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Abstract—Following the seminal work by Zheng and Tse on
the diversity and multiplexing tradeoff (DMT) of multiple-input
multiple-output (MIMO) channels, in this paper, we introduce
the array gain to investigate the fundamental relation between
transmission rate and reliability inMIMO systems. The array gain
gives information on the power offset that results from exploiting
channel state information at the transmitter or as a consequence
of the channel model. Hence, the diversity, multiplexing, and
array gain (DMA) analysis is able to cope with the limitations
of the original DMT and provide an operational meaning in the
sense that the DMA gains of a particular system can be directly
translated into a parameterized characterization of its associated
outage probability performance. In this paper, we derive the
best DMA gains achievable by any scheme employing isotropic
signaling in uncorrelated Rayleigh, semicorrelated Rayleigh, and
uncorrelated Rician block-fading MIMO channels. We use these
results to analyze the effect of important channel parameters on
the outage performance at different points of the DMT curve.

Index Terms—Array gain, diversity multiplexing tradeoff
(DMT), outage probability, performance analysis of multiple-input
multiple-output (MIMO) channels.

I. INTRODUCTION

A. Benefits of MIMO Channels

M ULTIPLE-INPUT multiple-output (MIMO) channels
are well known to provide a number of benefits over

conventional single-antenna (SISO) channels, which have been
traditionally described by the diversity, multiplexing, and array
(DMA) gains [1], [2].
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The diversity gain denotes the improvement in link relia-
bility obtained by receiving replicas of the information signal
through (ideally independent) fading links. With an increasing
number of independent copies, the probability that at least one
of the signals is not experiencing a deep fade increases, thereby
improving the quality and reliability of reception. A general
MIMO channel with transmit and receive antennas of-
fers potentially independently fading links and, hence, a
maximum spatial diversity order of .
The multiplexing gain is responsible for MIMO systems

offering a linear increase in the achievable data rate. MIMO
channels admit the transmission of multiple independent data
streams within the bandwidth of operation and, under suitable
channel conditions, also the separation at the receiver. Each data
stream experiences at least the same channel quality that would
be experienced in an SISO channel, effectively enhancing
the capacity by a multiplicative factor equal to the number of
established streams. In general, the number of data streams that
can be reliably supported by a MIMO channel coincides with
the minimum between the number of transmit antennas and
the number of receive antennas , i.e., .
Finally, the array gain indicates the enhancement in re-

ceived signal-to-noise ratio (SNR) that results from a coherent
combining effect of the information signals. The coherent com-
bining may be realized through spatial processing at the receive
antenna array and/or spatial pre-processing at the transmit
antenna array.

B. Fundamental Diversity and Multiplexing Tradeoff (DMT)

The design of MIMO communication schemes has been
traditionally tackled to maximize the previous gains, especially
the diversity or the multiplexing gain. Both design perspectives
come from opposite ways of understanding the ever-present
fading in wireless communications. On the one hand, when
fading is considered a source of randomness that makes wire-
less links unreliable, the natural response is to use the multiple
antennas for compensating random signal fluctuations and
achieving a steady channel gain. The spatial dimension is used
in this case to maximize diversity. Some examples of MIMO
schemes fall within this category are space-time codes [3], [4]
and orthogonal designs [5], [6]. A different line of thought
suggests that fading can be beneficial through increasing the
degrees of freedom available for communication [7], [8].
The resulting spatial multiplexing phenomenon was first ex-
ploited in [9] and by the BLAST and V-BLAST architectures
[10]–[12]. This dichotomy in dealing with the fading process
and, by extension, with the design and analysis of MIMO
systems is, however, not appropriate. In fact, both diversity and
multiplexing gains can be simultaneously obtained, but there is
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a tradeoff between how much of each type of gain any MIMO
scheme can extract: higher spatial multiplexing comes at the
price of sacrificing diversity.
This close relationship was foreseen and investigated in

[13]–[16]. However, the DMT was established by Zheng and
Tse in the excellent groundbreaking paper [17]. To be more
specific, the work in [17] focuses on the high-SNR regime
and provides the fundamental tradeoff curve achievable by
any scheme, where the spatial multiplexing gain is under-
stood as the fraction of capacity attained at high SNR and
the diversity gain quantifies the high-SNR reliability of the
system. Strategies maximizing independently the diversity or
the multiplexing gain correspond to the two extreme points of
the curve: maximum diversity with no multiplexing gain and
maximum multiplexing gain with no diversity gain. The DMT
curve bridges the gap between these two extremes and offers
insights to understand the overall resources offered by MIMO
channels.
The main problem with DMT framework is that the diver-

