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Abstract—This paper deals with the problem of estimating the
steering direction of a signal, embedded in Gaussian disturbance,
under a general quadratic inequality constraint, representing the
uncertainty region of the steering. We resort to the maximum like-
lihood (ML) criterion and focus on two scenarios. The former as-
sumes that the complex amplitude of the useful signal component
fluctuates from snapshot to snapshot. The latter supposes that the
useful signal keeps a constant amplitude within all the snapshots.
We prove that the ML criterion leads in both cases to a fractional
quadratically constrained quadratic problem (QCQP). In order to
solve it, we first relax the problem into a constrained fractional
semidefinite programming (SDP) problem which is shown equiva-
lent, via the Charnes-Cooper transformation, to an SDP problem.
Then, exploiting a suitable rank-one decomposition, we show that
the SDP relaxation is tight and give a procedure to construct (in
polynomial time) an optimal solution of the original problem from
an optimal solution of the fractional SDP. We also assess the quality
of the derived estimator through a comparison between its perfor-
mance and the constrained Cramer Rao lower Bound (CRB). Fi-
nally, we give two applications of the proposed theoretical frame-
work in the context of radar detection.

Index Terms—Constrained maximum likelihood steering direc-
tion estimation, fractional QCQP, radar applications.

1. INTRODUCTION

HE problem of estimating the steering direction vector is
T of relevant interest in some applications concerning radar
detection and beamforming. In fact, there are several physical
phenomena why the received steering vector is quite often not
aligned with the nominal expected direction: such as pointing er-
rors caused by the radar antenna which forms a beam not pointed
in the exact desired direction; imperfect array calibration and
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distorted antenna shape because of array imperfections; spatial
multipath causing severe distortions in the presumed steering
vector due to the presence of signals from several paths (co-
herent and incoherent local scattering); source wavefront dis-
tortion implied by the signal propagation through nonhomoge-
neous media; in-phase and quadrature components errors due to
unbalanced lowpass filters; A/D sampling errors; dc bias; non-
linearities; and intermodulation products. In other words, there
is some imperfect knowledge on the actual steering direction
which is usually characterized in terms of an uncertainty region.
Many adaptive radar signal processing methods that assume the
exact knowledge of the signal array response vector often suffer
a performance degradation, when the actual steering vector is
not perfectly aligned with the nominal one (even small varia-
tions in the array manifold can reduce their performance).

In order to account for the quoted uncertainty, several esti-
mation techniques have been proposed in open literature. For
instance, with reference to beamforming applications, steering
estimation is explicitly or implicitly addressed in [1]-[5]. As to
the case of radar detection, steering vector estimation can be
found in [6]-[12].

All the mentioned approaches focus on a specific uncertainty
region and exploit some different objective functions to opti-
mize. Actually, to the authors best knowledge, the problem of
maximum likelihood (ML) joint estimation of signal amplitude
and steering direction under a general steering uncertainty
region, represented by a quadratic inequality constraint, has not
yet been solved. To this end, in this paper, we consider steering
direction ML estimation under a general quadratic inequality
constraint (either convex or nonconvex) and the unit norm
constraint which characterizes a direction vector. We focus on
two distinct situations. One assumes that complex amplitude of
the received useful signal changes from snapshot to snapshot,
whereas the other accounts for a constant signal amplitude in
all the received snapshots. Both the situations are of interest for
radar signal processing applications concerning detection of
range-spread targets [13], [14], multiple input multiple output
(MIMO) target detection [15], [16], and radar detection using
a general antenna array configuration with a mix of high-
and low-gain beams [17]. We show that, upon concentration
of the likelihood function over the amplitudes of the signal
of interest, the steering direction estimation problem can be
formulated as a fractional quadratically constrained quadratic
problem (QCQP). Hence, in order to solve it, we first relax the
problem into a constrained fractional semidefinite program-
ming (SDP) which is proved equivalent to an SDP through
the Charnes-Cooper transformation [18]. Then, we show that
the relaxation is tight. Precisely, exploiting a suitable rank-one
decomposition theorem [19], [20], we devise a technique aimed
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at recovering a solution of the original fractional QCQP from a
solution of the fractional SDP relaxation. The overall procedure
involves a polynomial computational complexity and, from the
optimization theory point of view, this paper provides an effi-
cient procedure to solve a general fractional QCQP with three
homogeneous constraints, incorporating the specific rank-one
decomposition technique [19].

We also provide considerations concerning the identifiability
of the parameters in the considered estimation problem and eval-
uate the constrained Cramér—Rao lower bound (CRB) [21]. Fi-
nally, we apply the estimation framework to two radar detection
problems. The former refers to radar detection of distributed tar-
gets; the latter to point-target detection with a radar using a gen-
eral antenna array configuration with a mix of high- and low-gain
beams. The analysis of the resulting decision rules in comparison
withthe classicone, assuming aligned nominal and actual steering
directions, confirms the effectiveness of the approach.

The paper is organized as follows. In Section II, we formu-
late the steering direction estimation problem. In Section III, we
discuss the identifiability of the model parameters and propose
the new estimation procedure. Additionally, we derive the con-
strained CRB and assess, through an example, the quality of the
estimates by the proposed algorithm. In Section IV, we apply the
new estimation technique to two radar problems and analyze the
performance of the receivers exploiting the robust estimator of
the steering direction in place of the nominal one. Finally, con-
clusionsand possible future research tracks are givenin Section V.

Notation

We adopt the notation of using boldface for vectors a (lower
case), and matrices A (upper case). The transpose and the con-
jugate transpose operators are denoted by the symbols ()7 and
()Jr ,respectively. tr(-),det(-),rank(-), Amin(+), and Apyax (-) are
respectively the trace, the determinant, the rank, the minimum
eigenvalue and the maximum eigenvalue of the square matrix ar-
gument. I and 0 denote, respectively, the identity matrix and the
matrix with zero entries (their size is determined from the con-
text). R, CV, and HYN are respectively the sets of [NV-dimen-
sional vectors of real numbers, /N -dimensional vectors of com-
plex numbers, and N x N Hermitian matrices. The curled in-
equality symbol >~ (and its strict form > ) is used to denote gener-
alized matrix inequality: forany A € HY, A > 0 means that A is
a positive semidefinite matrix (A > 0 for positive definiteness).
The Euclidean norm of the vector z is denoted by ||z||. The letter
j represents the imaginary unit (i.e., j = \/—1), while the letter
1 often serves as index in this paper. For any complex number z,
we use R(z) and () to denote, respectively, the real and the
imaginary part of x, |z| is the modulus of z, and z* is the conju-
gate of x. Finally, ® denotes the Kronecker product and for any
optimization problem P, v(P) represents its optimal value.

