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In this chapter we introduce a useful mathematical tool, namely Majorization Theory, and illustrate its applications in
a variety of scenarios in signal processing and communication systems. Majorization is a partial ordering and precisely
defines the vague notion that the components of a vector are “less spread out” or “more nearly equal” than the components
of another vector. Functions that preserve the ordering of majorization are said to be Schur-convex or Schur-concave.
Many problems arising in signal processing and communications involve comparing vector-valued strategies or solving
optimization problems with vector- or matrix-valued variables. Majorization theory is a key tool that allows us to solve
or simplify these problems.

The goal of this chapter is to introduce the basic concepts and results on majorization that serve mostly the problems in
signal processing and communications, but by no means to enclose the vast literature on majorization theory. A complete
and superb reference on majorization theory is the book by Marshall and Olkin [1]. The building blocks of majorization
can be found in [2], and [3] also contains significant material on majorization. Other textbooks on matrix and multivariate
analysis, e.g., [4] and [5], may also include a part on majorization. Recent applications of majorization theory to signal
processing and communication problems can be found in two good tutorials [6] and [7].

The chapter contains two parts. The first part is devoted to building the framework of majorization theory. The
second part focuses on applying the concepts and results introduced in the first part to several problems arising in signal
processing and communication systems.

16.1 Majorization Theory

16.1.1 Basic Concepts

To explain the concept of majorization, let us first define the following notations for increasing and decreasing orders of
a vector.

Definition 16.1.1. For any vector x 2 Rn, let

x[1] � · · · � x[n]

denote its components in decreasing order, and let

x(1)  · · ·  x(n)

denote its components in increasing order.

Majorization1 defines a partial ordering between two vectors, say x and y, and precisely describes the concept that
the components of x are “less spread out” or “more nearly equal” than the components of y.

1The majorization ordering given in Definition 16.1.2 is also called additive majorization, to distinguish it from multiplicative majorization
(or log-majorization) introduced in Section 16.1.4.
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Definition 16.1.2. (Majorization [1, 1.A.1]) For any two vectors x,y 2 Rn, we say x is majorized by y (or y majorizes
x), denoted by x � y (or y � x), if

k
X

i=1

x[i] 
k

X

i=1

y[i], 1  k < n

n
X

i=1

x[i] =
n
X

i=1

y[i].

Alternatively, the previous conditions can be rewritten as

k
X

i=1

x(i) �
k

X

i=1

y(i), 1  k < n

n
X

i=1

x(i) =
n
X

i=1

y(i).

There are several equivalent characterizations of the majorization relation x � y in addition to the conditions given
in Definition 16.1.2. One alternative definition of majorization given in [2] is that x � y if

n
X

i=1

� (xi) 
n
X

i=1

� (yi) (16.1)

for all continuous convex functions �. Another interesting characterization of x � y, also from [2], is that x = Py for
some doubly stochastic matrix2 P. In fact, the latter characterization implies that the set of vectors x that satisfy x � y
is the convex hull spanned by the n! points formed from the permutations of the elements of y.3 Yet another interesting
definition of y � x is given in the form of waterfilling as

n
X

i=1

(xi � a)+ 
n
X

i=1

(yi � a)+ (16.2)

for any a 2 R and
Pn

i=1 xi =
Pn

i=1 yi, where (u)+ , max (u, 0). The interested reader is referred to [1, Ch. 4] for more
alternative characterizations.

Observe that the original order of the elements of x and y plays no role in the definition of majorization. In other
words, x � ⇧x for all permutation matrices ⇧.

Example 16.1.1. The following are simple examples of majorization:
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More generally
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, . . . ,
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n

◆

� (x1, x2, . . . , xn) � (1, 0, . . . , 0)

whenever xi � 0 and
Pn

i=1 xi = 1. ⇤
2A square matrix P is said to be stochastic if either its rows or columns are probability vectors, i.e., if its elements are all nonnegative and

either the rows or the columns sums are one. If both the rows and columns are probability vectors, then the matrix is called doubly stochastic.
Stochastic matrices can be considered representations of the transition probabilities of a finite Markov chain.

3The permutation matrices are doubly stochastic and, in fact, the convex hull of the permutation matrices coincides with the set of doubly
stochastic matrices [1, 2].
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It is worth pointing out that majorization provides only a partial ordering, meaning that there exist vectors that can
not be compared within the concept of majorization. For example, given x = (0.6, 0.2, 0.2) and y = (0.5, 0.4, 0.1), we have
neither x � y nor x � y.

To extend Definition 16.1.2, which is only applicable to vectors with the same sum, the following definition provides
two partial orderings between two vectors with di↵erent sums.

Definition 16.1.3. (Weak majorization [1, 1.A.2]) For any two vectors x,y 2 Rn, we say x is weakly submajorized
by y (or y submajorizes x), denoted by x �w y (or y �wx), if

k
X

i=1

x[i] 
k

X

i=1

y[i], 1  k  n.

We say x is weakly supermajorized by y (or y supermajorizes x), denoted by x �w y (or y �wx), if

k
X

i=1

x(i) �
k

X

i=1

y(i), 1  k  n.

In either case, we say x is weakly majorized by y (or y weakly majorizes x).

For nonnegative vectors, weak majorization can be alternatively characterized in terms of linear transformation by
doubly substochastic and superstochastic matrices (see [1, Ch. 2]). Note that x � y implies x �w y and x �w y, but
the inverse does not hold. In other words, majorization is a more restrictive definition than weak majorization. A useful
connection between majorization and weak majorization is given as follows.

Lemma 16.1.1. ( [1, 5.A.9, 5.A.9.a]) If x �w y, then there exist vectors u and v such that

x  u and u � y, v  y and x � v.

If x �w y, then there exist vectors u and v such that

x � u and u � y, u � y and x � v.

The notation x  u means the component–wise ordering xi  ui, i = 1, . . . , n, for all entries of vectors x,u.

16.1.2 Schur-Convex/Concave Functions

Functions that are monotonic with respect to the ordering of majorization are called Schur-convex or Schur-concave
functions. This class of functions are of particular importance in this chapter, as it turns out that many design objectives
in signal processing and communication systems are Schur-convex or Schur-concave functions.

Definition 16.1.4. (Schur-convex/concave functions [1, 3.A.1]) A real-valued function � defined on a set A ✓ Rn is
said to be Schur-convex on A if

x � y on A ) � (x)  � (y) .

If, in addition, � (x) < � (y) whenever x � y but x is not a permutation of y, then � is said to be strictly Schur-convex
on A. Similarly, � is said to be Schur-concave on A if

x � y on A ) � (x) � � (y) ,

and � is strictly Schur-concave on A if strict inequality � (x) > � (y) holds when x is not a permutation of y.

Clearly, if � is Schur-convex on A, then �� is Schur-concave on A, and vice versa.
It is important to remark that the sets of Schur-convex and Schur-concave functions do no form a partition of the set

of all functions from A ✓ Rn to R. In fact, neither are the two sets disjoint (i.e., the intersection is not empty), unless
we consider strictly Schur-convex/concave functions, nor do they cover the entire set of all functions as illustrated in Fig.
16.1.

Example 16.1.2. The simplest example of a Schur-convex function, according to the definition, is � (x) = maxk{xk} =
x[1], which is also strictly Schur-convex. ⇤
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Figure 16.1: Illustration of the sets of Schur-convex and Schur-concave functions within the set of all functions � : A ✓
Rn ! R.

Example 16.1.3. The function � (x) =
Pn

i=1 xi is both Schur-convex and Schur-concave since � (x) = � (y) for any
x � y. However, it is neither strictly Schur-convex nor strictly Schur-concave. ⇤

Example 16.1.4. The function � (x) = x1+2x2+x3 is neither Schur-convex nor Schur-concave, as can be seen from the
counterexample that for x =(2, 1, 1), y =(2, 2, 0) and z =(4, 0, 0), we have x � y � z but � (x) < � (y) > � (z). ⇤

To distinguish Schur-convexity/concavity from common monotonicity, we also define increasing and decreasing func-
tions that will be frequently used later.

Definition 16.1.5. (Increasing/Decreasing functions) A function f : Rn ! R is said to be increasing if it is increasing
in each argument, i.e.,

x  y ) f (x)  f (y) ,

and to be decreasing if it is decreasing in each argument, i.e.,

x  y ) f (x) � f (y) .

Using directly Definition 16.1.4 to check Schur-convexity/concavity of a function may not be easy. In the following,
we present some immediate results to determine whether a function is Schur-convex or Schur-concave.

Theorem 16.1.1. ( [1, 3.A.3]) Let the function � : Dn ! R be continuous on Dn , {x 2 Rn : x1 � · · · � xn} and

continuously di↵erentiable on the interior of Dn. Then � is Schur-convex (Schur-concave) on Dn if and only if @�(x)
@xi

is
decreasing (increasing) in i = 1, . . . , n.

Theorem 16.1.2. (Schur’s condition [1, 3.A.4]) Let I ✓ R be an open interval and the function � : In ! R be
continuously di↵erentiable. Then � is Schur-convex on In if and only if � is symmetric4 on In and

(xi � xj)

✓

@�

@xi
� @�

@xj

◆

� 0, 1  i, j  n. (16.3)

� is Schur-concave on on In if and only if � is symmetric and the inequality (16.3) is reversed.

In fact, to prove Schur-convexity/concavity of a function using Theorem 16.1.1 and Theorem 16.1.2, one can take
n = 2 without loss of generality (w.l.o.g.), i.e., check only the two-argument case [1, 3.A.5]. Based on Theorem 16.1.1
and Theorem 16.1.2, it is possible to obtain some su�cient conditions guaranteeing Schur-convexity/concavity of di↵erent
composite functions.

