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Abstract—This paper addresses the independent component
analysis (ICA) of quaternion random vectors. In particular,
we focus on the Gaussian case and therefore only consider the
quaternion second-order statistics (SOS), which are given by the
covariance matrix and three complementary covariance matrices.
First, we derive the necessary and sufficient conditions for the
identifiability of the quaternion ICA model, which are based on
the definition of the properness profile of a quaternion random
variable and more specifically on the concept of rotationally
equivalent properness profiles. Second, we show that the max-
imum-likelihood (ML) approach to the quaternion ICA problem
reduces to the approximated joint diagonalization (AJD) of the
sample-mean estimates of the covariance and complementary
covariance matrices. Unlike the complex case, these four matrices
cannot be simultaneously diagonalized in general, and we have
to resort to a particular AJD algorithm. The proposed technique,
which can be seen as a quasi-Newton method, is based on the
local approximation of the nonconvex ML-ICA cost function (a
measure of the entropy loss due to the residual correlation among
the estimated quaternion sources), and it provides a satisfactory
solution of the quaternion ICA model. The performance of the
proposed quaternion ML-ICA algorithm, as well as its relation-
ship to the identifiability conditions, are illustrated by means of
several numerical examples.

Index Terms—Approximated joint diagonalization (AJD),
blind source separation (BSS), independent component analysis
(ICA), properness, properness-profile, propriety, quaternions,
second-order circularity.

I. INTRODUCTION

T RADITIONALLY, quaternion algebra [1], [2] has been
extensively used in computer graphics [3] and aerospace

applications [4], [5] due to its compact notation, moderate
computational requirements and avoidance of singularities
associated to 3 3 rotation matrices [3]. Moreover, the interest
in quaternion signal processing has increased in the last years

Manuscript received May 08, 2010; revised September 10, 2010 and
November 29, 2010; accepted December 07, 2010. Date of publication De-
cember 20, 2010; date of current version March 09, 2011. The associate editor
coordinating the review of this manuscript and approving it for publication was
Prof. Visa Koivunen. This work was supported by the Spanish Government,
Ministerio de Ciencia e Innovación (MICINN), under projects COMONSENS
(CSD2008-00010, CONSOLIDER-INGENIO 2010 Program) and COSIMA
(TEC2010-19545-C04-03) and by the Hong Kong RGC 618709 research grant.
The material in this paper was presented in part at the 6th IEEE Sensor Array
and Multichannel Signal Processing Workshop (SAM), Israel, October 4–7,
2010.

J. Vía, L. Vielva, and I. Santamaría are with the Department of Com-
munications Engineering, University of Cantabria, 39005 Santander,
Spain (e-mail: jvia@gtas.dicom.unican.es; luis@gtas.dicom.unican.es;
nacho@gtas.dicom.unican.es).

D. P. Palomar is with the Department of Electronic and Computer Engi-
neering , Hong Kong University of Science and Technology, Kowloon, Hong
Kong (e-mail: palomar@ust.hk).

Color versions of one or more of the figures in this paper are available online
at http://ieeexplore.ieee.org.

Digital Object Identifier 10.1109/TSP.2010.2101065

due to its applications in image processing [6]–[9], wind mod-
eling [10], [11], and design (and processing) of space–time
(and space–time-polarization [12]) block codes [13]–[17].

The increasing popularity of quaternion signal processing
makes necessary the development of a statistical theory for
quaternion random vectors, as well as the generalization of
the classical multivariate statistical analysis techniques to the
quaternion case. Thus, in [18] the authors have considered the
quaternion extensions of principal component analysis (PCA),
partial least squares (PLS), multiple linear regression (MLR),
and canonical correlation analysis (CCA). However, the inde-
pendent component analysis (ICA) [19] of quaternion random
vectors has received limited attention [20], [21], even though it
can be considered (together with PCA) as the most important
multivariate statistical analysis technique.

This paper considers the ICA of quaternion random vec-
tors. In particular, we focus on the case of Gaussian data and
therefore only consider the second-order statistics (SOS) of
the quaternion random vectors. The main goal of this paper
consists in establishing the conditions for the identifiability
of the ICA model, as well as in the derivation of a practical
quaternion ICA algorithm, which not only will be a valuable
tool for the statistical analysis of quaternion random vectors,
but also will find direct application in some blind source
separation (BSS) problems. As an example, in Section V, the
proposed ICA algorithm is applied to the problem of blind
decoding (or channel estimation) in multiuser systems based
on the Alamouti code [22], [23].

A. Main Contributions of the Paper

After a brief review of quaternion algebra in Section II, the
main contributions of this paper are presented in Sections III
and IV. In particular, Section III introduces the necessary and
sufficient conditions for the identifiability, from SOS, of the
quaternion ICA model. The SOS of a quaternion random vector
are given by the covariance matrix and three complementary
covariance matrices (the cross-covariance between the quater-
nion vector and its involutions) [18], [24]. Therefore, the ICA
problem amounts to finding the separation matrix diagonalizing
these four matrices.

The analysis in Section III shows that the properness profiles
play a key role in the identifiability analysis. The properness
profile is a three-dimensional pure quaternion vector, which can
be seen as the quaternion counterpart of the (scalar) circularity
coefficients [25]–[27] of complex random vectors. Thus, we
show that the quaternion ICA model is unambiguously identifi-
able up to the trivial ICA ambiguities (permutations and quater-
nion scale factors) and a set of arbitrary linear mixtures affecting
those sources with rotationally equivalent properness profiles,
i.e., properness profiles related by a three-dimensional rotation.
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In Section IV, we propose a practical quaternion ICA al-
gorithm based on the maximum-likelihood (ML) approach
for quaternion Gaussian data. Specifically, we show that the
ML-ICA problem reduces to an approximated joint diago-
nalization (AJD) problem [28]–[34], whose cost function is a
measure of the “mutual information” among several quaternion
random variables. The proposed quaternion ML-ICA algorithm
is based on the local quadratic approximation of this nonconvex
cost function, and therefore it can be seen as a quasi-Newton
method [35]. Interestingly, although the nonconvexity of the
cost function could result in the existence of local minima,
the proposed algorithm converges very fast to a satisfactory
solution of the quaternion ICA problem, which is illustrated in
Section V by means of several simulation examples.