II. MAXIMUM LIKELIHOOD STEERING ESTIMATION: PROBLEM
FORMULATION

We assume that data are collected from N sensors (for
instance the receiving elements of an antenna array) and denote
by z;,t = 1,..., M, the complex vectors of the received

samples which can be expressed as

Zr=ap+wy, t=1,...M, @))
where «y’s are unknown complex parameters accounting for
the channel propagation and signal strength, p is the unit-norm
steering vector of the signal of interest (i.e., p € U, withU =
{pe CV :||p||> =1}), and w,’s are the disturbance compo-
nents, modeled as statistically independent zero-mean complex
circular Gaussian vectors with positive definite covariance ma-

trix F ['wt'w:r ] = M. As to the o} s, we consider the following
two different scenarios:

1) Scenario 1. It models (a1, ..., ays) as a vector of CM and
is of relevant interest for radar detection of range-spread
targets [13], [14], where the useful target might be spread
in more than one range cell. In this case, a; accounts for
the backscattering coefficient of the scattering center in the
tth range cell (if a high resolution radar is considered) or
the radar cross section from the target in the ¢th range bin
with reference to a formation of targets to be detected with
a low-medium resolution radar.

2) Scenario 2. It assumes oy = a8, t = 1,..., M, with 3;
known complex numbers, while « € C is an unknown pa-
rameter. This signal model is useful in MIMO radar with
colocated antennas [16, p. 11, eq. 1.29] and in modern radar
systems [17] that have general antenna array configura-
tions, containing a mix of high- and low-gain beams.

Additionally, we force p to comply with a general (not neces-
sarily convex) quadratic constraint, i.e.

pEQ=UNC, withC = {p ecV :plap+ 23?(pr)+¢20}
2)
with A € HY,b € CV,and ¢ € R.

The estimation of the steering direction is performed re-
sorting to the maximum likelihood (ML) criterion. This
technique is usually applied for radar detection applica-
tions in the presence of steering vector mismatches and/or
when rejection capabilities (namely the possibility to reject
signals which are outside an acceptance region centered
around the expected steering direction) are required to the
radar receiver!. Otherwise stated, we are faced with the
following optimization problem: [see (3) at the bottom of

the next page], where f(z1,...,2zum]|a1,...,an,p; M) and
f(z1,-..,z2m|a,p; B1,y ..., B, M) are the joint probability
density functions (pdf’s) of the vectors zi,...,zjs under

Scenario 1 and Scenario 2, respectively.
Exploiting the Gaussian assumption, the pdf for Scenario 1
can be written as

1
f(z1,. . zulon, .. an, py M) = TN det™ (M)
M
X exp | — Z(zt — atp)TM_l(zt —ap)| @
t=1

I'The joint application of the ML criterion and the optimization theory to com-
munications problems can be found in [22]-[24].
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whereas that for Scenario 2, it is given by

f(zl, ..

1
aNM det™ (M)

M
X exp [— Z(zt — a,@tp)TM_l(zt — aﬂtp)] S

t=1

This implies that the ML estimation problem can be written as
shown in (6) at the bottom of the page.

Before presenting the solution method to the above problems,
it is necessary to highlight their practical importance and its
relation to other existing methods. In radar detection, typical
quadratic constraints that the vector p has to comply with are

* Conic Constraint: C = {p e CV: |p]Lp0|2 2 7||P||2}’

where p, is the nominal steering vector (assumed with
unit norm) and 0 < v < 1. This is tantamount to limiting
the minimum squared cosine angle between the actual and
the nominal steering directions, namely p has to lie in a
conic region with axis p, and whose aperture is ruled by
~. This kind of constraint is encountered in [6]-[8], [10],
[12]. A pictorial representation of the constraint set {2 is
given in Fig. 1(a).

 Elliptical Constraint: C = {p eCVN:(p- pO)]L
x E(p—py) <1}, where E is a positive semidefi-
nite matrix such that A\p.x(E) > 1/4.2 This is equivalent
to assuming that p lies into an ellipsoid whose center is the
unit norm vector p, and whose shape is ruled by the matrix
E. This constraint is commonly encountered in robust
beamforming applications [2], [3], [5] and, for E = 1/,
it reduces to the similarity constraint ||p — py||?> < € [3],
[4], [25], where 0 < € < 2 rules the size of the simi-
larity region. A pictorial representation of the resulting
constraint set (2 is given in Fig. 1(b). Finally, in [26],
some interesting procedures to determine the uncertainty
ellipsoid are proposed and discussed.

« Exterior Conic Constraint: C = {pE cN: |1)pr0|2

< 7||p||*}, namely the useful signal lies outside a conic

20therwise 2 = U N C reduces to 4. Indeed, suppose that Ao, (E) < 1/4
and ||p|| = 1. Then 1/4 > Aax(E) > (p — pp) E(p — py)/Ilp — poI*>
(p—po) E(p—p,)/ ([Pl +[po]l)*= (— o) E(p— py) /4, which implies
(p—py)'E(p — p,) < 1;in other words, Apmax(E) < 1/4 and ||p|| = 1
imply p € C.
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Fig. 1. Pictorial description of the set {2 for N = 2 and real observations.

region whose axis is the vector p,. This constraint is of
relevance in radar detection problems where rejection
capabilities must be conferred to the receiver [9], [27],
[28]. Specifically, it arises when it becomes necessary to
discriminate between a useful signal lying in a conic re-
gion (H; hypothesis) and an interfering signal lying in the
complement of the quoted region, namely the exterior of
the cone (null hypothesis Hy). The graphic representation
of the constraint €2 for this specific situation is given in
Fig. 1(c).

+ Exterior Elliptical Constraint: C = {p eCV:(p- po)]L
X E(p—py) > 1}, Amax(E) > 1/4,3 namely the useful
signal has to lie outside of an ellipsoid whose center is the
vector p, [see Fig. 1(d) for the corresponding representa-
tion of €1].