Proposition 16.1.1. (Monotonic composition [1, 3.B.1]) Consider the composite function �(x) = f (g1 (x) , . . . , gk (x)),
where f is a real-valued function defined on Rk. Then, it follows that

• f is increasing and gi is Schur-convex ) � is Schur-convex;

• f is decreasing and gi is Schur-convex ) � is Schur-concave;

4A function is said to be symmetric if its arguments can be arbitrarily permuted without changing the function value.
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• f is increasing and gi is Schur-concave ) � is Schur-concave;

• f is decreasing and gi is Schur-concave ) � is Schur-convex.

Proposition 16.1.2. (Convex5 composition [1, 3.B.2]) Consider the composite function �(x) = f (g(x1), . . . , g(xn)),
where f is a real-valued function defined on Rn. Then, it follows that

• f is increasing Schur-convex and g convex ) � is Schur-convex;

• f is decreasing Schur-convex and g concave ) � is Schur-convex.

For some special forms of functions, there exist simple conditions to check whether they are Schur-convex or Schur-
concave.

Proposition 16.1.3. (Symmetric convex functions [1, 3.C.2]) If � is symmetric and convex (concave), then � is
Schur-convex (Schur-concave).

Corollary 16.1.1. ( [1, 3.C.1]) Let �(x) =
Pn

i=1 g (xi), where g is convex (concave). Then � is Schur-convex (Schur-
concave).

Proposition 16.1.3 can be generalized to the case of quasi-convex functions.6

Proposition 16.1.4. (Symmetric quasi-convex functions [1, 3.C.3]) If � is symmetric and quasi-convex, then � is
Schur-convex.

Schur-convexity/concavity can also be extended to weak majorization through the following fact.

Theorem 16.1.3. ( [1, 3.A.8]) A real-valued function � defined on a set A ✓ Rn satisfies

x �w y on A ) �(x)  �(y)

if and only if � is increasing and Schur-convex on A. Similarly, � satisfies

x �w y on A ) �(x)  �(y)

if and only if � is decreasing and Schur-convex on A.

By using the above results, we are now able to find various Schur-convex/concave functions. Several such examples
are provided in the following, while the interested reader can find more Schur-convex/concave functions in [1].

Example 16.1.5. Consider the lp norm |x|p = (
P

i |xi|p)1/p, which is symmetric and convex when p � 1. Thus, from
Proposition 16.1.3, |x|p is Schur-convex for p � 1. ⇤

Example 16.1.6. Suppose that xi > 0. Since xa is convex when a � 1 and a  0 and concave when 0  a < 1,
from Corollary 16.1.1, �(x) =

P

i x
a
i is Schur-convex for a � 1 and a  0, and Schur-concave for 0  a < 1. Similarly,

�(x) =
P

i log xi and �(x) = �
P

i xi log xi are both Schur-concave, since log x and �x log x are concave. ⇤

Example 16.1.7. Consider � : R2
+ ! R with �(x) = �x1x2, which is symmetric and quasi-convex. Thus, from

Proposition 16.1.4, it is Schur-convex. ⇤

16.1.3 Relation to Matrix Theory

There are many interesting results that connect majorization theory to matrix theory, among which a crucial finding by
Schur is that the diagonal elements of a Hermitian matrix are majorized by its eigenvalues. This fact has been frequently
used to simplify optimization problems with matrix-valued variables.

Theorem 16.1.4. (Schur’s inequality [1, 9.B.1]) Let A be a Hermitian matrix with diagonal elements denoted by the
vector d and eigenvalues denoted by the vector �. Then � � d.

5A function f : X ! R is convex if X is a convex set and for any x, y 2 X and 0  ↵  1, f (↵x+ (1� ↵) y)  ↵f(x) + (1� ↵) f(y). f is
concave if �f is convex.

6A function f : X ! R is quasiconvex if X is a convex set and for any x, y 2 X and 0  ↵  1, f(↵x + (1 � ↵)y)  max{f(x), f(y)}. A
convex function is also quasi-convex, but the converse is not true.
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Theorem 16.1.4 provides an “upper bound” on the diagonal elements of a Hermitian matrix in terms of the majorization
ordering. From Exercise 16.1.1, a natural “lower bound” of a vector x 2 Rn would be 1 � x, where 1 2 Rn denote the
vector with equal elements given by 1i ,

Pn
j=1 xj/n. Therefore, for any Hermitian matrix we have

1 � d � � (16.4)

which is formally described in the following corollary.

Corollary 16.1.2. Let A be a Hermitian matrix and U a unitary matrix. Then

1 (A) � d
⇣

U†AU
⌘

� � (A)

where 1 (A) denotes the vector of equal elements whose sum equal to tr (A), d (A) is the vector of the diagonal elements
of A, and � (A) is the vector of the eigenvalues of A.

Proof: It follows directly from (16.4), as well as the fact that 1
⇣

U†AU
⌘

= 1 (A) and �

⇣

U†AU
⌘

= � (A). ⇤
Corollary 16.1.2 “bounds” the diagonal elements of U†AU for any unitary matrix U. However, it does not specify

what can be achieved. The following result will be instrumental for that purpose.

Theorem 16.1.5. ( [1, 9.B.2]) For any two vectors x,y 2 Rn satisfying x � y, there exists a real symmetric (and
therefore Hermitian) matrix with diagonal elements given by x and eigenvalues given by y.

Corollary 16.1.3. For any vector � 2 Rn, there exists a real symmetric (and therefore Hermitian) matrix with equal
diagonal elements and eigenvalues given by �.

Corollary 16.1.4. Let A be a Hermitian matrix and x 2 Rn be a vector satisfying x � � (A). Then, there exists a
unitary matrix U such that

d
⇣

U†AU
⌘

= x.

Proof: The proofs of Corollary 16.1.3 and Corollary 16.1.4 are straightforward from Corollary 16.1.2 and Theorem 16.1.5.
⇤

Theorem 16.1.5 is the converse of Theorem 16.1.4 (in fact it is stronger than the converse since it guarantees the
existence of a real symmetric matrix instead of just a Hermitian matrix). Now, we can provide the converse of Corol-
lary 16.1.2.

Corollary 16.1.5. Let A be a Hermitian matrix. There exists a unitary matrix U such that

d
⇣

U†AU
⌘

= 1 (A) ,

and also another unitary matrix U such that

d
⇣

U†AU
⌘

= � (A) .

We now turn to the important algorithmic aspect of majorization theory which is necessary, for example, to compute
a matrix with given diagonal elements and eigenvalues. The following definition is instrumental in the derivation of
transformations that relate vectors that satisfy the majorization relation.

Definition 16.1.6. (T-transform [1, p. 21]) A T-transform is a matrix of the form

T = ↵I+ (1� ↵)⇧ (16.5)

for some ↵ 2 [0, 1] and some n ⇥ n permutation matrix ⇧ with n � 2 diagonal entries equal to 1. Let [⇧]ij = [⇧]ji = 1
for some indices i < j, then

⇧y = [y1, . . . , yi�1, yj , yi+1, . . . , yj�1, yi, yj+1, . . . , yn]
T

and hence

Ty = [y1, . . . , yi�1, ↵ yi + (1� ↵) yj , yi+1, . . . ,

yj�1, ↵ yj + (1� ↵) yi, yj+1, . . . , yn]
T .
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Lemma 16.1.2. ( [1, 2.B.1]) For any two vectors x,y 2 Rn satisfying x � y, there exists a sequence of T-transforms
T(1), . . . ,T(K) such that x = T(K) · · ·T(1)y and K < n.

An algorithm to obtain such a sequence of T-transforms is introduced next.

Algorithm 14. ( [1, 2.B.1]) Algorithm to obtain a sequence of T-transforms such that x = T(K) · · ·T(1)y.
Input: Vectors x,y 2 Rn satisfying x � y (it is assumed that the components of x and y are in decreasing order and

that x 6= y).

Output: Set of T-transforms T(1), . . . ,T(K).

0. Let y(0) = y and k = 1 be the iteration index.

1. Find the largest index i such that y(k�1)
i > xi and the smallest index j greater than i such that y(k�1)

j < xj.

2. Let � = min
⇣

xj � y(k�1)
j , y(k�1)

i � xi

⌘

and ↵ = 1� �/
⇣

y(k�1)
i � y(k�1)

j

⌘

.

3. Use ↵ to compute T(k) as in (16.5) and let y(k) = T(k)y(k�1).

4. If y(k) 6= x, then set k = k + 1 and go to step 1; otherwise, finish.

Recursive algorithms to obtain a matrix with given eigenvalues and diagonal elements are provided in [1, 9.B.2] and [8].
Here, we introduce the practical and simple method proposed in [8] as follows.

Algorithm 15. ( [8]) Algorithm to obtain a real symmetric matrix A with diagonal values given by x and eigenvalues
given by y provided that x � y.
Input: Vectors x,y 2 Rn satisfying x � y (it is assumed that the components of x and y are in decreasing order and

that x 6= y).
Output: Matrix A.

1. Using Algorithm 14, obtain a sequence of T-transforms such that x = T(K) · · ·T(1)y.

2. Define the Givens rotation U(k) as

h

U(k)
i

ij
=

8

>

>

<

>

>

:

r

h

T(k)
i

ij
, for i < j

�
r

h

T(k)
i

ij
, otherwise.