B. Relationship With Previous Works

ICA has attracted a lot of attention in the last two
decades [19]. However, the rigorous analysis of the complex
ICA model is relatively recent [27], [36]–[38]. In particular,
in [27] the authors proved that the complex ICA model can
be unambiguously identified from the SOS, provided that the
sources have different (scalar) improperness degrees, which are
measured by the circularity coefficients (or canonical correla-
tions [25], [26]). This paper can be seen as an extension of these
results to the case of quaternion sources. However, we must
note that the generalization is far from trivial. For instance, the
identifiability conditions do not only consider the improperness
degree, but also its profile, which is indicated by the properness
profile. Moreover, unlike the complex case, there does not exist
a strong uncorrelating transform [27] for quaternion vectors,
and therefore the quaternion ICA problem cannot be solved in
closed form.

To our best knowledge, the only previous works considering
the separation of quaternionic sources are [20], [21], and [39].
In particular, in [20] the authors presented the quaternionic ex-
tension of the Infomax algorithm [40], whereas they proposed a
supervised technique in [39] based on the application of a multi-
dimensional multilayer perceptron. Finally, in [21], the authors
consider a very particular convolutive mixture model based on
biquaternions and para-unitary matrices, which in the case of
instantaneous mixtures reduces to PCA.

Finally, AJD techniques have been used for ICA and BSS ap-
plications [28]–[34]. However, most AJD algorithms consider
real data (although the complex extension is straightforward),
and they are based on the minimization of the Frobenius norm
of the off-diagonal matrix elements. The quaternion ML-ICA
algorithm presented in this paper can be seen as an AJD method
for quaternion matrices with the following particularities. First,
it must jointly diagonalize (only) four quaternion matrices,
three of which are generally not positive semidefinite. Second,
the proposed cost function is a Kullback–Leibler (KL) diver-
gence [41], which naturally appears in the ML formulation of
the quaternion ICA problem and can be seen as a measure of the
entropy loss due to the correlation among the estimated latent
variables. This measure differs from the KL-based cost func-
tion considered in [28] and [29] for the case of nonstationary
sources, where the authors minimize a sum of KL divergences
involving positive semidefinite matrices. Thus, although related

to previous AJD techniques, the proposed quaternion ML-ICA
algorithm can be seen as a new AJD method particularly suited
for the quaternion ICA case and not as a simple extension of
previous AJD approaches to the case of quaternion matrices.

C. Notation

Throughout this paper, we will use boldfaced uppercase let-
ters to denote matrices, boldfaced lowercase letters for column
vectors, and lightfaced lowercase letters for scalar quantities.
Superscripts , , and denote quaternion (or complex)
conjugate, transpose, and Hermitian (i.e., transpose and quater-
nion conjugate), respectively. The notation (respec-
tively or ) means that is a real (re-
spectively complex or quaternion) matrix. ,
and denote the real part, trace, and determinant of matrix .
The diagonal matrix with vector along its diagonal is denoted
as , and is the columnwise vectorized version
of matrix . The Kronecker product is denoted by , is the
identity matrix of dimension , and is the zero
matrix. Finally, is the expectation operator and, in general,

is the cross-correlation matrix for vectors and , i.e.,
.

II. PRELIMINARIES

A. Quaternion Algebra

Here, the basic concepts on quaternion algebra are briefly re-
viewed. For an advanced reading on quaternions, we refer to [2],
as well as to [42] and [43], for several important results on ma-
trices of quaternions.

Quaternions are four-dimensional hypercomplex numbers in-
vented by Hamilton [1]. A quaternion is defined as

(1)

where , , , are four real numbers and the imaginary
units satisfy

(2)

which also implies

(3)

(4)

(5)

Quaternions form a skew field [2], which means that they
satisfy the axioms of a field except for the commutative law of
the product, i.e., for , in general. The con-
jugate of a quaternion is , and
the conjugate of the product satisfies . The inner
product between two quaternions is defined1 as ,
and two quaternions are orthogonal if and only if (iff) their scalar
product (the real part of the inner product) is zero. The quater-
nion norm is defined as ,

and it is easy to check that . The inverse of a quater-
nion is , and we say that is a pure

1Other definitions of the quaternion inner product are possible; see for in-
stance [2].
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unit quaternion iff (i.e., iff and its real part is
zero). Quaternions also admit the Euler representation

(6)

where is a pure unit

quaternion and is the angle (or argu-
ment) of the quaternion. Let us now introduce the rotation and
involution operations.

Definition 1 (Quaternion Rotation [2]): Consider a nonzero
quaternion , then

(7)

represents a three-dimensional rotation of the imaginary part of
. In particular, the vector is rotated an angle in

the pure imaginary plane orthogonal to .
Definition 2 (Quaternion Involution [2]): An involution is a

quaternion rotation of angle . Specifically, the involution of a
quaternion over a pure unit quaternion is

(8)

With the above definitions and given two quaternions
, it is easy to check the following properties:

(9)

(10)

(11)

(12)

Here, we must point out that the real representation in (1) can
be easily generalized to other orthogonal bases.2 Specifically,
we will consider an orthogonal system given by

(13)

where is a rotation matrix, (i.e., and
), which implies

(14)

Thus, any quaternion can be represented as

(15)

where .

