and is � when � �
	 � �� � � �� �� �
 and � �� �. If � � �, then � � �� ��, which cannot
happen when �  �� ���� .

B. Sum and Maximum Power Constraints

With the sum and maximum power constraints, the power
allocation problem is

(40)

which is much more difficult and has no closed-form solution.
The main difficulty in (40) lies in the coupling variable and
the coupling constraint . That is, if we fix and
remove the constraint , (40) will decouple into
separate subproblems, each containing only one variable with
a straightforward solution. Upon this observation, we will pro-
pose an efficient algorithm based on decomposition methods
for convex optimization [36], [37] to solve (40). Particularly,
among various decomposition methods, we use the so-called
primal-primal decomposition method [36], [37], which is suit-
able for our problem.

First, by introducing the auxiliary variables , the
problem (40) is equivalent to

(41)

Given and , at the lowest level (the third level) are the de-
coupled subproblems, one for each as

(42)

which admits a closed-form solution (see Proposition 3). Next,
denote the optimum value of (42), as a function of and , by

. For fixed , at the middle level (the second level) is
the problem

(43)

whose solution can be found through the bisection method3 that
only needs a subgradient [32] of with respect to . Fi-
nally, denote the optimum value of (43), as a function of , by

. At the top level is the master problem

(44)

3Let � � 	� be a convex function with a minimizer � in the feasible set

 , and ���� be a subgradient of � evaluated at �. Suppose that � � ��� �	 � 

and let � � ��
 ����. If ����  �, then � � ��� �	, otherwise � � ��� �	.
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whose solution can be found by the subgradient projection
method. Specifically, a sequence of feasible points ,
indexed by , will be generated via

(45)

where is a subgradient of at is a pos-
itive scalar stepsize, and denotes the projection onto the a
truncated simplex feasible set

. With properly chosen stepsize, for example a diminishing
stepsize rule , where
is the initial stepsize and is a fixed nonnegative number, the
sequence of is guaranteed to converge to the optimal so-
lution (assuming bounded subgradients). It was recently found
that the projection onto a truncated simplex has a simple water-
filling form [40]–[42]. In particular, if , then

(46)

where the waterlevel is the minimum value such that
.

Proposition 3: The solution to the problem (42) is given by

(47)

and a subgradient of with respect to is

(48)

where is given in (49) at the bottom of the page, and a
subgradient of is given in

(50)

and is the solution to (43).
Proof: See Appendix C.

In addition to Proposition 3, two more things are needed. One
is an initial interval for the bisection method to update in
(43). Noticing that the objective value of the minimax problem
(23) is upper bounded by , so is the objective value of (41).

Since , it follows that , meaning that
. The other thing is an initial point for the sub-

gradient method to update in (44). Theoretically speaking, any
feasible could be an initial point, but a good initial point that
is close to the optimal point may remarkably accelerate the con-
vergence. Such a good initial point can be obtained by properly
scaling and bounding (39). Finally, we summarize the above in
Algorithm 1.

Algorithm 1: For Solving the Problem (40)
1: set the precision ; choose an initial point ;
2: repeat
3: ;
4: while do
5: compute , from (47);
6: compute from (48)–(49);
7: if , then , else ;
8: end while
9: compute from (50);

10: using (46);
11: ;
12: until

VII. LEAST FAVORABLE CHANNELS

To evaluate the robustness of a precoder, one needs to know
what is the least favorable or worst channel [22], [28], [43] for
this precoder, which in general differs from the worst channel
for another precoder. The worst channel is meaningful not only
to the robust design, but also to the non-robust design that simply
regards the nominal channel as the actual channel, i.e., substi-
tuting with in (7). In the following, we use

to represent for simplicity. Mathematically, assuming
that the precoder has been determined, the worst channel error
is the solution to the following problem:

(51)

where the constraint is replaced by , since
the maximum of a convex function is achieved on the boundary
of the convex feasible set [44].