Evidently, the aforementioned four classes of quadratic con-

straints may or may not be convex, and the feasible regions
are nonconvex, since they consist of one of the four classes of

3Otherwise, the set & = U N C is empty. Indeed, suppose that
Amax(E) < 1/4,p € C and |[p]| = 1, and then one gets the con-
tradiction: 1/4 > Anax(E) > (p—pO)TE(p—po)/HP—Po”ZZ
(p = po) E(p —po)/ (Ip] + Ilpoll)* > 1/4.

maximize  maximize 21,...,2p |1, .., ap, p; M), Scenario 1
(, maximize - maxim f(z1, | ,p; M)
maximize maximize f(z1,...,2zum|o,p;01,-..,0m, M), Scenario 2 3)
acC peQ

M
minimize  minimize Y (z; — oztp)TM_l(zt — azp), Scenario 1

(a1,...,ap )ECM S V)

PuL

t=1

M
migiergize mi?)ier?zize (2 — aﬂtp)TM_l(zt — abp),

(6)

Scenario 2.
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quadratic constraints and the norm constraint ||p|| = 1. Further-
more, the objective function of problem Py, is neither convex
nor quadratic. In fact, consider the simplest case: M = 1, and
the objective function (for Scenario 1) becomes

(z1 — QIP)TM_l(Zl — a1p)

(set By = 1 for Scenario 2). Evaluating the Hessian matrix

o P M~
aleJrM_1 — z]lLM_1

oM lp— M1z ;

pIMp @
it is neither a constant matrix nor a positive semidefinite ma-
trix for some (p, ) € © x C.# In other words, the objective
function is neither quadratic nor convex; thus problem Pyr,
is a nonconvex program (neither a QCQP), and seems diffi-
cult to solve. However, we will show that the problem can be
solved efficiently. Precisely, in the next section, we will show
that problem Pyr,, after concentration over the complex ampli-
tudes «;’s for Scenario 1 (over « for Scenario 2) is equivalent to
a fractional SDP, whose solutions can be obtained by solving its
equivalent SDP via the so-called Charnes-Cooper transforma-
tion [18]. Then, we retrieve an optimal solution of Py;y, from an
optimal solution to the equivalent fractional SDP through spe-
cific rank-one decompositions [19].

III. IDENTIFIABILITY, SOLUTION TO THE ML STEERING
DIRECTION ESTIMATION PROBLEM, AND CONSTRAINED CRB

In this section, we first address the identifiability of the model
parameters, then we introduce the new algorithm which in poly-
nomial time provides a solution to the estimation problem, and,
finally, we assess the quality of the derived estimate through
a comparison with the constrained CRB for the considered
problem.

A. Identifiability of the Model Parameters

Identifiability refers to the study of the solution to the esti-
mation problem in the noiseless case. It is basically a consis-
tency aspect which allows to understand whether the solution
is unique in the ideal case of no noise. With reference to our
problem, the identifiability equations can be written as

(ap = ap for Scenario 2). Assuming that p € Q and &;’s (&
for Scenario 2) are complex numbers, the identifiability of the
parameters o, t = 1,..., M, and p holds if (8) has a unique
solution with p € (2. Evidently this is not the case since both
&:’s (& for Scenario 2) p and é,e7%9’s (ce?®s for Scenario 2)
Pe—I%s with

4. = {arg(pr) ifb#0
7 |arg(erp) ifb=0

[where b is defined in (2)] and e; = [1,0,...,0]%, are solu-
tions of (8). Nevertheless, we can easily obtain identifiability
imposing a further constraint on p, i.e.

(6'p) =0, RB'p) >0 ifb#0,
R(elp) >0 ifb=0. ©)

With this additional constraint the phase ambiguity is eliminated
and the solution of (8) is unique thanks to the unit norm condi-
tion.

It is worth pointing out that if the last constraint (9) is added
to the estimation problem of Section II, the algorithm, we will
propose in the next subsection, can be still applied to obtain
the ML estimates of the parameters provided that its output
(1yyps- -5 Catyy» Py) (@M, Pyr,) for Scenario 2) is phase
rotated in order to comply with (9). In the following, the set €2
augmented with (9) is denoted by (2.

B. Solution to the ML Steering Direction Estimation Problem

In this subsection, we show how the solution to the ML
steering estimation problem can be obtained in polynomial
time. To this end, we observe that problem Pyr, can be equiva-
lently rewritten as shown in (10) at the bottom of the page. The
inner minimization is direct, i.e., for Scenario 1

_pTM_lztz:fM_lp
pIM~'p
= minimcize(zt — atp)TMfl(Zt —ayp) (11)

at€

+ sz_lzt

and the minimal value is attained at

ap=dap, t=1,...,M, Scenariol 8)
M1z
4For example, at the points (0, p), (1, 0), (0,0), the Hessian matrix (7) is a: = Pz . (12)
not positive semidefinite. p]L M- 1p
M
minimize Y, minimize(z; — atp)TMfl(zt — up), Scenario 1
P y 4SS t—1 €C (10)

M
mi?)irgize minimize Y (z; — ozﬂtp)TM_l(zt — afp), Scenario 2.
€

aeC t=1
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For Scenario 2

"M YaaT M1 M
_p .i_ qq71 p‘i’ZZIMith
p'M “p =1

= migiergize ;(zt - aﬁtp)TMfl(zt —afwp) (13)
with

M .l.

> Biz

i=1
M ’
2. 16
i=1

and the minimal value is attained at

%[: ﬂjpTM_lz,

Mt
o = 4= P4 s
2
1AM p - P
Therefore, P amounts to
M Tar-1 -1
M 'SM
szM‘lzt + minimize R el 4
peQ pTMflp
M Tar—1 —1
M 'SM
= szM_lzt - maximizeu (15)
peQ pTMflp
where
g t;l z;z;, Scenario 1 (16)
qu, Scenario 2.
Now, let us focus on solving the fractional QCQP
P { maximize 2M_SM'p a”
PeQ piM 'p
where € is defined by (2). The homogenized version of P; is
shown in
( tr( (M tstamt 0} [PPT pt*D
- L0 o] [pfe |¢2
maximize
SR ()
T Pt |
A b pt*
P, subject to tr < ol . ]2 >
( o o 17 d )=
0 0 pr |t|?
[0 0 pp]L pt* -1
0 pit t2])
\ peCV, te C

(18)
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‘We highlight that the two problems P; and P have the same op-
timal value (i.e., v(P1) = v(P2)), and p* /t* is optimal to P; if
(p*, t*) solves Ps. In fact, it is evident that v(P;) < v(P2); on
the other hand, the objective function of P; evaluated at p* /t*
is equal to the optimal value of Pz, provided that (p*, ¢*) is an
optimal solution for Ps.