B. Augmented Covariance Matrix

Analogously to the case of complex vectors, the statistical
analysis of a quaternion random vector can be di-
rectly based on its real representation .
However, we can get more insight on the statistical

2The choice of a particular basis can be motivated by the specific application.
For instance, in image-processing applications [44], it is frequent to align the
“gray line” in RGB color space with the direction � � ��� � � ���

�
�.

properties by introducing the augmented quaternion

vector3 , which is re-
lated to the real representation as [18], [24]

(16)

where

(17)

is a unitary quaternion operator, i.e., .
The second-order statistical information of the quaternion

vector is given by the augmented covariance matrix

(18)

where we can readily identify the covariance matrix
and three complementary covariance matrices

, and .
Here, we must point out that the structure of , i.e., the

location of zero blocks (complementary covariance matrices), is
invariant to linear transformations of the form (with

a quaternion matrix) [18]. Analogously to the complex case,
this ensures that the properness of a quaternion random vector
will be preserved by quaternion linear transformations.

Finally, the following lemmas show that, given the comple-
mentary covariance matrices for an orthogonal basis ,
we can obtain the complementary covariance matrix
(for all pure unit quaternions ) as a quaternion linear combi-
nation of , , and .

Lemma 1: Given a quaternion random vector and
two different orthogonal bases and , the
corresponding augmented quaternion vectors are related as

(19)

where is a unitary quaternion operator given by

(20)

and .
Proof: Let us consider the pure unit quaternion

, where is the first row of . Thus,
the involution of over is

(21)

3From now on, we will use the notation� to denote the elementwise ro-
tation (or involution for pure quaternion �) of matrix�.



VÍA et al.: QUATERNION ICA FROM SECOND-ORDER STATISTICS 1589

Repeating this procedure for and , we obtain the mapping
between the augmented quaternion vectors in the two different
bases.

Lemma 2: The augmented covariance matrices in two dif-
ferent orthogonal bases are related as

(22)

where the expressions in parentheses make the bases explicit.
Proof: This is a direct consequence of Lemma 1 and the

definition of the augmented covariance matrix.

C. Properness of Quaternion Vectors

Unlike the complex case4 [45]–[48], there exist different
kinds of quaternion properness [18], [49], [50], which also
have different implications on the optimal linear processing of
a quaternion random vector [18]. In this paper, we will focus
on the strongest kind on properness.

Definition 3 ( -Properness): A quaternion random vector
is -proper iff the three complementary covariance matrices

, , and vanish.
Here, we must note that, as a direct consequence of Lemma 2,

a quaternion random vector is -proper iff
for all pure unit quaternions . Furthermore, we will say that
is -improper iff it is not -proper.

Analogously to the complex case, the optimal linear pro-
cessing of a quaternion vector is in general full-widely linear
[18], i.e., we must simultaneously operate on the quaternion
vector and its three involutions. However, in the case of jointly

-proper vectors, the optimal linear processing takes the form
of conventional linear processing , i.e., we do not
need to operate on the vector involutions [18]. In other words,
we cannot expect any gain from the widely linear processing
of -proper vectors.

Finally, in [18] the authors have proposed several measures of
the (scalar) improperness degree of a quaternion random vector
(for the different kinds of properness). In particular, the -im-
properness measure is given by

(23)

where5 is defined as the -coherence
matrix

(24)

and denotes the block-diagonal matrix obtained
from the blocks in the diagonal of .

4A complex vector � � is proper iff the complementary covariance
matrix � � ��� is zero.

5In this paper,� (respectively� ) denotes the Hermitian square root
of the Hermitian matrix � (respectively � ).

III. ICA PROBLEM AND IDENTIFIABILITY CONDITIONS

In this section, we present the general problem of ICA of
quaternion vectors. More importantly, we derive the necessary
and sufficient conditions for the blind identifiability of the ICA
model in the case of jointly Gaussian sources or, equivalently,
in the case of ICA methods exclusively based on SOS.

A. Problem Formulation

Consider a quaternion random vector representing
source signals, which are mixed by a full-column rank mixing

matrix . Thus, we have the model

(25)

where is a quaternion random vector representing the
available observations. Here, we must point out that there exist
other possible mixture models [20], such as

(26)

where the notation means that we are using the right product.
That is, the th element of is given by

(27)

where is the element in the th row and th column of
and is the th entry of . However, in this case we can make
use of the property to write . Thus,
the mixture model based on right multiplications can be refor-
mulated as (25) by simply taking the quaternion conjugate.

ICA is based on the crucial assumption that the elements of
are independent, which can be exploited to recover the (un-

known) sources and the (unknown) mixing matrix , from
the observations . In general, ICA can make use of all the sta-
tistical information provided by the observations. However, in
this paper we focus on methods solely based on SOS, which is
justified by the fact that, unlike higher-order statistics, SOS can
be accurately estimated from a moderate number of observa-
tions. Moreover, SOS provide all the statistical information in
the fundamental case of Gaussian sources.

Before proceeding, we must take into account that, analo-
gously to the well-known real and complex cases [19], [27],
there exist two trivial ambiguities inherent to the quaternion ICA
model. These ambiguities consist in a quaternion scale factor
and a permutation of the sources and columns of the mixing
matrix. Thus, as a direct consequence of the scale ambiguity,
we can consider that the sources (and the columns of ) are
normalized to satisfy , and therefore all the
second-order statistical information of the sources is given by
the augmented covariance matrix

(28)

where , , are the diagonal (due to the independence
of the elements in ) complementary covariance matrices of the
sources .
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With this assumption and taking into account the property
, it is easy to see that the SOS of the ob-

servations are given by

(29)

where

(30)

Thus, the ICA problem amounts to finding the mixing matrix
and the diagonal complementary covariance matrices of the
sources ( , and ) satisfying

(31)

(32)

(33)

(34)

Obviously, once the mixing matrix has been obtained,
the independent sources can be recovered by means of its
pseudoinverse. However, we must note that the solution of the
ICA problem may not be unique, i.e., there could exist ambigu-
ities (apart from the trivial ones) implying a residual mixture of
the sources. In Section III-B, we establish the conditions for the
uniqueness (up to quaternion scale factors and permutations)
of the ICA solution.