3. Let A(0) = diag (y) and A(k) = U(k)TA(k�1)U(k). The desired matrix is given by A = A(K). Define the unitary
matrix U = U(1) · · ·U(K) and the desired matrix is given by A = UT diag (y)U.

Algorithm 15 obtains a real symmetric matrix A with given eigenvalues and diagonal elements. For the interesting
case in which the diagonal elements must be equal and the desired matrix is allowed to be complex, it is possible to obtain
an alternative much simpler solution in closed form as given next.

Lemma 16.1.3. ( [9]) Let U be a unitary matrix satisfying the condition |[U]ik| = |[U]il| 8i, k, l. Then, the matrix
A = UH diag (�)U has equal diagonal elements (and eigenvalues given by �). Two examples of U are the unitary DFT
matrix and the Hadamard matrix (when the dimensions are appropriate such as a power of two).

Nevertheless, Algorithm 15 has the nice property that the obtained matrix U is real-valued and can be naturally
decomposed (by construction) as the product of a series of rotations. This simple structure plays a key role for practical
implementation. Interestingly, an iterative approach to construct a matrix with equal diagonal elements and with a given
set of eigenvalues was obtained in [10], based also on a sequence of rotations.
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16.1.4 Multiplicative Majorization

Parallel to the concept of majorization introduced in Section 16.1.1, which is often called additive majorization, is the
notion of multiplicative majorization (also termed log-majorization) defined as follows.

Definition 16.1.7. The vector x 2 Rn
+ is multiplicatively majorized by y 2 Rn

+, denoted by x �⇥ y, if

k
Y

i=1

x[i] 
k
Y

i=1

y[i], 1  k < n

n
Y

i=1

x[i] =
n
Y

i=1

y[i].

To di↵erentiate the two types of majorization, we sometimes use the symbol �+ rather than � to denote (additive)
majorization. It is easy to see the relation between additive majorization and multiplicative majorization: x �+ y if and
only if exp(x) �⇥ exp(y).7

Example 16.1.8. Given x 2 Rn
+, let g denote the vector of equal elements given by gi , (

Qn
j=1 xj)1/n, i.e., the geometric

mean of x. Then, g �⇥ x.

Similar to the definition of Schur-convex/concave functions, it is also possible to define multiplicatively Schur-convex/concave
functions.

Definition 16.1.8. A function � : A ! R is said to be multiplicatively Schur-convex on A 2 Rn if

x �⇥ y on A ) � (x)  � (y) ,

and multiplicatively Schur-concave on A if

x �⇥ y on A ) � (x) � � (y) .

However, considering the correspondence between additive and multiplicative majorization, it may not be neces-
sary to use the notion of multiplicatively Schur-convex/concave functions. Instead, the so-called multiplicatively Schur-
convex/concave functions in Definition 16.1.8 can be equivalently referred to as functions such that ��exp is Schur-convex
and Schur-concave, respectively, where the composite function is defined as � � exp(x) , �(ex1 , . . . , exn).

The following two lemmas relate Schur-convexity/concavity of a function f with that of the composite function ��exp.

Lemma 16.1.4. If � is increasing and Schur-convex, then � � exp is Schur-convex.

Proof: It is an immediate result from Proposition 16.1.2. ⇤

Lemma 16.1.5. If the composite function � � exp is Schur-concave on Dn , {x 2 Rn : x1 � · · · � xn}, then � is
Schur-concave on Dn if it is increasing.

Proof: It can be easily proved using Theorem 16.1.1. ⇤
The following two examples show that the implication in Lemmas 16.1.4 and 16.1.5 does not hold in the opposite

direction.

Example 16.1.9. The function �(x) =
Qn

i=1 xi is Schur-concave on Dn since @�(x)
@xi

= �(x)
xi

is increasing in i on Dn (see
Theorem 16.1.1). However, the composite function � � exp(x) = exp(

P

i xi) is Schur-convex (and Schur-concave as well).

Example 16.1.10. The function �(x) =
Pn

i=1 ↵ixi with ↵1  · · ·  ↵n is Schur-concave on Dn. The composite function is

� � exp(x) =
Pn

i=1 ↵i exp(xi). For ↵i  ↵i+1, the derivative
@��exp(x)

@xi
= ↵i exp(xi) is not always monotonic in i = 1, . . . , n

for any x 2 Dn. Hence according to Theorem 16.1.1, although � is Schur-concave, � � exp is not Schur-concave (neither
Schur-convex) on Dn.

7Indeed, using the language of group theory, we say that the groups (R,+) and (R+,⇥) are isomorphic since there is a bijection function
exp : R ! R+ such that exp(x+ y) = exp(x)⇥ exp(y) for 8x, y 2 R.
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In contrast with (additive) majorization that leads to some important relations between eigenvalues and diagonal
elements of a Hermitian matrix (see Section 16.1.3), multiplicative majorization also brings some insights to matrix theory
but mostly on the relation between singular values and eigenvalues of a matrix. In the following, we introduce one recent
result that will be used later.

Theorem 16.1.6. (Generalized triangular decomposition (GTD) [11]) Let H 2 Cm⇥n be a matrix with rank k and
singular values �1 � �2 � · · · � �k. There exists an upper triangular matrix R 2 Ck⇥k and semi-unitary matrices Q and
P such that H = QRPH if and only if the diagonal elements of R satisfy |r|�⇥�, where |r| is a vector with the absolute
values of r element-wise. Vectors � and r stand for the singular values of H and diagonal entries of R, respectively.

The GTD is a generic form including many well-known matrix decompositions such as the SVD, the Schur decompo-
sition, and the QR factorization [4]. Theorem 16.1.6 implies that, given |r|�⇥�, there exists a matrix H with its singular
values and eigenvalues being r and �, respectively. A recursive algorithm to find such a matrix was proposed in [11].

16.1.5 Stochastic Majorization

A comparison of some kind between two random variables X and Y is called stochastic majorization if the comparison
reduces to the ordinary majorization x � y in case X and Y are degenerate at x and y, i.e., Pr (X = x) = 1 and
Pr (Y = y) = 1. Random vectors to be compared by stochastic majorization often have distributions belonging to the
same parametric family, where the parameter space is a subset of Rn. In this case, random variables X and Y with
corresponding distributions F✓ and F✓0 are ordered by stochastic majorization if and only if the parameters ✓ and ✓0 are
ordered by ordinary majorization.

Specifically, let A ✓ Rn and {F✓ : ✓ 2 A} be a family of n-dimensional distribution functions indexed by a vector-valued
parameter ✓. Let

E {�(X)} =

Z

Rn

�(x)dF✓(x) (16.6)

denote the expectation of �(X) when X has distribution F✓, and let

Pr (�(X)  t) =

Z

�(x)t

dF✓(x) (16.7)

denote the tail probability that �(X) is less than or equal to t when X has distribution F✓. We are particularly interested
in investigating whether or in what conditions E {�(X)} and Pr (�(X)  t) are Schur-convex/concave in ✓.

The following results provide the conditions in which E {�(X)} is Schur-convex in ✓ for exchangeable random variables.8

Proposition 16.1.5. ( [1, 11.B.1]) Let X1, . . . , Xn be exchangeable random variables and suppose that � : R2n ! R
satisfies: (i) �(x, ✓) is convex in ✓ for each fixed x; (ii) �(⇧x,⇧✓) = �(x, ✓) for all permutations ⇧; (iii) �(x, ✓) is Borel
measurable in x for each fixed ✓. Then,

 (✓) = E {�(X1, . . . , Xn, ✓)}
is symmetric and convex (and thus Schur-convex).

Corollary 16.1.6. ( [1, 11.B.2, 11.B.3]) Let X1, . . . , Xn be exchangeable random variables and � : Rn ! R be symmetric
and convex. Then,

 (✓) = E {�(✓1X1, . . . , ✓nXn)}
and

 (✓) = E {�(X1 + ✓1, . . . , Xn + ✓n)}
are symmetric and convex (and thus Schur-convex).

Corollary 16.1.7. ( [1, 11.B.2.c]) Let X1, . . . , Xn be exchangeable random variables and g be a continuous convex
function. Then,

 (✓) = E

"

g

 

X

i

✓iXi

!#

is symmetric and convex (and thus Schur-convex).

8
X1, . . . , Xn are exchangeable random variables if the distribution of X⇡(1), . . . , X⇡(n) does not depend on the permutation ⇡. In other words,

the joint distribution of X1, . . . , Xn is invariant under permutations of its arguments. For example, independent and identically distributed
random variables are exchangeable.
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Compared to the expectation form, there are only a limited number of results on the Schur-convexity/concavity of the
tail probability P{�(X)  t} in terms of ✓, which are usually given in some specific form of � or distribution of X. In the
following is one important result concerning linear combinations of some random variables.

Theorem 16.1.7. ( [12]) Let ✓i � 0 for all i, and X1, . . . , Xn be independent and identically distributed (iid) random
variables following a Gamma distribution with the density

f(x) =
xk�1 exp(�x)

�(k)

where �(k) = (k � 1)!. Suppose that g : R ! R is nonnegative and the inverse function g�1 exists. Then,

P

(

g

 

X

i

✓iXi

!

 t

)

is Schur-concave in ✓ for t � g(2) and Schur-convex in ✓ for t  g(1).

Corollary 16.1.8. Let ✓i � 0 for all i, and X1, . . . , Xn be iid exponential random variables with the density f(x) =
exp(�x). Then, P {

P

i ✓iXi  t} is Schur-concave in ✓ for t � 2 and Schur-convex in ✓ for t  1.

For more examples of stochastic majorization in the form of expectations or tail probabilities, we refer the interested
reader to [1] and [7].