The SDP relaxation of Ps is

imize 2@ W)
maximize QW)
subject to tr (@QW)>0
" r(QuW) = 1 1
tr (@QsW) =1
wW>0
where @Q,’s, are defined as follows:
M7'SM™' 0 M~ 0
Q= 0 0]° Q=] 0 o @

Q1:[;}r Ic)} sz{g 8}7 Qs = [0 0] 2n

It is known that the single-ratio fractional SDP P3 can be itera-
tively solved by either the Dinkelbach algorithm (for instance
see [29] and [30]) or the bisection search (see [31]). In this
paper, we will solve Ps in one single shot by resorting to a
variation of the so-called Charnes-Cooper variable transforma-
tion which was originally introduced in [18]. By the Charnes-
Cooper variable transformation, one can replace a linear frac-
tional program with at most two straightforward linear programs
that differ from each other by only a change of sign in the objec-
tive function and in one constraint, and thus achieves a global
optimal solution of the linear fractional program by solving at
most two linear programs. By using the idea of Charnes and
Cooper’s transformation, and considering that the denominator
of the fractional SDP Ps is always positive, we can convert the
fractional SDP into an equivalent SDP. Precisely, let us define
the transformed variable X = sW, where s > 0 complies with
tr(Q,(sW)) = 1. Hence, multiplying by s the numerator and
the denominator of the objective function in Ps, we obtain the
SDP problem

maximize  tr (Q_IX)
subJe’ét to tr (QuX) =
Py tr (@, X) > (22)
tr (@, X) =
tr (@;X) = s
X = 0, s> 0.

In the following, we show that the fractional SDP Ps is equiv-
alent to the SDP (22), in the sense that they have the equal op-
timal value and optimal solutions differ from one to another by a
constant. In order to claim the equivalence between P3 and Py,
we first prove three lemmas showing that the two problems are
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solvable> (Lemmas 3.1 and 3.2), and that they share the same

optimal value (Lemma 3.3) even if the optimal solutions differ

up to a scalar whose expression is specified in Lemma 3.3.
Lemma 3.1: The fractional SDP problem P4 is solvable.

Proof: See Appendix A. [ |
Lemma 3.2: The SDP problem P; is solvable.
Proof: See Appendix B. ]
Lemma 3.3: Problems P3; and P, have the equal
optimal value. Furthermore, if X* solves P3, then

(X /tr(QoX™), 1/tr(QyX™)) solves Py; if (X, s*) solves
Py, then X*/s* solves Ps.
Proof: See Appendix C. ]

Once an optimal solution X * of P is obtained, we can check
the rank of X™*. If X* is of rank one, then the solution is a global
optimal solution of the fractional QCQP P5 since Ps is a re-
laxation of Py by dropping the rank-one constraint. If X™ is
of rank higher than one, we will construct a rank-one optimal
solution z* (.'Ar;*)Jr of P3 by a recent matrix decomposition the-
orem [19]6. Then, the solution £* is an optimal solution of Ps.
In other words, the SDP relaxation (19) is tight. Specifically,
in order to construct a rank-one optimal solution to P3, we use
the rank-one matrix decomposition theorem [19, Theorem 2.3],
which is cited as the following lemma.

Lemma 3.4: Let X be a nonzero N x N (N > 3)
complex Hermitian positive semidefinite matrix and A;
be Hermitian matrix, ¢ = 1, 2, 3, 4, and suppose that
(tI‘ (YAl) s tr (YAQ) s tr (YAg), tr (YA4)) 7é (07 07 07 0) for
any nonzero complex Hermitian positive semidefinite matrix
Y of size N x N. Then,

o if rank(X) > 3, one can find, in polynomial time, a

rank-one matrix zz! such that z (synthetically denoted as
z =D(X, Ay, Ay, Az, A,))isinrange(X), and

:I:]LA,L-.'I: =tr(XA;), i=1, 2, 3, 4;

* ifrank(X) = 2, for any z not in the range space of X, one

can find a rank-one matrix zz ! such that z (synthetically
denoted as £ = Dy(X, Ay, Ay, A3, Ay)) is in the linear
subspace spanned by {z} U range(X), and

:I:]LA,L-.'I: =tr(XA;), i=1, 2, 3, 4.

Let us check the applicability of the lemma to both X™* and
the matrix parameters of Ps. Indeed, the condition N > 3 is
mild and practical. Now, in order to verify

(tr(YQ,), tr(¥YQy), tr(YQ3), tr(YQ,))
#(0,0,0,0), for any nonzeroY > 0

it suffices to prove that there is (a1, a2, a3, a4) € R* such that

a1Qq + a2Q5 + a3Q3 + asQ, > 0,

5By “solvable,” we mean that the problem is feasible and bounded, and the
optimal value is attained; see [32, page 13].

®Note that once getting an optimal rank-one solution of (19) (as stated in
Algorithm 1 herein), we can give an optimal rank-one solution of (22) too,
according to Lemma 3.3.

where
M™'SM™ —y(P;)M™ 0
Q4 = 0 0

But this is evident for the matrix parameters’ of Ps.
Algorithm 1 summarizes the procedure leading to an optimal
solution p* of P;.

Algorithm 1: Algorithm for Fractional QCQP P
Input: M 1, S, Q,.
Output: An optimal solution p* of P;.

1: solve SDP P, finding an optimal solution (X*, s*) and
the optimal value v*;
20 let X* := X*/s*;
3: if rank(X*) = 1 then
perform an eigen-decomposition X* = z* (z*)T,

*
B
5. else if rank(X™) = 2 then

where * = ;output p* := p* /t* and terminate.

6: find Jyp—— R
TISMT oMt 0
Z*:D2<X*7|: 0 Y 0:|,
A b I 0 0 0 )
of cl'lo ol]o 1]
7. else
8: find

0 0
A ] [1 0] [o 0])
o cl7lo ol'|o 1)
9: end .

10: let z* = Pt)* w ; output p* := p*/t*.

£ = Dy <X* {M‘lsM_l ML 0]

The computational complexity, connected with the imple-
mentation of Algorithm 18 includes the complexity of solving
SDP Py, which is of order O(N3-° log(1/n)) (see [32, p. 250]),
where 7 is a prefixed accuracy, and the complexity of the
specific rank-one decomposition procedure which is O (N 3).

Given an optimal solution p* of P, it follows by (12) that for
Scenario 1,

o ()M )My
(al """ Qprs P ) - ((p*).i.M_lp*v"'a (p*)TM_lp* ;P )
and for Scenario 2,
() Mg .

(o*,p") = P

M BLRE) M p

In fact, taking @; = a4 = 0 and a3 = as = 1, then 1 Q, + a.Q, +
azQ; +asQ, =1 > 0.