Theorem 5: is a solution to the problem (51) if and only if
there exists such that

(52)

(53)

(54)

(49)
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Proof: We will use the following lemmas.
Lemma 4 (The Sub-Region Problem [45], [46]): Consider the

following quadratic minimization problem:

where is a positive scalar, and is a
Hermitian matrix. Then, is a global minimizer if and only if
there exists such that

Lemma 5 [47, Proposition 7.1.10]: Let be an eigenvalue of
a square matrix , and be an eigenvector of corresponding
to . Let be an eigenvalue of a square matrix , and be an
eigenvector of corresponding to . Then, is an eigenvalue
of , and is an eigenvector of corresponding
to .

The objective of (51), by introducing , can be
expanded as

(55)

where the last term does not contain . Defining

, and , then it is not difficult to verify
that4

(56)

(57)

Hence, the problem (51) amounts to

(58)

whose solution, from Lemma 4, is characterized by

(59)

or equivalently

(60)

(61)

(62)

4���� �� � �������� ������ and �������� � �������� �� �
� ������ �.

Now that and , from Lemma 5, it follows that
.

Then, (60)–(62) can be easily rewritten as (52)–(54).
Corollary 2: Let the conditions in Theorem 3 be satisfied.

Then, the solution to the problem (51) is
with diag and , where the ( th, th)
element of is denoted by , if and only if there
exists such that

(63)

(64)

(65)

where . The optimum value of (51) is then given by

(66)

In general, the worst channel error that satisfies the condi-
tions in Theorem 5 or Corollary 2 may not be unique. Here,
we provide one solution satisfying the conditions (63)–(65).
Define and

. Let
if and

, and

(67)

Then, we can choose as follows:
1) : If , then

; if , then is the
root of the equation . So

.

(68)

2) : Then, should be the root of the equation
. So

(69)

Note that the root of can be found via the
bisection method with an initial interval where

and

(70)
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VIII. NUMERICAL RESULTS

This section demonstrates the effect of the robust MMSE
precoders through several numerical examples. Considering
the space limitation and that the focus of this paper is on the
worst-case robust design, we only show the numerical results
of the worst-case design in the most common situation—the
sum power constraint and the spherical channel
uncertainty region . To take different channels into
account, the elements of the nominal channel are randomly
generated according to zero-mean, unit-variance, i.i.d. Gaussian
distributions. The worst-case robust precoder is compared with
the non-robust precoder that regards the nominal channel as
the actual channel and is given in Section III. The importance
of robustness lies in guaranteeing a performance level for any
channel realization in the uncertainty region, hence embodied
by the worst-case behavior. Therefore, the performance is
demonstrated by the average worst-case MSE and symbol error
rate (SER), i.e., the MSE and SER of a (robust or non-robust)
precoder in its worst channel averaged over the nominal channel

, where the worst channel for a given precoder can be found
in Section VII. The radius of the channel uncertainty is set to
be with .

Note that, for a pre-fixed receiver, a scaling factor is required
to appropriately scale the amplitude of the equalizer at different
SNRs, otherwise the term in the MSE of (2) will
not change as the transmit power varies. Therefore, instead of

, we use with a scaling factor
as in [30]. For perfect CSI, can be jointly optimized with the
precoder as

(71)

which, by using Theorem 1, can be simplified to

(72)

where and . For
fixed , the optimal are given in Section III-B with
replaced by , which further simplifies (72) to

(73)

where is the smallest value such that
. Although (73) is not

a convex problem, the optimal can be found through a line
search. However, when it comes to the worst-case design, it
is extremely difficult to jointly optimize and , so we use

that is optimal in the case of perfect CSI for the worst-case
design. It should be pointed out that this scaling factor is not
optimal for the worst-case design that could thus achieve a
better performance.

Figs. 1 and 2 show the worst-case MSEs versus SNR for dif-
ferent values of , i.e., the size of the channel uncertainty region,
in the cases of no equalizer and MMSE equalizer, respectively.
The numbers of transmit and receive antennas, and symbols in
the transmit signal vector are set to be . As can

Fig. 1. Worst-case MSE versus SNR for different values of � with� �� �

� � �. The receiver uses no equalizer.