B. Identifiability Conditions

Analogously to the case of complex vectors [27], the iden-
tifiability of the ICA model from SOS relies on the improper-
ness of the sources. In order to analyze the identifiability of the
quaternion ICA model, we start by introducing the following
definitions.

Definition 4 (Properness Profile): The properness profile of
a quaternion random variable is defined as

(35)

where, for a pure unit quaternion , is
the (normalized) complementary variance.

Definition 5 (Rotationally Equivalent Properness Profiles):
The properness profiles of two quaternion random variables ,

are rotationally equivalent iff they are related by a quaternion
rotation, i.e., iff there exists a quaternion such that

(36)

The properness profile can be seen as the quaternion analog
of the (scalar) circularity quotient [51], [52] of a complex
random variable, whose polar representation provides the cir-
cularity coefficient (absolute value) [27] and circularity angle
(argument). The following lemmas present three key properties
of the properness profile.

Lemma 3: The properness profile is a pure quaternion vector,
i.e., its real part is zero.

Proof: From the definition, it is easy to check that
satisfies , which implies that it is orthogonal to .
Thus, is a pure quaternion.

Lemma 4: The properness profile in a different orthogonal
basis can be obtained as

(37)

where the expressions in parentheses make the bases explicit
and is the real rotation matrix for the change of basis

.
Proof: Taking into account the relationship between the

properness profile and the augmented covariance matrix, this
can be seen as a direct consequence of Lemma 2.

Lemma 5: Given a quaternion random variable and a trans-
formation , with , we have

(38)

i.e., the properness profiles of and are rotationally
equivalent.

Proof: For all pure unit quaternions , we have

(39)

Lemma 3 allows us to see the elements of the properness pro-
file as points in a three-dimensional space. On the other hand,
from Lemma 4 it is easy to prove that if two properness profiles
are rotationally equivalent in some orthogonal basis, then they
are rotationally equivalent in all the bases, i.e., the definition of
rotationally equivalent properness profiles is independent of the
orthogonal basis . Finally, Lemma 5 provides a clear
example of a transformation (one of the trivial ambiguities in
the ICA model) resulting in a rotation of the properness profile.
Now, we can state the quaternion ICA identifiability conditions.

Theorem 1 (ICA Identifiability): Given the ICA model
, with independent entries in and full-column rank , the

sources and the mixing matrix can be recovered from the
SOS of the observations up to the following ambiguities:

• a permutation and quaternion scale factor;
• a residual quaternion linear mixture affecting the sources

with rotationally equivalent properness profiles.
Proof: See Appendix A.

Corollary 1: For complex sources in the plane ,
Theorem 1 results in the conditions for the identifiability (from
SOS) of the complex ICA model [27].

Proof: The properness profile of a complex source
is given by

(40)

where is the circularity quotient [51], [52] and
is the circularity coefficient defined in [27]. Thus, it is easy

to see that the properness profiles of two complex sources ,
in the plane are rotationally equivalent iff they have

the same circularity coefficient, i.e., . In particular,
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for two complex sources , with identical circularity coeffi-
cients and defining , we have .

Theorem 1 shows that the properness profiles play a crucial
role in the identifiability of the quaternion ICA model. As pre-
viously pointed out, the properness profile can be seen as the
quaternion counterpart (including phase information) of the cir-
cularity coefficients [27] of complex random variables. How-
ever, we must remark three important differences with the com-
plex case.

Remark 1: In the complex case, the ICA identifiability condi-
tions can be reformulated in terms of the (scalar) improperness
degree of the sources. That is, we can say that the complex ICA
model is identifiable up to the trivial ambiguities and a com-
plex linear mixture affecting those sources with identical im-
properness degrees, which are measured by the circularity co-
efficients (or canonical correlations) [25]–[27]. However, as a
direct consequence of Theorem 1, two quaternion sources with
the same (scalar) improperness degree [18] can be unambigu-
ously recovered if their properness profiles are not rotationally
equivalent. In other words, the quaternion ICA identifiability
conditions do not only consider the (scalar) improperness de-
gree of the sources, but also its profile, which is measured by the
properness profile. As a matter of fact, it can be easily proven
that a sufficient (but not necessary) condition for the identifia-
bility of the quaternion ICA model consists in having quaternion
sources with different (scalar) improperness degrees. As an ex-
ample, consider two sources with properness pro-
files and , which are
not rotationally equivalent. Then, it is clear that and can
be unambiguously recovered, even though they have identical
(scalar) improperness degrees.

Remark 2: As we will see in Section IV, in the general
quaternion case, there does not exist a strong uncorrelating
transform [27], i.e., given the covariance and complementary
covariance matrices of a quaternion random vector , we
cannot always find a solution of the system
in (31)–(34). As an example, consider a quaternion random
vector with SOS

(41)

In this case, it is clear that we cannot simultaneously diago-
nalize the covariance and complementary covariance matrices.
In other words, unlike the real and complex cases, not all the
quaternion random vectors can be represented as a
quaternion linear combination of independent quater-
nion sources . However, in this paper we focus on
quaternion random vectors satisfying the ICA model .