8We highlight that Algorithm 1 includes solving the SDP relaxation problem
‘P4, performing a similar Charnes-Cooper transformation, and some matrix
rank-one decompositions which are specified in Lemma 3.4. In [19, Algorithm
1] demonstrates how to decompose a positive semidefinite matrix according to
[19, Th. 2.1]. In fact, [19, Th. 2.1] and [20, Th. 2.1] are the core of the rank-one
decompositions described in [19, Th. 2.3] (cited by Lemma 3.4 herein).
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is an optimal solution of problem Pyr,. Algorithm 2 describes
the procedure to find the ML estimates (i.e., the optimal solution
to Pumr).

Algorithm 2: Finding an Optimal Solution of Pyr,

Input: M~ ' z1,... .z, Q.
Output: An optimal solution (a1, , .- -, @My, Pyr,) TOr
Scenario 1 ((amr, pyyr,) for Scenario 2).
1: define S as (16);
2: p* = Algorithm 1 (M, S, Q).
3 let oy, (p*)TM_lzt/(p*)TM_lp*, t
1,...M, and pyy = p* for Scenario 1 (ML
_ M _
() M Ya/\[ B2 (p*) M 'p*, and pyy, = p*
for Scenario 2).

C. Constrained CRB and Accuracy of the Proposed Estimator

In this subsection, we evaluate the constrained CRB for the
estimation of p and analyze the quality of the estimator proposed
in the previous subsection through a comparison between its
accuracy and the CRB. Assuming that p is a regular point of
the inequality constraints involved in €2,, the CRB under the
constraint p € {2, is identical to that under the constraints p € U
and %(blp) = 0 (withb, = bif b # 0 and b, = e; otherwise)
[33]. In other words, only the equality constraints have to be
considered. In the following, we derive the CRB exploiting the
technique proposed in [21].

Let us define 8, = [R(@P)7",S@7]", 0. =
[R(a1),S(ar), ..., R(aar), S(aar)]T  for  Scenario 1
6. = [R(e), ()" for Scenario 2), and § = [6],8]]"

After some standard algebra, the Fisher Information Matrix
(FIM) [34] J can be written as

Jo,0,0) Jg,6.(6)
J(0) =
Jo.0,0) Jo,6.(0)
where
I
Jowgp(o) =2(R ®M_1

with £ = Zi\il |ov|? for Scenario 1 and ¢ = |a|? Zi\il 3|2
for Scenario 2;

2PTM “'pIo

Jo, 0. (0)=1{ M
90“9&( ) 2 E |[3t|2pTM_1p12
t=1
and
Ly
Jo. 0, (8) =2 v @p M
—j 1

IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 59, NO. 1, JANUARY 2011

with v [a1,...,an]" for Scenario 1 and wvg
o Zi\il |3¢|? for Scenario 2.

T
Additionally, define () = (||p||2 -1, %(bip)) , and con-
sider the gradient vector of the constraints [21]

207 07,
9506 [ qu’ 021\1] Scenario 1
F(a) _ (T) _ aT ;]\/[
o0 20, 0, .
T Scenario 2
b, 03

with b, = [3(b,)T, R(b,)T]". The above matrix has a full row
rank if 8, and b, are not proportional. Focusing on situations
where such assumption is satisfied, there exists a matrix U . such
that (see the equation at the bottom of the page). Hence, by [21,
Th. 1], the error covariance Cp of an unbiased estimate of 6
complies with

Co = U(U;J(B)U.)"'U,;

for all @ such that det(UXJ(8)U.) # 0. As a byproduct, the
error covariance of an unbiased estimate of 01, fulfills

Co, = U (ULJOWU.)'U e, 0, (23)
with [U. (UL J(0)U.)~1U]s, 6, the matrix formed by the first
2N rows and 2N columns of U (UL J(6)U,.)~'U?".

Example: In this example, we study the mean square
error (MSE) of the proposed algorithm, i.e.

Nirials
1
MSE = o 3~ [Iplh ~ 7l (24)
rials f:l

(where Ni,ia1s denotes the number of independent data realiza-
tions used to perform the MSE estimate and pl(\'tI)L is the tth ML
estimate of p) in comparison with the trace of the CRB matrix
[right-hand side (RHS) of (23)]. To this end, we assume N = 5,
M = 25, covariance disturbance exponentially shaped with
one-lag coefficient p = 0.9, elliptical constraint with E = I /e,
p=1p,=1/NJ[L,...,1]T. The convex optimization MATLAB
toolbox SElf-DUal-MInimization (SeDuMi) [35] is exploited
for solving the SDP problem involved in Algorithm 1.9

In Fig. 2, MSE is plotted versus the signal-to-noise ratio
(SNR), i.e.

M
SNR =3 |ae’pi M~'p, (25)

t=1

for Niyials = 1000 and several values of the parameter e. We ob-
serve that, as the SNR increases, the method’s MSE approaches
the trace of the constrained CRB matrix. Additionally, the lower

9The same solver is also exploited in the remaining simulations of the paper.

UUl = (12(N+M) - F7(9) (F(o)FT(o))_l F(a)) , UlU.=Iynya)1 Scenario |

UL = (Lovin) — F7(6) (F(O)F (6)

-1

UCTUC = Iyn41)-1 Scenario 2.

F(9)),
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10 1 1 L 1
0 5 10 15 20

SNR (dB)

Fig. 2. MSE versus SNR for N = 5, M = 25, perfectly matched steering
direction, and several values of €. Trace of the constrained CRB matrix [RHS
of (23)] solid line. € = 0.05 o-marked curve. € = 0.1+-marked curve. € = 2
star-marked curve.

the uncertainty (in this case the volume of the ellipsoid around
the true steering direction), the better the performance.

IV. APPLICATIONS

In this section, we present two applications of the estimation
technique developed in the previous section. Precisely, we will
focus on the problems of radar detection of range distributed tar-
gets with an elliptical steering constraint and robust point-target
detection with a radar using a general antenna array configura-
tion with a mix of high- and low-gain beams.

A. Detection of Range Distributed Targets With an Elliptical
Steering Constraint

Assume that data are collected by an array of N sensors
and deal with the problem of detecting the presence of a target
across M range cells (M > N). Let z;,t = 1,..., M, be
the N-dimensional vector of the received signal from the ¢-th
range cell (primary data). Assume that a secondary data set, z;,
t=M+1,..., K,isavailable and each of such snapshots does
not contain any useful target echo.

The detection problem to be solved can be formulated in
terms of the following binary hypotheses test:

where
* a,’s are unknown parameters accounting for the useful
target reflectivity and channel propagation effects;
e m;’s are N-dimensional disturbance vectors modeled as
independent, zero-mean, complex Gaussian vectors with
the same unknown covariance matrix, i.e.