16.2 Applications of Majorization Theory

16.2.1 CDMA Sequence Design

The code division multiple access (CDMA) system is an important multiple-access technique in wireless networks. In
a CDMA system, all users share the same bandwidth and they are distinguished from each other by their signature
sequences or codes. A fundamental problem in CDMA systems is to optimally design signature sequences so that the
system performance, such as the sum capacity, is maximized.

Consider the uplink of a single-cell synchronous CDMA system with K users and processing gain N . In the presence
of additive white Gaussian noise, the sampled baseband received signal vector in one symbol interval is

r =
K
X

i=1

si
p
pibi + n (16.8)

where, for each user i, pi is the received power, bi is the transmitted symbol, and si 2 RN is the unit-energy signature
sequence, i.e., ksik = 1, and n is a zero-mean Gaussian random vector with covariance matrix �2IN , i.e., n ⇠ N (0,�2IN ).
Introduce anN⇥K signature sequence matrix S , [s1, . . . , sK ] and let P1/2 , diag

�p
p1, . . . ,

p
pK

 

and b , [b1, . . . , bK ]T .
Then (16.8) can be compactly expressed as

r = SP1/2b+ n. (16.9)

There are di↵erent criteria to measure the performance of a CDMA system, among which the most commonly used
one may be the sum capacity given by [13]

Csum =
1

2
log det

⇣

IN + ��2SPST
⌘

. (16.10)

In practice, the system performance may also be measured by the total MSE of all users, which, assuming that each uses
a LMMSE filter at his receiver, is given by [14]

MSE = K � Tr



SPST
⇣

SPST + �2IN
⌘�1

�

. (16.11)
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Another important global quantity that measures the total interference in the CDMA system is the total weighted square
correlation (TWSC), which is given by [15]

TWSC =
K
X

i=1

K
X

j=1

pipj
�

sTi sj
�

= Tr



⇣

SPST
⌘2

�

. (16.12)

The goal of the sequence design problem is to optimize the system performance, e.g., maximize Csum or minimize MSE
or TWSC, by properly choosing the signature sequences for all users or, equivalently, by choosing the optimal signature
sequence matrix S.

Observe that the aforementioned three performance measures are all determined by the eigenvalues of the matrix
SPST . To be more exact, denoting the eigenvalues of SPST by � , (�i)

N
i=1, it follows that

Csum =
1

2

N
X

i=1

log

✓

1 +
�i

�2

◆

MSE = K �
N
X

i=1

�i

�i + �2

TWSC =
N
X

i=1

�2
i .

Now, we can apply majorization theory. Indeed, since log(1 + ��2x) is a concave function, it follows from Corollary
16.1.1 that Csum is a Schur-concave function with respect to �. Similarly, given that �x/(x + �2) and x2 are convex
functions, both MSE and TWSC are Schur-convex in �. Therefore, if one can find a signature sequence matrix yielding
the Schur-minimal eigenvalues, i.e., one with eigenvalues that are majorized by all other feasible eigenvalues, then the
resulting signature sequences will not only maximize Csum but also minimize MSE and TWSC at the same time.

To find the optimal signature sequence matrix S, let us first define the set of all feasible S

S , {S 2 RN⇥K : ksik = 1, i = 1, . . . ,K} (16.13)

and correspondingly the set of all possible �

L ,
n

�(SPST ) : S 2 S
o

. (16.14)

Now the question is how to find a Schur-minimal vector within L, which is, however, not easy to answer given the form of L
in (16.14). To overcome this di�culty, we transform L to a more convenient equivalent form by utilizing the majorization
relation.

Lemma 16.2.1. When K  N , L is equal to

M , {� 2 RN : (�1, . . . ,�K) � (p1, . . . , pK), �K+1 = · · · = �N = 0}.

When K > N , L is equal to
N , {� 2 RN : (�1, . . . ,�N , 0, . . . , 0

| {z }

K�N

) � (p1, . . . , pK)}.

Proof: Consider the case K  N . We first show that if � 2 L then � 2 M. Since K  N , �(SPST ) has at most

K nonzero elements, which are denoted by �a. Let p , (pi)
K
i=1. Observe that, for S 2 S, p and �a are the diagonal

elements and the eigenvalues of the matrix P1/2STSP1/2, respectively. From Theorem 16.1.4 we have �a � p, implying
that � 2 M.

To see the other direction, let � 2 M and thus �a � p. According to Theorem 16.1.5, there exists a symmetric matrix
Z with eigenvalues �a and diagonal elements p. Denote the eigenvalue decomposition (EVD) of Z by Z = Uz⇤zU

T
z

and introduce ⇤ = diag{⇤z,0(N�K)⇥(N�K)} and U = [Uz 0K⇥(N�K)]. Then we can choose S = ⇤1/2UTP�1/2. It is

easy to check that the eigenvalues of SPST = ⇤ are �, and ksik2, i = 1, . . . ,K, coincide with the diagonal elements of
STS = P�1/2ZP�1/2 and thus are all ones, so we have � 2 L.
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The equivalence between L and N when K > N can be obtained in a similar way, for which a detailed proof was
provided in [8]. ⇤

When K  N , the Schur-minimal vector in L (or M), from Lemma 16.2.1, is �? = (p1, . . . , pL, 0, . . . , 0), which can be
achieved by choosing arbitrary K orthonormal sequences, i.e., STS = IK .

When K > N , the problem of finding a Schur-minimal vector in L (or N ) is, however, not straightforward. It turns
out that in this case the Schur-minimal vector is given in a complicated form based on the following definition.

Definition 16.2.1. (Oversized users [8]) User i is defined to be oversized if

pi >

PK
i=1 pj1{pi>pj}

N �
PK

j=1 1{pj�pi}

where 1{·} is the indication function. Intuitively, a user is oversized if his power is large relative to those of the others.

Theorem 16.2.1. ( [8]) Assume w.l.o.g. that the users are ordered according to their powers p1 � · · · � pK , and the first
L users are oversized. Then, the Schur-minimal vector in L (or N ) is given by

�? =

 

p1, . . . , pL,

PK
j=L+1 pj

N � L
, . . . ,

PK
j=L+1 pj

N � L

!

.

The left question is how to find an S 2 S such that the eigenvalues of SPST are �?. Note that the constraint S 2 S
is equivalent to saying that the diagonal elements of STS are all equal to 1. Therefore, given the optimal S, the matrix
P1/2STSP1/2 has the diagonal elements p = (p1, . . . , pK) and the eigenvalues �b = (�?,0). From Theorem 16.1.5, there
exists a K ⇥K symmetric matrix M such that its diagonal elements and eigenvalues are given by p and �b, respectively.
Denote the (EVD) of M by M = U⇤UT , where ⇤ = diag {�?} and U 2 RK⇥N contains the N eigenvectors corresponding
to �?. Then, the optimal signature sequence matrix can be obtained as S = ⇤1/2UTP�1/2. It can be verified that the
eigenvalues of SPST are �? and S 2 S.

Finally, to construct the symmetric matrix M with the diagonal elements p and the eigenvalues �b (provided p � �b),
one can exploit Algorithm 15 introduced in Section 16.1.3. Interestingly, an iterative algorithm was proposed in [14, 15]
to generate the optimal signature sequences. This algorithm updates each user’s signature sequence in a sequential way,
and was proved to converge to the optimal solution.

16.2.2 Linear MIMO Transceiver Design

MIMO channels, usually arising from using multiple antennas at both ends of a wireless link, have been well recognized
as an e↵ective way to improve the capacity and reliability of wireless communications [16]. A low-complexity approach
to harvest the benefits of MIMO channels is to exploit linear transceivers, i.e., a linear precoder at the transmitter and a
linear equalizer at the receiver. Designing linear transceivers for MIMO channels has a long history, but mostly focused
on some specific measure of the global performance. It has recently been found in [9, 17] that the design of linear MIMO
transceivers can be unified by majorization theory into a general framework that embraces a wide range of di↵erent
performance criteria. In the following we briefly introduce this unified framework.

H

n

x y

M N×
N

F
L

G
L

s

N L×

ŝ

×

Figure 16.2: Linear MIMO transceiver consisting of a linear precoder and a linear equalizer.

Consider a communication link with N transmit and M receive antennas. The signal model of such a MIMO channel
is

y = Hx+ n (16.15)
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where x 2 CN is the transmitted signal vector, H 2 CM⇥N is the channel matrix, y 2 CM is the received signal
vector, and n 2 CM is a zero-mean circularly symmetric complex Gaussian random vector with covariance matrix I,9 i.e.,
n ⇠ CN (0, I). In the linear transceiver scheme as illustrated in Fig. 16.2, the transmitted signal x results from the linear
transformation of a symbol vector s 2 CL through a linear precoder F 2 CN⇥L and is given by x = Fs. Assume w.l.o.g.
that L  min{M,N} and E

�

ssH
 

= I. The total average transmit power is

PT = E
n

kxk2
o

= Tr(FFH). (16.16)

At the receiver is a linear equalizer GH 2 CL⇥M used to estimate s from y resulting in ŝ = GHy. Therefore, the relation
between the transmitted symbols and the estimated symbols can be expressed as

ŝ = GHHFs+GHn. (16.17)

An advantage of MIMO channels is the support of simultaneously transmitting multiple data streams, leading to
significant capacity improvement.10 Observe from (16.17) that the estimated symbol at the ith data stream is given by

ŝi = gH
i Hf isi + gH

i ni (16.18)

where fi and gi are the ith columns of F and G, respectively, and ni =
P

j 6=i Hf jsj + n is the equivalent noise seen by

the ith data stream with covariance matrix Rni
=
P

j 6=i Hf jfHj HH + I. In practice, the performance of a data stream
can be measured by the MSE, signal–to–interference-plus-noise ratio (SINR), or bit error rate (BER), which according to
(16.18) are given by

MSEi , E
n

|ŝi � si|2
o

=
�

�gH
i Hf i � 1

�

�

2
+ gH

i Rni
gi

SINRi , desired component

undesired component
=

�

�gH
i Hf i

�

�

2

gH
i Rni

gi

BERi , # bits in error

# transmitted bits
⇡ 'i(SINRi)

where 'i is a decreasing function relating the BER to the SINR at the ith stream [6, 9]. Any properly designed system
should attempt to minimize the MSEs, maximize the SINRs, or minimize the BERs.