Remark 3: In the complex case, the (real and scalar) circu-
larity coefficients (which together form the circularity spectrum)
are a maximal invariant of the complex random vector under the
group of invertible complex-linear transformations [53]–[55].
Unfortunately, in the quaternion case, we do not have a sim-
ilar result in terms of the properness profiles. If we focus on

a quaternion random variable, it is easy to see that the proper-
ness profile is a maximal invariant under the group of non-null
real scale factors. Furthermore, considering non-null quaternion
scale factors and taking into account Lemma 5, we could intro-
duce a rotation to obtain a maximal invariant given by a rotated
properness profile with in the -axis and in the
plane. However, the problem is much more involved when we
consider quaternion random vectors due to the fact that, in gen-
eral, we cannot simultaneously diagonalize the sample-mean es-
timates of the covariance and complementary covariance ma-
trices. Thus, only in the case of exactly jointly diagonalizable
estimates of , , , and , we could
obtain a generalization of the circularity spectrum based on the
rotated properness profiles of the latent variables .

IV. ML-ICA ALGORITHM FOR QUATERNION

GAUSSIAN VECTORS

In Section III, we have presented the necessary and sufficient
conditions for the identifiability of the quaternion ICA model
from SOS. Nevertheless, the derivation of practical algorithms
from the proof of Theorem 1 is far from trivial. In this sec-
tion, we propose an efficient quaternion ICA algorithm based on
the ML approach for Gaussian vectors. The proposed technique
consists in the AJD [28]–[34] of the covariance and complemen-
tary covariance matrices of the observations, which is achieved
by means of a quasi-Newton method [35]. Thus, the proposed
algorithm can be seen as the first AJD method for quaternion
matrices.

A. Maximum-Likelihood Quaternion ICA

Let us consider vector observations
of the ICA model, where the mixing ma-

trix is assumed to be full-column rank and the sources are
i.i.d. zero-mean quaternion Gaussian vectors with independent
elements. Let us also assume a nonsingular augmented covari-
ance matrix and an augmented sample covariance matrix

(42)

with rank , which obviously implies . Under these
assumptions and taking into account that we are considering
a noiseless case, the signal subspace can be exactly recovered
from the observations.6 Therefore, the data can be projected
onto the signal subspace, which allows us to reduce the ICA
problem to the case of a square and nonsingular mixing matrix

. Thus, with a slight abuse of notation and assuming
from now on that is square, the probability density function
(pdf) of the projected observations can be written as [18]

(43)

where and has been defined in (30).

6In particular, the eigenvalue decomposition (EVD) [42], [43] of the estimated
covariance matrix yields �� � ��� ����� ��� � ����� , where
� � is an orthogonal basis for the signal subspace.
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Taking now the logarithm of the pdf and defining and as
the sets of matrices with the structures in (28) and (30), the ML
estimation problem is7

(44)

Interestingly, the above problem can be seen as that of mini-
mizing the KL divergence between two zero-mean quaternion
Gaussian distributions with augmented covariance matrices

and . Specifically, the ML-ICA problem can be
rewritten as

(45)

where the KL divergence is [18]

(46)

Here, we can exploit a well-known property of the KL di-
vergence, which consists in its invariance under linear transfor-
mations [29], [41], [56]. In particular, for all invertible matrices

we have

(47)
Thus, we can choose as the inverse of , which reduces our
optimization problem to

(48)

where can be seen as the sample-mean
estimate of the augmented covariance matrix
and the augmented vector contains the estimates of
the original sources . Summarizing, we have reformulated the
ML-ICA problem as that of minimizing the KL divergence be-
tween an approximately diagonalized version of and the
theoretical augmented covariance matrix of the sources .

B. Reformulation of the ML-ICA Problem

Unfortunately, although the sets and are convex, the cost
function of the ML-ICA problem presented
in Section IV-A is not convex, which can be easily corrobo-
rated by considering the trivial ambiguities of the quaternion
ICA model.8

In order to simplify the ML-ICA problem, here we will obtain
the solution of (48) with respect to , which can be easily

7Note that, due to the noncommutativity of the quaternion product, we have
to take the real part of �� � �� . Alternatively, we could have written

� �� � �� � �� � �� � .

8Under perfect estimates �� � � , the solutions � ���� � associated
to any permutation of the columns of the actual mixing matrix would result in
zero cost. However, the linear combinations of the previous solutions will not
satisfy the ICA model, and the associated cost (KL divergence) will be greater
than zero.

done by reordering the rows and columns of the matrices
and . In particular, we define the vectors

...
... (49)

where denotes the augmented vector for the th
source ( th element of ), is the augmented
version of (the th element of , with ),
and is a permutation matrix. Thus, the reordered
augmented covariance matrices are

. . .
...

...
. . .

. . .
(50)

. . .
...

...
. . .

. . .
...

(51)

and defining the block-diagonal matrix

. . .
...

...
. . .

. . .
(52)

we can introduce the following decomposition

(53)

where is defined as the coherence
matrix, which naturally appears in the multiset extension of
quaternion CCA [18], [57], [58]. In particular, contains
all the information regarding the improperness and the correla-
tion among the estimated sources (the elements in ), whereas

only considers the individual improperness and variances.
Thus, provides all the available information about the cor-
relation among the estimated sources. Now, we can introduce
the following theorem.