E'['n,tnI] =M,t=1,... K,

e p is the actual steering vector, which due to sev-
eral effects might not be aligned with the nominal
steering s. In particular, in this application, we sup-
pose that p belongs to the set & = U N C where
C = {p eCN: (p—pO)TE(p—pO) < 1}, and E is
a positive definite (or possibly semidefinite) matrix.

We investigate three possible statistical tests for the hypotheses
test (26), i.e., the one-step generalized likelihood ratio test
(GLRT), the two-step GLRT, and the modified two-step GLRT,
which in the absence of steering mismatches have been derived
in [14].

One-Step GLRT: The one-step GLRT is the following
decision rule shown in (27) at the bottom of the page, where
f(Zl, ce ,ZK|H1., Apyenny OéM,p,IM) and f(zl, - .ZK|H0,M),
are the data pdf’s under H; and Hj, respectively, and 7T is
the detection threshold set according to a design false alarm
Probability (Pf,). Performing the maximizations over M,
aq,...,ay, after some standard algebra, we obtain the fol-
lowing decision rule:

pisT z(1+ Z187 21zt s p m

max =T (28)
peQ pTSS_lp ;o
where Z = [z1,...,20m], Ss = Zf:]\[+1 ztz:[, and the same

symbol T has been used to denote the modified threshold. Evi-
dently, the optimization problem involved in the computation of
the decision statistic can be solved resorting to the framework
developed in the previous section based on the Charnes-Cooper
transformation.

Two-Step GLRT: This two-step procedure first derives the
GLRT based on primary data, assuming that the covariance ma-
trix is known (step 1). Then, a fully adaptive detector is obtained
by substituting the unknown matrix with the sample covariance
matrix based on secondary data only (step 2). Step 1 can be ac-
complished evaluating

Hyizg=m, t=1,...K parta iy, Szl e p M)y
H - Zr=agp+my, t=1,.... M (26) fz1,. .., zy|Ho, M) 1?0
’ 2t = Ny, t:M—l—l/,K (29)
max max max f(2z1,...,2x|H1,a1,...,a5,p, M)
pPeQ ar.,aom M IgT (27)
HJI‘Z_Xf(Zh...?ZK|H07M) H,
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which, after some algebra leads to

tM-1zztM1p m
p P,

piM7'p

max

peQ (30)

Hence, a completely adaptive detector (step 2) can be obtained
plugging S in place of M, i.e.,

ts1zz15 1p
Doy s P =T

max
piS;'p

ax (31)

The last maximization can be performed with the procedure of
Section II.

Modified Two-Step GLRT: This modified two-step proce-
dure first derives the GLRT based on primary data, assuming
that the covariance structure £ (M = ¢2X) is known (step 1).
Then, a fully adaptive detector is obtained by substituting the
sample covariance matrix in place of X (step 2).

Step 1 requires the computation of (32) at the bottom of the
page, which, after some algebra, can be recast as

tn-lzzisp &
max L4 L4 ZIT.

PES ¢y (ZTZ_IZ) pT2_1p Ho

(33)

Plugging S in place of X, we get the modified two-step GLRT,
ie.

fg-lyzzTg-1 H

max p'S, S, p Zl T.

PES ty (ZTSS_IZ) erZ*lp Ho

(34)

Again, Algorithm 1 of Section II can be used to obtain the op-
timal value of the maximization problem in (34).

The new detectors (28), (31), and (34), will be respectively
referred to as Elliptically Constrained One-Step GLRT (EC-1S-
GLRT), EC Two-Step GLRT (EC-2S-GLRT), and EC Modified
2S-GLRT (EC-M2S-GLRT). Their counterparts, derived in [14]
and assuming the perfect knowledge of p, are instead respec-
tively referred to as 1S-GLRT, 2S-GLRT, and M2S-GLRT.

In the following, we analyze the performance of the six con-
sidered receivers assuming N = 5, K = 15, M = 3, target
uniformly spread within the M range cells, covariance distur-
bance exponentially shaped with one-lag coefficient p = 0.9,
false alarm probability Py, = 1072, E = I/e,and e = 0.1. As
to the actual steering direction p, we simulate it as follows:

P = pgcos b, -|—p0l sin ,,

where pé‘ denotes a (random) unit norm vector orthogonal to
the nominal direction p,, and 6, is a parameter which rules the
degree of mismatch.

In Fig. 3(a), we plot the detection Probability P, (evaluated
through Monte Carlo techniques) versus SNR (25) for 6,,, =
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0, namely actual steering direction perfectly matched with the
nominal one. The curves show that the receivers which know
exactly the steering direction outperform the elliptically con-
strained detectors which assume some uncertainty on the actual
steering direction. Indeed, for P; = 0.9, the detection loss is al-
ways kept within 4 dB for all the three considered design strate-
gies.

In Fig. 3(b), we consider the case where some mismatch is
present. Precisely, we set 6,,, = asin (1/€/2). Evidently, the
classic receivers show a performance degradation which might
also be severe for the cases of the 1S-GLRT and the M2S-GLRT.
As to the elliptically constrained receivers, they exhibit a more
robust behavior with respect to directional mismatches thanks
to the uncertainty on the steering direction that they suppose at
the design stage.

Finally, in Fig. 3(c), we analyze the effect of the parameter
e on the detection performance for 6, = 0. The plots show
that the higher e the higher the loss of each elliptically con-
strained receiver with respect to its counterpart which exactly
knows the steering direction. This behavior can be explained ob-
serving that the higher € the wider the uncertainty region where
the actual steering vector is supposed to belong to. Additionally,
it seems that the EC-M2S-GLRT is the most sensitive among the
new receivers, whereas the EC-1S-GLRT and EC-2S-GLRT ex-
hibit almost the same degree of sensitivity.

B. Robust Point-Target Detection With a Radar Using a
General Antenna Array Configuration With a Mix of High-
and Low-Gain Beams

Let us consider a radar operating with a general antenna array
configuration [17] which includes a mix of high- and low-gain
beams, obtained by suitable linear combinations of basic array
elements. The radar is equipped with IV independent receiving
channels, each connected with one of the beams. According to
the model developed in [17], the echoes collected by the NV
channels at the tth sampling instant are stacked to form the
N-dimensional vector z;,t =0,..., K (K +1 > N), referred
to as t-th snapshot (for notational simplicity we assume that z
contains the echo from the cell under test). As to the spatial be-
havior of the expected target, it is described by the N-dimen-
sional steering vector p, whose components are the complex
amplitudes of the echo received at the N-th channel from a nor-
malized target with direction of arrival f. If the radar contains
P high-gain beams then p, = [p”, 0]” (p is a P-dimensional
column vector), since the usual signal received at the low-gain
beams can be considered with a negligible power level [17].