Measuring the global performance of a MIMO system with several data streams is tricky as there is an inherent tradeo↵
among the performance of the di↵erent streams. Di↵erent applications may require a di↵erent balance on the performance
of the streams, so there are a variety of criteria in the literature, each leading to a particular design problem (see [6] for a
survey). However, in fact, all these particular problems can be unified into one framework using the MSEs as the nominal
cost. Specifically, suppose that the system performance is measured by an arbitrary global cost function of the MSEs
f0
�

{MSEi}Li=1

�

that is increasing in each argument.11 The linear transceiver design problem is then formulated as

minimize
F,G

f0 ({MSEi})
subject to Tr(FFH)  P

(16.19)

where Tr(FFH)  P represents the transmit power constraint.
To solve (16.19), we first find the optimal G for a fixed F. It turns out that the optimal equalizer is the LMMSE filter,

also termed the Wiener filter [19]
G? = (HFFHHH + I)�1HF. (16.20)

To see this, let us introduce the MSE matrix

E(F,G) , E
⇥

(̂s� s)(̂s� s)H
⇤

= (GHHF� I)(FHHHG� I) +GHG (16.21)

9If the noise is not white, say with covariance matrix Rn, one can always whiten it by ȳ = R
�1/2
n y = H̄x+ n̄, where H̄ = R

�1/2
n H is the

equivalent channel.
10This kind of improvement is often called the multiplexing gain [18].
11The increasingness of f is a mild and reasonable assumption: if the performance of one stream improves, the global performance should

improve too.
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from which the MSE of the ith data stream is given by MSEi = [E]ii. It is not di�cult to verify that

E(F,G?) = (I+ FHHHHF)�1 � E(F,G) (16.22)

for any G, meaning that G? simultaneously minimizes all diagonal elements of E or all MSEs. At the same time, one
can verify that g?

i , i.e., the ith column of G?, also maximizes SINRi (or equivalently minimizes BERi) [6, 9]. Hence, the
Wiener filter is optimal in the sense of both minimizing all MSEs and maximizing all SINRs (or minimizing all BERs).
Observe that the optimality is regardless of the particular choice of the cost function f0 in (16.19).

Using the Wiener filter as the equalizer, we can easily obtain

MSEi = [(I+ FHHHHF)�1]ii

SINRi =
1

MSEi
� 1

BERi = 'i(MSE�1
i � 1).

This means that di↵erent performance measures based on the MSEs, the SINRs, or the BERs can be uniformly represented
by the MSE-based criteria, thus indicating the generality of the problem formulation (16.19).

Now, the transceiver design problem (16.19) reduces to the following precoder design problem:

minimize
F

f0
⇣

{[(I+ FHHHHF)�1]ii}
⌘

subject to Tr(FFH)  P.
(16.23)

Solving such a general problem is very challenging and the solution hinges on majorization theory.

Theorem 16.2.2. ( [6, Theorem 3.13]) Suppose that the cost function f0 : RL 7! R is increasing in each argument. Then,
the optimal solution to (16.23) is given by

F? = Vhdiag(
p
p)⌦

where

(i) Vh 2 CN⇥L is a semi-unitary matrix with columns equal to the right singular vectors of H corresponding to the L
largest singular values in increasing order;

(ii) p 2 RL
+ is the solution to the following power allocation problem:12

minimize
p,⇢

f0 (⇢1, . . . , ⇢L)

subject to
⇣

1
1+p1�1

, . . . , 1
1+pL�L

⌘

�w (⇢1, . . . , ⇢L)

p � 0, 1Tp  P

(16.24)

where {�i}Li=1 are the L largest eigenvalues of HHH in increasing order;

(iii) ⌦ 2 CL⇥L is a unitary matrix such that [(I+F?HHHHF?)�1]ii = ⇢i for all i, which can be computed with Algorithm
15.

Proof: We start by rewriting (16.23) into the equivalent form

minimize
F,⇢

f0 (⇢)

subject to d
⇣

(I+ FHHHHF)�1
⌘

 ⇢

Tr(FFH)  P

(16.25)

Note that, given any F, we can always find another F̃ = F⌦H with a unitary matrix ⌦ such that F̃HHHHF̃ =
⌦FHHHHF⌦H is diagonal with diagonal elements in increasing order. The original MSE matrix is given by (I +

12�w denotes weak supermajorization (see Definition 16.1.3)
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FHHHHF)�1 = ⌦H(I+ F̃HHHHF̃)�1⌦. Thus we can rewrite (16.25) in terms of F̃ and ⌦ as

minimize
F̃,⌦,⇢

f0 (⇢)

subject to F̃HHHHF̃ diagonal

d
⇣

⌦H(I+ F̃HHHHF̃)�1⌦
⌘

 ⇢

Tr(F̃F̃
H
)  P.

(16.26)

It follows from Lemma 16.1.1 and Corollary 16.1.2 that, for a given F̃, we can always find a feasible ⌦ if and only if

�
⇣

(I+ F̃HHHHF̃)�1
⌘

�w ⇢.

Therefore, using the diagonal property of F̃HHHHF̃, (16.26) is equivalent to

minimize
F̃,⇢

f0 (⇢)

subject to F̃HHHHF̃ diagonal

d
⇣

(I+ F̃HHHHF̃)�1
⌘

�w ⇢

Tr(F̃F̃
H
)  P.

(16.27)

Given that F̃HHHHF̃ is diagonal with diagonal elements in increasing order, we can invoke [9, Lemma 12] or [6, Lemma
3.16] to conclude that the optimal F̃ can be written as F̃ = Vhdiag(

p
p), implying that F? = Vhdiag(

p
p)⌦. Now, by

using the weak supermajorization relation as well as the structure F̃ = Vhdiag(
p
p), (16.27) can be expressed as (16.24).

⇤
If, in addition, f0 is minimized when the arguments are sorted in decreasing order,13 then (16.24) can be explicitly

written as
minimize

p,⇢
f0 (⇢1, . . . , ⇢L)

subject to
PL

j=i
1

1+pi�i


PL
j=i ⇢j , 1  i  L

⇢i � ⇢i+1, 1  i  L� 1
p � 0, 1Tp  P

(16.28)

which is a convex problem if f0 is a convex function, and thus can be e�ciently solved in polynomial time [20]. In fact,
the optimal precoder can be further simplified or even obtained in closed form, when the objective f0 falls into the class
of Schur-convex/concave functions.

Corollary 16.2.1. ( [9, Theorem 1]) Suppose that the cost function f0 : RL 7! R is increasing in each argument.

(i) If f0 is Schur-concave, then the optimal solution to (16.23) is given by

F? = Vhdiag(
p
p)

where p is the solution to the following power allocation problem:

minimize
p

f0
�

{(1 + pi�i)�1}Li=1

�

subject to p � 0, 1Tp  P.

(ii) If f0 is Schur-convex, then the optimal solution to (16.23) is given by

F? = Vhdiag(
p
p)⌦

where the power allocation p is given by

pi = (µ��1/2
i � ��1

i )+, 1  i  L

with µ chosen to satisfy 1Tp = P , and ⌦ is a unitary matrix such that (I + F?HHHHF?)�1 has equal diagonal
elements. ⌦ can be any unitary matrix satisfying |[⌦]ik| = |[⌦]il|, 8i, k, l, such as the unitary DFT matrix or the
unitary Hadamard matrix (see Lemma 16.1.3).

13In practice, most cost functions are minimized when the arguments are in a specific ordering (if not, one can always use instead the function
f̃0(x) = min

P2P f0(Px), where P is the set of all permutation matrices) and, hence, the decreasing order can be taken without loss of generality.
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Although Schur-convex/concave functions do not form a partition of all L-dimensional functions, they do cover most
of the frequently used global performance measures. An extensive account of Schur-convexity/concavity of common
performance measures was provided in [6] and [9] (see also Exercise 16.4.3). For Schur-concave functions, a nice property
is that the MIMO channel is fully diagonalized by the optimal transceiver, whereas for Schur-convex functions, the channel
is diagonalized subject to a specific rotation ⌦ on the transmit symbols.

16.2.3 Nonlinear MIMO Transceiver Design

In this section, we introduce another paradigm of MIMO transceivers, consisting of a linear precoder and a nonlinear
decision feedback equalizer (DFE). The DFE di↵ers from the linear equalizer in that the DFE exploits the finite alphabet
property of digital signals and recovers signals successively. Thus, the nonlinear decision feedback (DF) MIMO transceivers
usually enjoy superior performance than the linear transceivers. Using majorization theory, the DF MIMO transceiver
designs can also be unified, mainly based on the recent results in [11, 21, 22], into a general framework covering diverse
design criteria, as was derived independently in [6, 23, 24]. Di↵erent from the linear transceiver designs that are based on
additive majorization, the DF transceiver designs rely mainly on multiplicative majorization (see Section 16.1.4).
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Figure 16.3: Nonlinear MIMO transceiver consisting of a linear precoder and a decision feedback equalizer (DFE).