Theorem 2: Given an arbitrary augmented covariance ma-
trix and a matrix , the Kullback–Leibler diver-
gence can be decomposed as

(54)
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Proof: First, we must note that the introduction of the
permutation matrix does not change the KL divergence, i.e.,

. Second, we can
write

(55)

and noting that and

, we have

(56)

Theorem 2, which can be seen as a particular case of the
Pythagorean theorem for exponential families of pdfs [56], [59],
decomposes into the sum of two terms. The
first term, which does not depend on the augmented covariance
matrix , can be seen as a measure of the residual corre-
lation among the separated sources . In particular,

represents the mutual information9 among the
quaternion random variables . The second term
measures the divergence between the uncorrelated version

of and the augmented covariance matrix of
the sources . Thanks to this decomposition, the ML-ICA
problem in (48) can be rewritten as

(57)
Furthermore, noting that is invariant to scaling factors on
the rows of , we can assume without loss of generality that
the diagonal elements of are equal to 1. Thus, the solution
with respect to is , and the ML-ICA problem
reduces to

(58)

In other words, given a solution of (58), we can always
obtain a solution of (57) by scaling the rows of to satisfy

and taking . Finally, as
one could expect, the optimization problem in (58) amounts to
find the separation matrix minimizing the correlation (de-
pendence) among the estimated sources .

9Strictly speaking, the mutual information is only defined for two random
variables. Here, mutual information refers to the entropy loss due to the depen-
dence among the random variables [18], [19], [60].

C. Proposed Algorithm

So far, we have been able to find the optimal as a func-
tion of , which reduces the ML-ICA problem to the min-
imization of the mutual information measure .
However, the optimization problem in (58) is still nonconvex.10

Here, we propose a practical ML-ICA algorithm based on the
approximated joint diagonalization of the covariance and com-
plementary covariance matrices of the estimated sources

. The main properties of the proposed technique are the
following.

• As we have seen, the cost function only de-

pends on the data through the estimate . Therefore, al-
though the proposed algorithm only provides the ML solu-
tion in the case of Gaussian data, its practical performance
is determined by the accuracy of the estimate and not
by possible deviations from the Gaussianity assumption.

• Analogously to other AJD algorithms [30], the proposed
method is based on a quadratic approximation of the cost
function , and therefore it can be seen as a
quasi-Newton technique [35] with computational cost of
order per iteration. However, we must note that
the application of a pure Newton method would require
the inversion of a quaternion Hessian matrix of dimensions

, which would result in a
computational cost of order per iteration.

• At each iteration, the separation matrix is updated as
, where is assumed to be

a small quaternion matrix. In particular, this assumption
will be exploited to simplify the approximated cost func-
tion and, in the final implementation of the algorithm,
will be scaled (if necessary) to ensure the invertibility of

[30].
• Analogously to most AJD techniques [29]–[34], the pro-

posed algorithm tries to solve a nonconvex optimization
problem, and therefore it could suffer from local minima.
However, we did not find this problem in our experiments,
which makes us think that this case is highly unlikely.
The rigorous analysis of convergence of the proposed al-
gorithm, as well as that of most AJD methods, is an inter-
esting topic for future research.

• Unlike most AJD algorithms [29]–[34], which are based
on the minimization of the magnitudes of the off-diagonal
terms, the proposed technique directly considers the min-
imization of the KL divergence given by .
As we have seen, this cost function naturally appears in the
quaternion ML-ICA problem and, to our best knowledge,
it has been never used as an AJD criterion.11

In order to obtain the simplified cost function, we will start
by introducing the matrix

...
. . .

... (59)

10The nonconvexity of ���� �� ���� can be again verified by considering
the permutation ambiguities and their linear combinations.

11See [28] and [29] for an AJD method based on the minimization of a sum
of KL divergences between positive semidefinite matrices and [33] for an ap-
proximation of KL divergences with weighted Frobenius norms.
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where is the permutation matrix defined in (49)
(i.e., ) and is a diagonal matrix obtained
from the element in the th row and th column of as

.

Now, with similar definitions of , ,
and and introducing the operator

(which introduces zeros in the diagonal
blocks of ), we are ready to introduce the quadratic approxi-
mation of evaluated at for small .

Lemma 6: Given a coherence matrix close to the iden-

tity, i.e., and assuming ,
the mutual information measure can be approximated by the fol-
lowing quadratic expression:

(60)

where is a block matrix with 4 4 blocks,
zero diagonal blocks, and off-diagonal blocks given by

(61)

Proof: See Appendix B.
Thanks to the approximation in (60), the optimization

problem to be solved in each iteration of the quasi-Newton
AJD method is decoupled into simpler problems.
Specifically, the elements are obtained by solving the
least squares (LS) problem

(62)

whose solution is easily obtained by rewriting
as a function of the eight real components of and . In
particular, using the real representations

(63)

with , the above problem can be rewritten as

(64)

where and the th column

of is, for

(65)

(66)

with

(67)

(68)

(69)

(70)

Thus, defining the vector and the matrix

, the solution of (62) can be obtained as

(71)

where and . Finally,
we must note that the computational complexity of the proposed
AJD method, which is summarized in Algorithm 1, is dominated
by the inversion of the matrices .

V. SIMULATION RESULTS

In this section, the main results of the paper are illustrated
by means of some simulation examples. In all the cases, the en-
tries of the square mixing matrix have been gen-
erated as i.i.d. quaternion -proper Gaussian random variables
with zero mean and unit variance, and the sources are inde-
pendent quaternion Gaussian random variables with zero mean,
unit variance, and different properness profiles. The proposed
quaternion ML-ICA algorithm has been limited to 50 iterations,
and the threshold to ensure invertibility (see Algorithm 1) has
been fixed to . The performance of the proposed al-
gorithm is evaluated by means of the mutual information

, the bit error rate (BER) of the communications
system (see Section V-D), or by the residual mixture matrix

(72)

Algorithm 1 Quaternion ML-ICA

Input: Sample-mean estimate and
threshold parameter .
Output: Separation matrix and augmented
covariance of the estimated sources .
Initialize: , .
repeat

for and do
Obtain from (71).

end for
if then

end if
Update .