Fig. 2. Worst-case MSE versus SNR for different values of � with� �� �

� � �. The receiver uses the MMSE equalizer.

be observed, the robust precoder always outperforms the non-ro-
bust precoder by providing the lowest worst-case MSE indif-
ferent to what kind of equalizers is used. The gap between the
robust and non-robust precoders increases rapidly as the channel
uncertainty raises. This phenomenon can be more evidently ob-
served from Fig. 3 that displays the worst-case MSE versus the
size of the uncertainty region at 20 dB. Compared to
the robust precoder, the non-robust precoder is quite sensitive
to the channel uncertainty, even a small increase of which may
dramatically enlarge the worse-case MSE.

Another interesting phenomenon is that, among all four
common equalizers, i.e., no equalizer , the MF

, the ZF equalizer , and the MMSE
equalizer , the precoder with no
equalizer may achieve nearly the best worst-case performance
in some cases (e.g., at low or moderate SNR). Therefore, for the
optimal MMSE precoder with a pre-fixed receiver using one of
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Fig. 3. Worst-case MSE versus parameter � at ��� � 20 dB with� �� �

� � �.

Fig. 4. Worst-case SER versus SNR for different values of � with � � � and
� � � � �.

these equalizers, a good choice that balances performance and
complexity could be using no equalizer at the receiver. Due to
the space limitation, we cannot show simulation results of all
four common equalizers, so in the following we focus on the
case of no equalizer.

For no equalizer and under the setting of
and the QPSK modulation, Fig. 4 depicts the worst-case SER
versus SNR for different values of , while Fig. 5 shows the
relation between the worst-case SER and the size of the uncer-
tainty region at dB. Although the robust precoder is
based on the MMSE criterion, its superiority to the non-robust
precoder still holds in terms of the worst-case SER, especially
for large channel uncertainty.

Finally, the convergence property of Algorithm 1, which iter-
atively solves the power allocation problem (40), is investigated.
In Fig. 6, the average number of iterations to reach a precision

is shown at different SNRs for different sizes of the

Fig. 5. Worst-case SER versus parameter � at ��� � 20 dB with� � � and
� � � � �.

Fig. 6. Average iteration of Algorithm 1 versus SNR for different values of �
with � � �� and � � � � � � 	.

uncertainty region, where we set and there
is no equalizer. As a sub-gradient method, Algorithm 1 con-
verges quite fast with the properly chosen stepsize, especially
at high SNRs. This is mainly because we can use (39), i.e., the
closed-form solution to (40) when there is no power constraint,
to guess a good initial point.

IX. CONCLUSION

We have designed the robust MMSE precoders with a pre-
fixed receiver for different types of CSI in MIMO channels. All
formulated problems are or can be equivalently transformed into
convex problems having globally optimal solutions that can be
efficiently found. As the most important result, we have proved
that, under some mild conditions, the optimal transmit direc-
tions of the precoder are the right singular vectors of the channel,
the channel mean, and the nominal channel for perfect CSI,
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statistical CSI, and the worst-case design, respectively. Conse-
quently, the matrix-valued problems can be simplified to scalar
power allocation problems without losing any optimality. Then,
we have provided the closed-form solutions to the power allo-
cation problems for perfect and statistical CSI, and proposed an
efficient algorithm to solve the power allocation problem for the
worst-case design. Finally, the worst channels for both robust
and non-robust MMSE precoders have been derived.

APPENDIX A
PROOF OF PROPOSITION 2

The proof starts form the equivalent formulation (33). Using
and , the LMI

in (33) reduces to (74) at the bottom of the page, which, via
proper row and column permutations, can be reformulated into
diag , where accounts for the zero part in ,
and

with
. Therefore, the constraint (74)

is equivalent to and . While amounts to

(75)

which is equivalent to for , from
Lemma 2, amounts to

(76)

implying or equally . Therefore,
(33) can be simplified to the following problem:

(77)

Assuming for the moment that , then
is invertible. Using Lemma 2 again, (76) is equivalent to

(78)

where

(79)

Hence, the problem (77) is equivalent to

(80)