Considering the MIMO channel in (16.15), we use a linear precoder F 2 CN⇥L at the transmitter to generate the
transmitted signal x = Fs from a symbol vector s satisfying E

�

ssH
 

= I. For simplicity, we assume that L  rank(H).
The receiver exploits, instead of a linear equalizer, a DFE that detects the symbols successively with the Lth symbol
(sL) detected first and the first symbol (s1) detected last. As shown in Fig. 16.3, a DFE consists of two components:
a feed-forward filter GH 2 CL⇥M applied to the received signal y, and a feedback filter B 2 CL⇥L that is a strictly
upper triangular matrix and feeds back the previously detected symbols. The block Q[·] represents the mapping from
the “analog” estimated ŝi to the closest “digital” point in the signal constellation. Assuming no error propagation,14 the
“analog” estimated ŝi can be written as

ŝi = gH
i y �

L
X

j=i+1

bijxj , 1  i  L (16.29)

where gi is the ith column of G and bij = [B]ij . Compactly, the estimated symbol vector can be written as

ŝ = GHy �Bs = (GHHF�B)s+GHn. (16.30)

Let fi be the ith column of F. The performance of the ith data stream can be measured by the MSE or the SINR as

MSEi , E
n

|ŝi � si|2
o

=
�

�gH
i Hf i � 1

�

�

2
+

L
X

j=i+1

�

�gH
i Hf j � bij

�

�

2
+

i�1
X

j=1

�

�gH
i Hf j

�

�

2
+ kgik2

SINRi , desired component

undesired component

=

�

�gH
i Hf i

�

�

2

PL
j=i+1

�

�gH
i Hf j � bij

�

�

2
+
Pi�1

j=1

�

�gH
i Hf j

�

�

2
+ kgik2

.

14Error propagation means that if the detection is erroneous, it may cause more errors in the subsequent detections. By using powerful
coding techniques, the influence of error propagation can be made negligible.
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Alternatively, the performance can also be measured by BERi ⇡ 'i(SINRi) with a decreasing function 'i. Similar to
the linear transceiver case, we consider that the system performance is measured by a global cost function of the MSEs
f0

�

{MSEi}Li=1

�

that is increasing in each argument. Then the nonlinear DF MIMO transceiver design is formulated as
the following problem:

minimize
F,G,B

f0 ({MSEi})
subject to Tr(FFH)  P

(16.31)

where Tr(FFH)  P denotes the transmit power constraint.
It is easily seen that to minimize MSEi, the DF coe�cients should be bij = gH

i Hf j , 1  i < j  L, or, equivalently,

B = U(GHHF) (16.32)

where U(·) stands for keeping the strictly upper triangular entries of the matrix while setting the others zero. To obtain
the optimal feed-forward filter, we let W , HF be the e↵ective channel, and denote by Wi 2 CM⇥i the submatrix
consisting of the first i columns of W and by wi the ith column of W. Then, with bij = gH

i Hf j , the feed-forward filter
minimizing MSEi is given by [6, Sec. 4.3]

gi = (WiW
H
i + I)�1wi, 1  i  L. (16.33)

In fact, there is a more computationally e�cient expression of the optimal DFE given as follows.

Lemma 16.2.2. ( [25]) Let the QR decomposition of the augmented matrix be

Wa ,


W
IL

�

(M+L)⇥L

= QR

and partition Q into

Q =



Q̄
Q

�

where Q̄ 2 CM⇥L and Q 2 CL⇥L. The optimal feed-forward and feedback matrices that minimize the MSEs are

G? = Q̄D
�1
R and B? = D�1

R R� I (16.34)

where DR is a diagonal matrix with the same diagonal elements as R. The resulting MSE matrix is diagonal:

E , E
⇥

(̂s� s)(̂s� s)H
⇤

= D�2
R .

By using the optimal DFE in (16.34), the MSE and the SINR at the ith data stream are related by

SINRi =
1

MSEi
� 1

which is the same as in the linear equalizer case. Therefore, we can focus w.l.o.g. on the MSE-based performance measures,
which, according to Lemma 16.2.2, depend on the diagonal elements of R. The optimal precoder is then given by the
solution to the following problem:

minimize
F

f0
�

{[R]�2
ii }

�

subject to



HF
IL

�

= QR

Tr(FFH)  P.

(16.35)

This complicated optimization can be simplified by using multiplicative majorization.

Theorem 16.2.3. ( [6, Theorem 4.3]) Suppose that the cost function f0 : RL 7! R is increasing in each argument. Then,
the optimal solution to (16.35) is given by

F? = Vhdiag(
p
p)⌦

where
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(i) Vh 2 CN⇥L is a semi-unitary matrix with columns equal to the right singular vectors of matrix H corresponding to
the L largest singular values in increasing order;

(ii) p 2 RL
+ is the solution to the following power allocation problem:

minimize
p,r

f0
�

r�2
1 , . . . , r�2

L

�

subject to
�

r21, . . . , r
2
L

�

�⇥ (1 + p1�1, . . . , 1 + pL�L)

p � 0, 1Tp  P

(16.36)

where {�i}Li=1 are the L largest eigenvalues of HHH in decreasing order;

(iii) ⌦ 2 CL⇥L is a unitary matrix such that the matrix R in the QR decomposition


HF?

IL

�

= QR

has diagonal elements {ri}Li=1. To obtain ⌦, it su�ces to compute the generalized triangular decomposition (GTD)
[11]



HVhdiag(
p
p)

IL

�

= QJRPH
J

and then set ⌦ = PJ .

Proof: The proof is involved, so we provide only a sketch of it and refer the interested read to [6, Appendix 4.C] for the
detailed proof.

Denote the diagonal elements of R by {ri}Li=1, and the singular values of the e↵ective channel W and the augmented
matrix Wa by {�w,1}Li=1 and {�wa,1}Li=1 in decreasing order, respectively. One can easily see that

�wa,i =
q

1 + �2
w,i 1  i  L.

Consider the SVD F = Ufdiag(
p
p)⌦. By using Theorem 16.1.6 on the GTD, one can prove that there exists an ⌦ such

that Wa = QR if and only if {r2i } �⇥ {�2
wa,i

} [6, Lemma 4.9]. Therefore, the constraint


HF
IL

�

= QR

can be equivalently replaced by
�

r21, . . . , r
2
L

�

�⇥
�

�2
wa,1, . . . ,�

2
wa,L

�

.

Next, by showing that
k
Y

i=1

�2
wa,i =

k
Y

i=1

(1 + �2
w,i) 

k
Y

i=1

(1 + �ipi), 1  k  L

where the equality holds if and only if Uf = Vh, one can conclude that the optimal F occurs when Uf = Vh. ⇤
Theorem 16.2.3 shows the solution to the general problem with an arbitrary cost function has a nice structure. In fact,

when the composite objective function
f0 � exp(x) , f0(e

x1 , . . . , exL) (16.37)

is either Schur-convex or Schur-concave, the nonlinear DF transceiver design problem admits a simpler or even closed-form
solution.

Corollary 16.2.2. ( [6, Theorem 4.4]) Suppose that the cost function f0 : RL 7! R is increasing in each argument.

(i) If f0 � exp is Schur-concave, then the optimal solution to (16.35) is given by

F? = Vhdiag(
p
p)

where p is the solution to the following power allocation problem:

minimize
p

f0
�

{(1 + �ipi)�1}Li=1

�

subject to p � 0, 1Tp  P.



16.2. APPLICATIONS OF MAJORIZATION THEORY 399

(ii) If f0 � exp is Schur-convex, then the optimal solution to (16.35) is given by

F? = Vhdiag(
p
p)⌦

where the power allocation p is given by

pi = (µ� ��1
i )+, 1  i  L

with µ chosen to satisfy 1Tp = P , and ⌦ is a unitary matrix such that the QR decomposition


HF?

IL

�

= QR

yields R with equal diagonal elements.

It is interesting to relate the linear and nonlinear DF transceivers by the Schur-convexity/concavity of the cost function.
From Lemma 16.1.5, f0 � exp being Schur-concave implies that f0 is Schur-concave, but not vice versa. From Lemma
16.1.4, if f0 is Schur-convex, then f0 � exp is also Schur-convex, but not vice versa. The examples of the cost function
for which f0 � exp is either Schur-concave or Schur-convex were provided in [6] (see also Exercise 16.4.4 and a recent
survey [26]).

16.2.4 Impact of Correlation

A measure of correlation
Consider two n-dimensional random vectors x and y following the same family/class of distributions with zero means

and covariance matrices Rx and Ry, respectively. One question arising in many practical scenarios is how to compare
x and y in terms of the degree of correlation. Majorization provides a natural way to measure correlation of a random
vector.

Definition 16.2.2. ( [7, Sec. 4.1.2]) Let �(A) denote the eigenvalues of a positive semidefinite matrix A. Then, we say
x is more correlated than y, or the covariance matrix Rx is more correlated than Ry, if �(Rx) � �(Ry).

Note that comparing x and y (or equivalently Rx and Ry) through the majorization ordering imposes an implicit
constraint on Rx and Ry that requires

Pn
i=1 �i(Rx) =

Pn
i=1 �i(Ry), or equivalently, Tr(Rx) = Tr(Ry). This requirement

is actually quite reasonable. If we consider E
n

|xi|2
o

as the “power” of the ith element of x, then Tr(Rx) =
Pn

i=1 E
n

|xi|2
o

is the sum power of all elements of x. Therefore, the comparison is conducted in a fair sense that the sum power of the
two vectors is equal. Nevertheless, Definition 16.2.2 can be generalized to the case where Tr(Rx) 6= Tr(Ry) by using weak
majorization.