The temporal behavior of the expected target echo
is described by the (K + 1)-dimensional vector s =
[50,51,...,8K4+1]T corresponding to the samples of the
coded transmitted waveform (assumed, without loss of gen-
erality, with unit norm). Finally, the global disturbance is a
combination of thermal noise and narrowband directional jam-

max max max f(zy,...,2zy|Hy,a1,...,ay,p,02, )

PeQ ar,..,am o2

(32)

nla;Xf(zlw"7ZM|H07U272) Hy,
o2



DE MAIO et al.: FRACTIONAL QCQP WITH APPLICATIONS IN ML STEERING DIRECTION ESTIMATION FOR RADAR DETECTION 181

=% - 1S-GLRT

- ©-2S-GLRT

= + = M2S-GLRT
—4—EC-1S-GLRT
—e—EC-2S-GLRT
—+—EC-M2S-GLRT

1 r r o o o <
K
0.9 - % - 15-GLRT
- - 2S-GLRT
o | - + - M2S-GLRT ]
: —k— EC-1S-GLRT p
—e— EC-25-GLRT _x
07 —+— EC-M2S-GLRT Lok _
P
J *”
06 r g
o */ ,,e/
05 P ]
o /
’
0.4 * / 1
’
03 1
== -
0.2 as & i
0.1 1
0 1 L
0 5 10 15 20

SNR (dB)

Fig. 3. (a) P, versus SNR for P, = 1072, N = 5, K = 15, M = 3,
e = 0.1, and perfectly matched steering direction. 1S-GLRT (dashed
star-marked curve), 2S-GLRT (dashed o-marked curve), M2S-GLRT (dashed
+-marked curve), EC-1S-GLRT (solid star-marked curve), EC-2S-GLRT (solid
o-marked curve), EC-M2S-GLRT (solid +-marked curve). (b) P, versus SNR
for P, = 1072, N = 5, K = 15, M = 3, ¢ = 0.1, mismatched steering
direction with #,, = asin (\/E/ 2). 1S-GLRT (dashed star-marked curve),
2S-GLRT (dashed o-marked curve), M2S-GLRT (dashed +-marked curve),
EC-1S-GLRT (solid star-marked curve), EC-2S-GLRT (solid o-marked curve),
EC-M2S-GLRT (solid +-marked curve).

mers. Hence, the (K + 1) snapshots are modeled as independent
complex Gaussian vectors with unknown covariance matrix M
and mean asgp, under H; (0 under Hy) with o an unknown
parameter accounting for the target backscattering and channel
propagation effects.

Let us denote by

Z:[Zo,...

0.8
D:D n_-c 0.6
0.4
0.2
0
20 0
SNR (dB)
1
0.8
0.6
o
o
04
0.2

SNR (dB)

Fig. 3. (Continued.) (c) P, versus SNR for P, = 1072, N = 5, K =
15, M = 3, perfectly matched steering direction, and several values of € €
{0.01,0.05,0.1}. Subplot a) 1S-GLRT (dashed curve) and EC-1S-GLRT (solid
curves). Subplot b) 2S-GLRT (dashed curve) and EC-2S-GLRT (solid curves).
Subplot ¢) M2S-GLRT (dashed curve) and EC-M2S-GLRT (solid curves).

where Z}, isa P x (K + 1) matrix containing the P high-gain
beams of each snapshot. The generalized likelihood ratio (GLR)
for known p can be written as [17]

max f(Z|Hy,a,p, M
i (7], ., M)

o (2] Ho. M)

» (K+1)
= |1- plo You? (35)
(1+s721(zP.2") 125" ) plo"p
where
P,=1-s"s"

& =7,P.[I—- P,,,Z;f(zlP,,,Z;f)—IZ,Ps]PSZZ
Yo=Z[I - PSZIT(ZIPSZ}L)—IZZ].

Assuming that some uncertainty is available on p, for instance
due to array pointing errors or miscalibration effects, one can re-
sort to a further GLR over p in order to cope with the additional
unknown parameter. If an elliptical model, as that of the pre-
vious subsection, is considered for the uncertainty region, then

the GLR becomes
—(K+1)

pl@ 'Y s
(1 + sTZT(ZPSZT)—lz.s*) plo'p

max |1 —
peQ

(36)
which can be equivalently written as shown (37), shown at the
bottom of the page. The maximization in (37) can be accom-
plished through Algorithm 1 of Section II. From the above equa-
tion, we can construct the GLRT obtained comparing the GLR

—(K+1)
qurchs*sTYqulp

1-— max
(1 ¥ sTZT(ZPSZT)—lzs*) PEQ

37
pi@'p 7
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with a threshold, set in order to ensure the design P%,. The re-
sulting detector will be referred to as the EC-GLRT and is given
by

1

(1 + sTZT(ZPSZT)—IZs*)

Pl Y st sTY Lo p 5.
pie7'p Ho

X max
peQ

(38)
Its counterpart, assuming the perfect knowledge of p, will be
instead referred to as the GLRT. In the following, we assess the
performance of the EC-GLRT and the GLRT assuming that the
actual steering direction is modeled as!0
ap(i) = ca(14a(i)) exp (jrsin(¢p + ¢m(i))) i=1,..., P
where a(i) is a sequence of independent zero-mean Gaussian
random variables with variance o2 and ¢,,(i) is another se-
quence (statistically independent of a(%)) of independent zero-
mean Gaussian random variables with variance o2,. As to the
disturbance scenario, we suppose the presence of noise plus two
jammers impinging from 10 and 20 degrees, respectively, with
a jammer to noise ratio of 20 dB.

In Fig. 4(a), we plot P; (evaluated through Monte Carlo tech-
niques) of the two detectors versus SNR, i.e.

SNR = |a|2[p}, 0T]M [T 07"

where p, is the nominal direction (i.e., py(i) =
1/VPexp (jrsin(p,))), i = 1,...,P, for P, = 1072,
N=10,P=5K =12, =0.2, ¢, =0, 0, = 0.1, and two
values of o,,. The transmitted waveform s is a Barker code
of length 13. For comparison purposes, the case of a perfect
matched steering direction is plotted as well.

The analysis of the curves shows that if a useful signal,
perfectly matched to the nominal steering direction, impinges
on the array, then the EC-GLRT exhibits almost the same P,
as the GLRT and, for P; > 0.9, the respective performance
curves overlap. When a mismatch is present, the EC-GLRT
achieves a performance level better than the GLRT; specifically
the stronger the mismatch the higher the detection gain.