Update .
until Convergence
Normalize (if wanted) the rows and columns of
(respectively the rows of ) to obtain unit-variance
sources.

where is the estimated separation matrix and is
the actual mixing matrix. In particular, after solving the possible
permutation ambiguity, the residual mixture measure for the th
source is defined as

(73)
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Fig. 1. Identifiability example. Three sources and � � ��� vector
observations.

where is the entry in the th row and th column of .
Finally, the total residual mixture measure is

(74)

A. Identifiability Example

In the first example, we consider three independent sources
with unit variance and properness profiles

(75)

(76)

(77)

where is a real parameter controlling the differ-
ence between and the other properness profiles. In partic-
ular, for , the properness profiles and are rotation-
ally equivalent, whereas and are rotationally equivalent
for . Furthermore, although the two first sources have the
same (scalar) improperness degree [18], their properness pro-
files are not rotationally equivalent, and therefore these sources
can be unambiguously separated.

Figs. 1 and 2 show the residual mixture measure for the
three sources as a function of the parameter . The results have
been obtained by averaging 1000 independent experiments
for and vector observations. As stated
by Theorem 1, the only nontrivial ambiguities appear for the
values of resulting in rotationally equivalent properness
profiles. Thus, there is a linear mixture of the sources and
for and a mixture of and for . Finally, it is
also interesting to note that, from a practical point of view, the
accuracy of the ICA method is controlled by a tradeoff between
the number of observations and the distances among the
different properness profiles.

Fig. 2. Identifiability example. Three sources and � � ���� vector
observations.

B. Convergence of the Quaternion ML-ICA Algorithm

In these examples, we consider sources with ran-
domly generated properness profiles.12 In order to evaluate the
possible convergence to local minima, the proposed algorithm
has been initialized in 100 different points (equivalently, we
have considered 100 different mixing matrices for the same
sources). Additionally, we have also considered 100 inde-
pendent experiments, with independently generated mixing
matrices, properness profiles, and sources. The results for

and are shown in Figs. 3 and 4, where
we can see that, despite the nonconvexity of the cost function

, the proposed algorithm always converges
to the same solution. As a heuristic explanation for this fact,
we can think that, with high probability, the only minima of the
cost function are given by the true solution
and the associated trivial ambiguities.

C. Overall Performance

In these examples, we evaluate the overall performance of
the proposed algorithm for different numbers of independent
sources. Fig. 5 shows the results for the case of sources with
random properness profiles, whereas Fig. 6 shows the results
for the particular case of sources with properness profiles

(78)

As can be seen, the proposed algorithm is able to recover the
sources in both cases. However, the results are better in the case
of randomly generated properness profiles. This is due to the fact
that although the properness profiles in (78) are not rotationally
equivalent, they are restricted to reside in the same line. There-
fore, we can think that the properness profiles in (78) are closer
to be rotationally equivalent than those generated at random.

12The four real components of each quaternion source follow a zero mean
Gaussian distribution with covariance �� , where the entries of � �

are i.i.d zero mean and unit variance random variables.
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Fig. 3. Convergence of the ML-ICA algorithm. Ten sources with random
properness profiles and � � ��� vector observations. (a) Fixed data and
different initialization points. (b) Independent experiments.

Fig. 4. Convergence of the ML-ICA algorithm. Ten sources with random
properness profiles and � � ���� vector observations. (a) Fixed data and
different initialization points. (b) Independent experiments.

D. Blind Multiuser Decoding in Alamouti-Based Systems

In the final example, we illustrate the application of the pro-
posed ML-ICA algorithm in a practical problem. In particular,
we consider a multiuser wireless communications system based
on Alamouti coding [22]. The basic signal model for a single
user and a single-antenna receiver can be written as

(79)

where the two rows represent two consecutive symbol periods,
and are two complex information symbols (in the plane

), the columns of the 2 2 matrix are associated to one

Fig. 5. Overall performance � ��� of the quaternion ML-ICA algorithm.
Sources with random properness profiles.

Fig. 6. Overall performance � ��� of the quaternion ML-ICA algorithm.
Sources with properness profiles ��� � ���� � ����� �� �� � � �
�� 	 	 	 ��.

transmit antenna, represents the channel response be-
tween the th transmit antenna and the receive antenna, and ,

are complex noise terms. Interestingly, the above equation
can be compactly rewritten in terms of quaternions as

(80)

where , , , and
. Thus, if we consider a synchronous uplink channel

with users and a base station with receive antennas, we
obtain the model

(81)

where stacks the quaternion observations in each
receive antenna, is the quaternion channel matrix,
whose entry represents the quaternion channel between the
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th user and the th receive antenna, stacks the quater-
nion information symbols, and is the quaternion noise.

In this experiment, we consider a multiuser system with
users transmitting with the same power. The channels are gen-

erated as i.i.d. zero-mean Rayleigh channels with unit variance,
and the noise is i.i.d. zero-mean jointly proper com-
plex Gaussian noise. That is, the entries of and are inde-
pendent zero-mean -proper quaternion Gaussian random vari-
ables. The improperness of the quaternion sources in is due
to the complex improperness of the information symbols ,

, which in practice can be due to different reasons, such as
the use of BPSK constellations, a power imbalance between the
in-phase and quadrature branches of the antennas, or the intro-
duction of correlations in order to solve the ambiguity problems
associated to blind channel estimation methods for space–time
block coded systems [61], [62]. In our case, the symbols of the
first user are QPSK jointly complex proper, whereas the second
user transmits QPSK symbols with a power imbalance between
the in-phase and quadrature branches. Specifically, the power
of the in-phase component is three times higher than that of the
quadrature component. This results in a mixture of two quater-
nion sources, one of them -proper and the other -improper.

Our goal here consists in recovering, up to the trivial ambigu-
ities, the sources and the channel from the observations .
We must note that the model in (81) includes a noise term, which
is not taken into account in our ICA model.13 However, we will
see that the direct application of the proposed ML-ICA algo-
rithm provides satisfactory results.