From Example 16.1.1, the most uncorrelated covariance matrix has equal eigenvalues, whereas the most correlated
covariance matrix has only one non-zero eigenvalue. In the next, we demonstrate through several examples how to use
majorization theory along with Definition 16.2.2 to analyze the e↵ect of correlation on communication systems.

Colored Noise in CDMA Systems
Consider the uplink of a single-cell synchronous CDMA system with K users and processing gain N similar to the

one that has been considered in Section 16.2.1 but with colored noise. More exactly, with the received signal at the base
station given by (16.8), the zero-mean noise n is now correlated with the covariance matrix Rn. In this case, the sum
capacity of the CDMA system is given by [27]

Csum =
1

2
log det

⇣

IN +R�1
n SPST

⌘

(16.38)

where S is the signature sequence matrix and P = diag {p1, . . . , pK} contains the received power of each user. The
maximum sum capacity is obtained as Copt = maxS2S Csum, where S is defined in (16.13).

Denote the EVD of Rn by Rn = Un⇤nU
H
n with eigenvalues �2

1 , . . . ,�
2
N . Then, Copt can be characterized as follows.

Lemma 16.2.3. ( [27, Lemma 2.2]) The maximum sum capacity of the synchronous CDMA system with colored noise is
given by

Copt = max
S2S

1

2

N
X

i=1

log

 

1 +
�i(SPST )

�2
i

!

. (16.39)
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Proposition 16.2.1. Copt obtained in (16.39) is Schur-convex in �2 , (�2
1 , . . . ,�

2
N ).

Proof: Let �(�2) = 1
2

PN
i=1 log

�

1 + �i/�2
i

�

. Since g(xi) = log (1 + �i/xi) is a convex function and f(x) = 1
2

PN
i=1 xi

is increasing and Schur-convex, it follows from Proposition 16.1.2 that �(�2) = f(g(�2
1), . . . , g(�

2
N )) is Schur-convex.

Therefore, given �2
a � �2

b , we have

Copt(�
2
a) = max

S2S
�(�2

a)  max
S2S

�(�2
b ) = Copt(�

2
b ).

⇤
Proposition 16.2.1 indicates that the more correlated (according to Definition 16.2.2) the noise is, the higher the sum

capacity could be. Intuitively, if one of the noise variances, say �2
N , is much larger than the rest, the users can avoid using

signals in the direction of Rn corresponding to �2
N and benefit from a reduced average noise variance (since the sum of

all variances keeps unchanged). Apparently, white noise with equal �2
i = �2, i = 1, . . . , N , is one of the worst cases that

lead to the minimum Copt.

Spatial Correlation in MISO channels
A multiple-input single-output (MISO) channel usually arises in using multiple transmit antennas and a single receive

antenna in a wireless link. Consider a block-flat-fading15 MISO channel with N transmit antennas. The channel model is
given by

y = xHh+ n (16.40)

where x 2 CN is the transmitted signal, y 2 C is the received signal, the complex Gaussian noise n has zero mean and
variance �2, and the channel h 2 CN is a circular symmetric Gaussian random vector with zero-mean and covariance
matrix Rh, i.e., h ⇠ CN (0,Rh).

In MISO (as well as MIMO) channels, the transmit strategy is determined by the transmit covariance matrix Q =
E
�

xxH
 

. Denote the EVD of Q by Q = Uq⇤qU
H
q with the diagonal matrix ⇤q = diag{p1, . . . , pN}. Then, the

eigenvectors of Q, i.e., the columns of Uq, can be regarded as the transmit directions, and the eigenvalue pi represents
the power allocated to the ith data stream or eigenmode. Assuming that the receiver knows the channel perfectly and the
transmitter uses a Gaussian codebook with zero mean and covariance matrixQ, the maximum average mutual information,
also termed the ergodic capacity, of the MISO channel is given by [16]

C = max
Q2Q

E
⇥

log(1 + �hHQh)
⇤

(16.41)

where � is the signal-to-noise ratio, Q , {Q : Q ⌫ 0, Tr(Q) = 1} represents the normalized transmit power constraint,
and the expectation is taken over h.

The ergodic capacity depends on what kind of channel state information at the transmitter (CSIT) is available. In the
following, we consider three types of CSIT:

• No CSIT. Neither h nor its statistics are known by the transmitter, and it is usually assumed that h ⇠ CN (0, I),
i.e., Rh = I (see Section 16.2.5).

• Perfect CSIT. That is, h is perfectly known by the transmitter.

• Imperfect CSIT with covariance feedback. In this case, it is assumed that h ⇠ CN (0,Rh) with Rh known by the
transmitter.

Denote the EVD of Rh by Rh = Uh⇤hU
H
h with eigenvalues µ1 � · · · � µN sorted w.l.o.g. in decreasing order, and

let w1, . . . , wN be standard exponentially iid random variables. In the case of no CSIT, the optimal transmit covariance
matrix is given by Q = 1

N I [16], which results in

CnoCSIT(µ) = E

"

log

 

1 +
�

N

N
X

i=1

µiwi

!#

. (16.42)

15Block flat-fading means that the channel keeps unchanged for a block of T symbols, and then the channel changes to an uncorrelated
channel realization.
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With perfect CSIT, the optimal Q is given by Q = hhH/ khk2 [16], leading to

CpCSIT(µ) = E

"

log

 

1 + �
N
X

i=1

µiwi

!#

. (16.43)

For imperfect CSIT with covariance feedback (i.e., Rh known), the optimal Q is given in the form Q = Uh⇤qU
H
h [28], so

the ergodic capacity is obtained by

CcfCSIT(µ) = max
p2P

E

"

log

 

1 + �
N
X

i=1

piµiwi

!#

(16.44)

where P , {p : p � 0, 1Tp = 1} is the power constraint set. The channel capacities of the three types of CSIT all
depends on the eigenvalues of Rh, i.e., µ, which is exactly characterized by the following result.

Theorem 16.2.4. ( [29]) While CnoCSIT(µ) and CpCSIT(µ) are both Schur-concave in µ, CcfCSIT(µ) is Schur-convex in
µ.

Proof: The Schur-concavity of CnoCSIT(µ) and CpCSIT(µ) follows readily from Corollary 16.1.6, since f(x) = log(1 +

a
PN

i=1 xi) is a symmetric and concave function for a > 0 and xi � 0. The proof of the Schur-convexity of CcfCSIT(µ) is
based on Theorem 16.1.2 but quite involved. We refer the interested reader to [29] for more details. ⇤

Theorem 16.2.4 completely characterizes the impact of correlation on the ergodic capacity of a MISO channel. To see
this, assume that Tr(Rh) = N (for a fair comparison under Definition 16.2.2) and the correlation vector µ2 majorizes
µ1, i.e., µ1 � µ2. We define the fully correlated vector  = (N, 0, . . . , 0) that majorizes all other vectors, and the least
correlated vector � = (1, 1, . . . , 1) that is majorized by all other vectors. Then, according to Theorem 16.2.4, the impact
of di↵erent types of CSIT and di↵erent levels of correlation on the MISO capacity is provided in the following inequality
chain [29]:

CnoCSIT( )  CnoCSIT(µ2)  CnoCSIT(µ1)  CnoCSIT(�)

= CcfCSIT(�)  CcfCSIT(µ1)  CcfCSIT(µ2)  CcfCSIT( )

= CpCSIT( )  CpCSIT(µ2)  CpCSIT(µ1)  CpCSIT(�).

(16.45)

Simply speaking, correlation helps in the covariance feedback case, but degrades the channel capacity when there is either
perfect or no CSIT. Nevertheless, the more amount of CSIT is available, the better the performance could be.

16.2.5 Robust Design

The performance of MIMO communication systems depends, to a substantial extent, on the channel state information
(CSI) available at both ends of the communication link. While CSI at the receiver (CSIR) is usually assumed to be perfect,
CSI at the transmitter (CSIT) is often imperfect due to many practical issues. Therefore, when devising MIMO transmit
strategies, the imperfectness of CSIT has to be considered, leading to the so-called robust designs. A common philosophy
of robust designs is to achieve worst-case robustness, i.e., to guarantee the system performance in the worst channel [30].
In this section, we use majorization theory to prove that the uniform power allocation is the worst-case robust solution
for two kinds of imperfect CSIT.

Deterministic imperfect CSIT
Consider the MIMO channel model in (16.15), where the transmit strategy is given by the transmit covariance matrix

Q. Indeed, assuming the transmit signal x is a Gaussian random vector with zero mean and covariance matrix Q, i.e.,
x ⇠ CN (0,Q), the mutual information is given by [16]

 (Q,H) = log det
⇣

I+HQHH
⌘

= log det
⇣

I+QHHH
⌘

. (16.46)

IfH is perfectly known by the transmitter, i.e., perfect CSIT, the channel capacity can be achieved by maximizing  (Q,H)
under the power constraint Q 2 Q , {Q : Q ⌫ 0, Tr(Q) = P}.