The effect of the parameter o, is analyzed in Fig. 4(b), where
Py is plotted versus SNR for several values of o, 0,,, = 3, and
the remaining simulation parameters as in Fig. 4(a). The plots
highlight that the performance gain of the EC-GLRT over the
GLRT depends on the entity of the amplitude mismatch; pre-
cisely, the higher the amplitude mismatch the higher the gain
of the receiver which compensates for the amplitude mismatch.
Summarizing, both the figures are a confirmation that, the ellip-
tically constrained receiver is more robust than the counterpart
with respect to directional mismatches.

V. CONCLUSION

In this paper, we have considered the problem of constrained
steering direction estimation of a signal embedded in Gaussian
disturbance. The constraint set has been represented in terms
of a general quadratic inequality constraint which includes

10We are accounting for both amplitude and phase mismatch.
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Fig. 4. (a) P; versus SNR for P, = 1072, N = 10, P = 5, K = 12,
e = 0.2, mismatched steering direction with o, = 0.1 and two values of o,,,
(0., = 3 star-marked curves and o,, = 5 o-marked curves). GLRT (solid
curves), EC-GLRT (dashed curves). (b) P, versus SNR for Pr, = 102, N =
10, P = 5, K = 12, ¢ = 0.2, mismatched steering direction with o,,, = 3
and three values of o, (¢, = 0.14-marked curves), o, = 0.5 star-marked
curves, and o, = 0.7 o-marked curves.

many situations of practical relevance such as conic con-
straints, elliptical constraints, exterior conic constraints, and
exterior elliptical constraints. Additionally, a norm constraint
accounting for the unitary norm of the steering direction has
been considered. The estimation problem is attacked resorting
to the ML criterion under two different assumptions for the
received signal amplitude:
* the complex amplitude of the useful signal component
changes from snapshot to snapshot;
* the useful signal keeps a constant amplitude within all the
snapshots.
We have proved that the ML criterion leads in both cases to
a fractional QCQP. In order to solve it, we have first relaxed
the problem into a constrained fractional SDP problem which
we prove equivalent to an SDP problem through the Charnes-
Cooper transformation. Then, exploiting some rank-one decom-
positions, we have shown that the SDP relaxation is actually
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tight. Additionally, we have devised a procedure which con-
structs (in polynomial time) an optimal solution of the original
problem from an optimal solution of the fractional SDP. We
have also analyzed the quality of the derived estimator through
a comparison of its performance with the constrained CRB. Fi-
nally, we have given two applications of the proposed theoret-
ical framework in the context of radar detection of range dis-
tributed targets and robust point-target detection with a radar
using a general antenna array configuration with a mix of high-
and low-gain beams. In both the situations, the new procedure
applies successfully.

Possible future research tracks might concern the application
of the framework to additional statistical signal processing prob-
lems involving over the horizon (OTH) radar or synthetic aper-
ture radar (SAR) processing (including atmospheric effects) as
well as the extension of the procedure to account for the pres-
ence of a specific structure in the steering direction.

APPENDIX

A. Proof of Lemma 3.1
Proof: Observe that the feasible region of Ps
Q' ={W = 0tr(Q,W) > 0, tr(Q,W) =1, tr(Q;W) = 1}
39
is a closed subset of the compact set (39
0 = (W = 0l (@ + Q)W) = tr(W) = 2)

thus the set Q' is compact as well. Also note that the denomi-
nator and numerator of the objective function of the fractional
SDP Ps are continuous, and that the denominator is positive
over the feasible region (because tr(Q,W) > 0 for any W be-
longing to the set {W > 0]tr(Q,W) = 1} which includes the
feasible region). Let Q" = {W > 0|tr(Q,W') = 1}. Then, for
any W € €, we have that

0<tr (Q_IW) < maximize tr (Q_IY)
Year

=Amax (M 'SM 1)

and
Amin(M™1) = minimize tr (QY) < tr (Q W)
YeQII/
< maximize tr (QyY) = Amax(M ™).
YeQII/

This implies that the objective function of problem Pj is fi-
nite-valued over the feasible region. It follows from Weierstrass’
Theorem (for instance, see [36, Ch. 2]) that problem P35 has al-
ways an optimal solution. Hence, the problem is solvable. ®

B. Proof of Lemma 3.2
Proof: The dual of SDP P, is shown in

minimize gy
Yo0,¥1,Y2,Y3
Py subject to - Q_; — y0Qo — 1Q1 — ¥2Q> — y3Q3 2 0
y2+y3 <0
y1 < 0.
(40)
Since Ps has an optimal solution, say W™, hence it is easily seen
that (W™ /tr(Q,W™), 1/tr(Q,W™)) is feasible for P,. There-
fore, by weak duality, Problem P, is bounded below. Assume

that 1 = ¢; < 0 and yo = €3 < 0 are given such that
€s — €1¢ < 0. Then see,

Q_1—9Q — 11Q1 — ¥2Q5 — y3Q;3 =

M_ISM_1 — y()M_1 — 61A — 62_[ —61b
f =0
—€1b —€1C — Y3
which is equivalent to
[yoMl + e A+ el —M SM! e1b ] <o
qu erctys]

Now, we can set yp > 0 to be sufficiently large and set 3 so that
e%bJr (yoM '+ e A+ eI — M SM~1)~bis close enough to
zero, and 3 > e%bJr (yoMf1 +e1A+ e — Mflstl)*lb —
ercand y3 + y2 = ys + €2 < 0. This means the SDP problem
‘P, is strictly feasible. It follows from the strong duality theorem
(for example, see [32, Th. 1.7.1]) that Problem P is solvable. B

C. Proof of Lemma 3.3

Proof: Suppose that W* is an optimal solution of P53 and
v(P3) is the optimal value of Ps, and that v(P,) is the optimal
value of Py. It is verified easily that (W™ /tr(Q,W™), s*) with
s* = 1/tr(Q,W™) is feasible for P, and the objective function
value at the feasible point is tr(Q_; W) /tr(Q,W*) = v(Ps).
Thus, we have v(Py) > v(Ps).

On the other hand, let (X™, s*) be an optimal solution of P;.
We claim that s* > 0. Indeed, if s* = 0, then tr(Q,X™) +
tr(Q;X™) = tr(X*) = 2s* = 0, which implies X* = 0.
This is impossible since tr(QuX™) = 1. It is checked that
X /s* is feasible for Ps, and the objective function value of Ps
at the feasible point is tr (Q_,(X™/s*)) /tr (Qo(X*/s*))=
tr(Q_ X ™) /tr(QyX™) = tr(Q_,X™) = v(P4). Therefore,
we have v(Ps3) > v(P4), which yields v(Ps) = v(Py). ]
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