Now, assume without loss of generality (w.l.o.g.) that
for some . Then, by choosing the st and

th rows and columns of (76), we have (81) at the bottom
of the page, or equivalently ,
which implies that either or . If

, then and . As mentioned at
the beginning of Section V, , can happen only
when . With the assumption that

implies only . Then, one
can remove the th row and column of (76), leading to

(82)

where is the result of deleting the th element of a
vector , and is the result of deleting the th row
and column of a square matrix . Hence, in the case of

, following (78), (33) is equivalent to

(83)

Note that, as from the interior of
, the limit of is

(74)

(81)
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if and ; and is if
and . Therefore, by defining

each on the boundary of as its limit,
we can extend (80) to

(84)

so that (77) is equivalent to (84) in both cases that
, and for some .

Letting , (84) can be easily rewritten as (37).
Finally, we prove the convexity of in (38) by con-

sidering the following function:

(85)

which is convex in for fixed . Since
is concave

in for fixed under the condition . The
maximizer of , for fixed , is given by

(86)

leading to the maximum value

(87)

Since maximization preserves convexity [32], is
convex in .

APPENDIX B
PROOF OF THEOREM 4

When there is no power constraint, by introducing
, the problem (37) becomes

(88)

To solve it, we first fix so that (88) decouples into separate
subproblems, each for a variable . Then, it is
easy to find the optimal as

.
(89)

Defining and
, then the region can be divided into con-

secutive intervals , . So (89) can be
rewritten as

(90)

where such that .

Now we search the optimal by substituting (90) back into
(88), and the resulting objective function for a specific is

(91)

which is linear in . Consequently, the objective is a piecewise
linear function as

(92)

and the corresponding problem becomes

(93)

Defining and
, then the region can be divided into

consecutive intervals . Assuming that
for some , we will show that the optimal

must be within and further is equal to . For
, the slope of is negative due to ,

so the minimum of is achieved at the limit ,
meaning that the optimal is not in . For ,
the slope of is nonnegative, so the minimum of
is achieved at . However, from

(94)

(95)

we have , indicating that the optimal
can only lie in and . The optimum value

is given by

(96)

Substituting back into (90), we have

(97)

so that the optimal can be obtained as .

APPENDIX C
PROOF OF PROPOSITION 3

Lemma 6 [37]: Consider the following function defined as
the optimal value of a minimization problem:
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where is (strictly) convex,
are convex, the infermum is achieved by , and the strong
duality holds for any given . Let be
the domain of . Then, is (strictly) convex, provided that

for some , and a subgradient is given by

where is the subgradient of with respect
to is a vector with th element being a subgra-
dient of with respect to , and is a vector of
the optimal Lagrange multipliers associated with the constraints

.
For fixed and , it is not difficult to verify that (47) is the

solution to (42). Particularly, when ,
it must be

. In this case, reduces to

(98)

Hence, we have

(99)

After is obtained, to find a subgradient of with
respect to , according to Lemma 6, one requires the optimal
Lagrange multiplier associated with the constraint

. Let be the optimal Lagrange multiplier associ-
ated with the constraint . Then, and satisfy
the following KKT conditions [32]:

(100)

(101)

(102)

When , it is easily seen from (100) that
. When , we need to discuss two

cases.
1) : If , then from (101)

, and from (102) and (99)

(103)

If , it follows from (100)–(102) that

(104)

and , so we can still choose and as
(103).

2) : If
, then from (101)

, and from (102) and (99) . If
, it follows from

(100)–(102) that

(105)

and , so we can choose and
.

Consequently, we have in (106) at the bottom of the page,
which, from Lemma 6 , leads to a subgradient of with
respect to as

(107)

where from (98)

(108)
Substituting (106) and (108) into (107) leads to (49).

Given and , to find a subgradient of , one requires
the optimal Lagrange multiplier associated with the con-
straint . The KKT conditions, satisfied by and

, are still (100)–(102) except is replaced by . Through
the similar analysis, we can obtain as

(109)

and a subgradient of is just . The proof of Proposition
3 is completed.

(106)
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