In practice, however, the accurate channel value is usually not available, but belongs to a known set of possible values,
often called an uncertainty region. Since  (Q,H) depends on H through RH = HHH, we can conveniently define an
uncertainty region H as

H , {H : RH 2 RH} (16.47)
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where the set RH could, for example, contain any kind of spectral (eigenvalue) constraints as

RH , {RH : {�i(RH)} 2 LRH
} (16.48)

where LRH
denotes arbitrary eigenvalue constraints. Note that H defined in (16.47) and (16.48) is an isotropic set in the

sense that for each H 2 H we have HU 2 H for any unitary matrix U.
Following the philosophy of worst-case robustness, the robust transmit strategy is obtained by optimizing  (Q,H) in

the worst channel within the uncertainty region H, thus resulting in a maximin problem

max
Q2Q

min
H2H

 (Q,H). (16.49)

The optimal value of this maximin problem is referred to as the compound capacity [31]. In the following, we show that
the compound capacity is achieved by the uniform power allocation.

Theorem 16.2.5. ( [32, Theorem 1]) The optimal solution to (16.49) is Q? = P
N I and the optimal value is

C(H) = min
H2H

log det

✓

I+
P

N
HHH

◆

.

Proof: Denote the eigenvalues of Q by p1 � · · · � pN w.l.o.g. in decreasing order. From [32, Lemma 1], the optimal Q
depends only on {pi} and thus the inner minimization of (16.49) is equivalent to

minimize
{�i(RH)}2LRH

N
X

i=1

log (1 + pi�i(RH))

with �1(RH)  · · ·  �N (RH) in increasing order. Consider the function f(x) =
PN

i=1 gi(xi) =
PN

i=1 log(1 + aixi) with
{ai} in increasing order. It is easy to verify that g0i(x)  g0i+1(y) whenever x � y. Thus, from Theorem 16.1.1, f(x) is a

Schur-concave function, whose maximum is achieved by a uniform vector x. Under the power constraint
PN

i=1 pi = P , it
follows that

min
{�i(RH)}2LRH

N
X

i=1

log (1 + pi�i(RH))  min
{�i(RH)}2LRH

N
X

i=1

log

✓

1 +
P

N
�i(RH)

◆

where the equality holds for the uniform power allocation. ⇤
The optimality of the uniform power allocation is actually not very surprising. Due to the symmetry of the problem, if

the transmitter does not uniformly distribute power over the eigenvalues of Q, then the worst channel will align its highest
singular value (or eigenvalue of RH) to the lowest eigenvalue of Q. Therefore, to avoid such a situation and achieve the
best performance in the worst channel, an appropriate way is to use equal power on all eigenvalues of Q, which is formally
proved in Theorem 16.2.5.

Stochastic imperfect CSIT
Tracking the instantaneous channel value may be di�cult when the channel varies rapidly. The stochastic imperfect

CSIT model assumes that the channel is a random quantity with its statistics such as mean or/and covariance known by
the transmitter. Sometimes, even the channel statistics may not be perfectly known. The interests of this model would
be on optimizing the average system performance using the channel statistics.

For simplicity, we consider the MISO channel in (16.40), where the channel h is a circular symmetric Gaussian random
vector with zero-mean and covariance matrix Rh, i.e., h ⇠ CN (0,Rh). Mathematically, the channel can be expressed as

h = R1/2
h z (16.50)

where z ⇠ CN (0, I). Di↵erent from the covariance feedback case where Rh is assumed to be known by the transmitter
(see Section 16.2.4), here we consider an extreme case where the transmitter does not even know exactly Rh. Instead, we
assume that Rh 2 Rh with

Rh , {Rh : {�i(Rh)} 2 LRh
} (16.51)
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where LRh
denotes arbitrary constraints on the eigenvalues of Rh. In the case of no information on Rh, we have

LRh
= RN

+ . To combat with the possible bad channels, the robust transmit strategy should take into account the worst
channel covariance, thus leading to the following maximin problem

max
Q2Q

min
Rh2Rh

E
⇥

log(1 + hHQh)
⇤

= E
h

log(1 + zHR1/2
h QR1/2

h z)
i

(16.52)

where Q , {Q : Q ⌫ 0, Tr(Q) = P} and z ⇠ CN (0, I). The following result indicates that the uniform power allocation
is again the robust solution.

Theorem 16.2.6. The optimal solution to (16.52) is Q? = P
N I and the optimal value is

C(Rh) = min
Rh2Rh

E

"

log

 

1 +
P

N

N
X

i=1

�i(Rh)wi

!#

where w1, . . . , wN are standard exponentially iid random variables.

Proof: Denote the eigenvalues of Q by p1 � · · · � pN w.l.o.g. in decreasing order. Considering that Q and Rh impose
no constraint on the eigenvectors of Q and Rh, respectively, and that Uz has the same distribution as z for any unitary
matrix U, the optimal Q should be a diagonal matrix depending on the eigenvalues {pi} (see e.g. [28]) and thus (16.52)
is equivalent to

max
Q2Q

min
Rh2Rh

E

"

log

 

1 +
N
X

i=1

pi�i(Rh)wi

!#

(16.53)

with wi = |zi|2, where zi is the ith element of z.
Given {pi} in decreasing order, the minimum of the inner minimization of (16.53) must be achieved with {�i(Rh)} in

increasing order, otherwise a smaller objective value can be obtained by changing the order of {�i(Rh)}. Then, following
the similar steps in the proof of Theorem 16.2.5, one can show that E

n

log(1 +
PN

i=1 pi�i(Rh)wi)
o

is a Schur-concave

function with respect to (pi)Ni=1. Hence, the maximum of (16.53) is achieved by a uniform power vector that is majorized

by all other power vectors under the constraint
PN

i=1 pi = P . ⇤
Another interesting problem is to investigate the worst channel correlation for all possible transmit strategies, which

is given by the solution to the following minimax problem:

min
Rh2Rh

max
Q2Q

E
⇥

log(1 + hHQh)
⇤

. (16.54)

Through the similar steps in the proof of Theorem 16.2.6, one can find that the solution to (16.54) is proportional to an
identity matrix, i.e., Rh = ↵I with ↵ � 0. This provides a robust explanation for the assumption that h ⇠ CN (0, I) in
the case of no CSIT (see Section 16.2.4): Rh = I is the worst correlation among Rh = {Rh : Tr(Rh) = N} [29].

16.3 Conclusions and Further Readings

This chapter introduced majorization as a partial order relationship for real-valued vectors and described its main prop-
erties. This chapter also presented applications of majorization theory in proving inequalities and solving various opti-
mization problems in the fields of signal processing and wireless communications. For a more comprehensive treatment
of majorization theory and its applications, the readers are directed to Marshall and Olkins book [1]. Applications of
majorization theory to signal processing and wireless communications are also described in the tutorials [6] and [7] .

16.4 Exercises

Exercise 16.4.1. Schur-convexity of sums of functions.

a. Let �(x) =
Pn

i=1 gi (xi), where each gi is di↵erentiable. Show that � is Schur-convex on Dn if and only if

g0i (a) � g0i+1 (b) whenever a � b, i = 1, . . . , n� 1.
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b. Let �(x) =
Pn

i=1 aig (xi), where g (x) is decreasing and convex, and 0  a1  · · ·  an. Show that � is Schur-convex
on Dn.

Exercise 16.4.2. Schur-convexity of products of functions.

a. Let g : I ! R+ be continuous on the interval I ✓ R. Show that �(x) =
Qn

i=1 g (xi) is (strictly) Schur-convex on In

if and only if log g is (strictly) convex on I.

b. Show that �(x) =
Qn

i=1 � (xi), where � (x) =
R1
0

ux�1e�udu denotes the Gamma function, is strictly Schur-convex
on Rn

++.

Exercise 16.4.3. Linear MIMO Transceiver.

a. Prove Corollary 16.2.1, which shows that when the cost function f0 is either Schur-concave or Schur-convex, the
optimal linear MIMO transceiver admits an analytical structure.

b. Show that the following problem formulations can be rewritten as minimizing a Schur-concave cost function of MSEs:

• Minimizing f({MSEi}) =
PL

i=1 ↵iMSEi.16

• Minimizing f({MSEi}) =
QL

i=1 MSE↵i
i .

• Maximizing f({SINRi}) =
PL

i=1 ↵iSINRi.

• Maximizing f({SINRi}) =
QL

i=1 SINR↵i
i .

• Minimizing f({BERi}) =
QL

i=1 BERi.

c. Show that the following problem formulations can be rewritten as minimizing a Schur-convex cost function of MSEs:

• Minimizing f({MSEi}) = maxi{MSEi}.

• Maximizing f({SINRi}) =
⇣

QL
i=1 SINR�1

i

⌘�1

.

• Maximizing f({SINRi}) = mini{SINRi}.
• Minimizing f({BERi}) =

PL
i=1 BERi.

• Minimizing f({BERi}) = maxi{BERi}.

Exercise 16.4.4. Nonlinear MIMO Transceiver.

a. Prove Corollary 16.2.2, which shows that the optimal nonlinear DF MIMO transceiver can also be analytically
characterized if the composite cost function f0 � exp is either Schur-concave or Schur-convex.

b. Show that the following problem formulations can be rewritten as minimizing a Schur-concave f0 � exp of MSEs:

• Minimizing f({MSEi}) =
QL

i=1 MSE↵i
i .

• Maximizing f({SINRi}) =
PL

i=1 ↵iSINRi.

c. Show that, in addition to all problem formulations in Exercise 16.4.3.c, the following ones can also be rewritten as
minimizing a Schur-convex f0 � exp of MSEs:

• Minimizing f({MSEi}) =
PL

i=1 MSEi.

• Minimizing f({MSEi}) =
QL

i=1 MSEi.

• Maximizing f({SINRi}) =
QL

i=1 SINRi.

16Assume w.l.o.g. that 0  ↵1  · · ·  ↵L.
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