For comparison purposes, we have evaluated the quaternion
extension of the Infomax [40] algorithm proposed in [20],
as well as the linear MMSE receiver with perfect channel
knowledge. The obtained results for different numbers of
vector observations are shown in Fig. 7, which illustrates the
satisfactory performance of the ML-ICA method in the case of
non-Gaussian data. Furthermore, we can see that the proposed
technique outperforms the approach in [20], which is due to
the fact that the ML-ICA algorithm is solely based on SOS,
which can be accurately estimated from a limited number of
vector observations. Thus, when the SOS provide sufficient
information for solving the ICA problem, the proposed method
outperforms the Infomax for small and moderate sample sizes.
On the other hand, for non-Gaussian data and larger sample
sizes, the Infomax should outperform any method exclusively
based on SOS.

VI. CONCLUSION

This paper has addressed the independent component anal-
ysis (ICA) of quaternion random vectors. First, we have derived
the necessary and sufficient conditions for the identifiability of
the ICA model from the second-order statistics (SOS) of the ob-
servations, or equivalently, for the case of quaternion Gaussian
data. In particular, we have introduced the concept of proper-
ness profile of a quaternion random variable, and we have shown
that, excluding the trivial ICA ambiguities, the quaternion ICA
model is unambiguously identifiable up to arbitrary linear mix-
tures affecting those sources with rotationally equivalent proper-
ness profiles, i.e., properness profiles related by a three-dimen-

13The extension of the considered ICA model to the case of noisy mixtures is
an interesting topic for future research.

Fig. 7. Blind decoding in multiuser Alamouti systems based on quaternion
ICA. Results for the MMSE receiver with perfect channel knowledge, the pro-
posed ML-ICA algorithm, and the quaternion extension of the Infomax. Two-
user system with QPSK constellations and different numbers � of received
Alamouti blocks.

sional rotation. From a practical point of view, we have shown
that the maximum-likelihood (ML) approach to the quaternion
ICA problem reduces, in the Gaussian case, to the approximate
joint diagonalization of the covariance matrix and three com-
plementary covariance matrices of the observations. Thus, we
have proposed a practical quaternion ML-ICA algorithm based
on the local approximation of the cost function, which is a mea-
sure of the entropy loss due to the residual correlation among
the separated sources. The proposed algorithm can be seen as
a quasi-Newton method and, despite the nonconvexity of the
ML-ICA cost function, it converges very fast to a solution of the
quaternion ICA problem, which has been illustrated by means
of several simulation examples.

APPENDIX A
PROOF OF THEOREM 1

Let us start by the trivial ambiguities. Given the ICA model
, it is easy to see that for all permutation

and invertible diagonal matrices , we have

(82)

where and is a quaternion vector
with independent entries. Therefore, the permutation and scale
factor ambiguities are unavoidable without exploiting some
other properties of the sources or the mixing matrix.

As previously pointed out, the scale ambiguity allows us to
focus on unit-variance sources. With this assumption and taking
into account (31), it is easy to see that any solution of the ICA
model is related to the true mixing matrix by

(83)

where is a unitary matrix. Moreover, exploiting the
trivial ambiguities, we can introduce a permutation and quater-
nion phase change (product by a unit quaternion) in the columns
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of to obtain an ambiguity matrix with real and positive di-
agonal elements.

Now, from (32)–(34) and Lemma 2, we can see that
is a solution of the ICA model iff

(84)

where and are the diagonal complementary covariance
matrices of the sources for the true and alternative ICA
solutions. Equivalently, the above equation can be rewritten as

(85)

where contains one of
the elements of the properness profiles of all the sources and
is defined analogously.

Let us now focus on the first row and column of the ambiguity
matrix . In particular, we will write

(86)

where is a real and positive number, , and
. Here, it is clear that the unitarity of

implies

(87)

(88)

(89)

Analogously, the diagonal matrix can be written as
, where .

Thus, considering the first column of , we can see that (85)
implies

(90)

Moreover, taking into account the property and
noting that is a real scalar, the above equation can be rewritten
as

(91)

where, with a slight abuse of notation, denotes the ele-
mentwise rotation of the entries in . Now, defining

as the vector of ones and using (87), we have

(92)

Additionally, noting that , the combination of (88) and
(89) ensures that is invertible, which allows us to rewrite
the above equation as

(93)

or equivalently, for

(94)

where is the th element in the first column of . There-
fore, since the above equation holds for all , we can conclude

that if the properness profiles and are not rotationally
equivalent, then .

Finally, following the same reasoning for the remaining rows
and columns of , we can see that, excluding the trivial ambi-
guities, the only possible indeterminacies are given by a unitary
quaternion matrix affecting the sources with rotationally equiv-
alent properness profiles. In fact, assuming a set of sources

with rotationally equivalent properness pro-
files

(95)

we can easily see that the associated matrix
can be written as

(96)

where . Therefore, any linear
transformation of the form

(97)

with a real unitary matrix will satisfy the am-
biguity condition in (85), i.e., the indeterminacy affecting the
sources with rotationally equivalent properness profiles cannot
be avoided without exploiting some additional property of the
sources or the mixing matrix.

APPENDIX B
PROOF OF LEMMA 6

Let us start by noting that the matrix update
yields a cost function

for the th iteration of the algorithm

(98)

where is the reordered augmented covariance matrix of
the estimated sources after the th iteration. Thus, the cost
function can be written as

(99)

and using the matrix decomposition ,
we can obtain

(100)

where and
.
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Now, writing , assuming that

and noting that implies
, we can use the approximation

(101)

Furthermore, using the second-order Taylor’s expansion of the
determinant logarithm, we can write

(102)

and taking into account , we obtain

(103)

where is given by

(104)
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