sity gain, defined as the slope of the error probability curve in
the high-SNR regime, provides only a coarse measure of per-
formance, in the sense that it is unable to capture the impact of
various relevant channel features and it is also insensitive to the
presence of channel state information (CSI) at the transmitter
[18]. Furthermore, it is difficult to translate any conclusion ex-
tracted from the DMT into the actual error probability of a par-
ticular scheme.
As a result, several attempts were made in the literature to

endow the DMT with operational meaning. First, the diversity
and multiplexing gains definitions were modified to hold for any
finite SNR value, leading to a finite-SNR DMT [19], [20]. How-
ever, the derivations are based on a lower bound on the outage
probability and the final results require an additional numer-
ical optimization process, so that the simplicity of the original
DMT is lost. Similarly, a finite-SNR DMT is also presented in
[21]–[23] relaying on the Gaussian distribution of the outage
probability in the large system limit. The authors point out the
importance of the power offset when characterizing the outage
probability and propose different multiplexing gain definitions
to improve the convergence of the approximation. However, the
Gaussian approximation fails to capture the tails of the distribu-
tion and limits the accuracy of these results to the low to mod-
erate SNR regime.
A totally different approach is taken in [24], where the focus

is again on the high-SNR regime but the notion of multiplexing
gain is substituted by that of rate region to investigate scenarios
in which the data rate does not scale linearly with the logarithm
of the SNR as in [17]. To the best of authors’ knowledge, this as-
sumption hardly accommodates practical schemes. In any case,
the throughput and reliability tradeoff in [24] is still indepen-
dent of important parameters of the channel model.

C. Contributions

Here, we aim at completing the DMT framework by intro-
ducing the array gain in the picture while trying to keep the
essence of the original formulation. That is, we use equivalent
definitions of diversity and multiplexing gain to those in [17]
and include a new performance indicator that is able to cope

with the limitations of the DMT. The array gain, indeed, gives
information on the power offset that results from exploiting CSI
at the transmitter or as a consequence of the adopted channel
model. The resulting DMA analysis provides then more insights
into the fundamental relation between transmission rate and re-
liability in MIMO systems, since the error probability is now
characterized by two parameters: diversity and array gains. In
this sense, the DMA analysis is still a twofold tradeoff and must
not be understood as a three-sided compromise between DMA
gains.
In this paper, we present the best DMA gains achievable

by any scheme, employing isotropic signaling in uncorrelated
Rayleigh, semicorrelated Rayleigh, and uncorrelated Rician
block-fading MIMO channels. The rest of this paper is orga-
nized as follows. Sections II-A and II-B introduce the channel
and system models, respectively. Then, the DMA framework
is formulated in Section II-C and derived in Section III for
a strictly positive multiplexing gain, whereas the zero multi-
plexing point is investigated in Section IV. Finally, the main
contribution of this paper is summarized in Section V.

II. PRELIMINARIES AND PROBLEM FORMULATION

A. Channel Model

A MIMO channel with transmit and receive dimen-
sions can be described by an channel matrix , whose

entry characterizes the propagation path between the
transmit and the receive antenna. Usually, since there are

a large number of scatters in the channel that contribute to the
information signal at the receiver, the application of the central
limit theorem results in Gaussian distributed channel matrix co-
efficients. Analogously to the single antenna channel, this model
is referred to as MIMO Rayleigh or Rician fading channel, de-
pending whether the channel entries are zero mean or not. More
exactly, we assume that the channel matrix can be described as
(see [25] and references therein)

(1)

where is a power normalization factor known as
the Rician -factor, is a deterministic matrix
containing the line-of-sight (LOS) components of the channel,

and are the
channel correlation matrices at the transmit and receive side,
respectively, and is a random matrix with i.i.d. zero-mean
unit-variance circularly symmetric Gaussian entries. For a fair
comparison of the different cases, the total average received
power is assumed to be constant and, hence, we can impose
without loss of generality that , , and

. In this paper, we consider the following
important particular cases of the general channel model in (1).

Definition 1: The uncorrelated Rayleigh MIMO fading
channel model is defined as

(2)

where is an random matrix with i.i.d. zero-mean
unit-variance complex Gaussian entries.
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Definition 2: The semicorrelated Rayleigh fading MIMO
channel model with correlation at the side with minimum
number of antennas1 is defined as

(3)

where is the positive-definite

channel correlation matrix with eigenvalues
ordered such that , , and

is defined in (2).

Definition 3: The uncorrelated Rician fading MIMO channel
model is defined as

(4)

where is the Rician factor, is an deter-
ministic matrix containing the LOS components of the channel,
and is defined in (2). For convenience, we introduce the
noncentrality matrix defined as

(5)

with eigenvalues ordered such that
.

B. System Model

We consider a wireless communication system with
transmit and receive antennas, in which the channel matrix
is drawn from one of the channel models presented in

Section II-A and remains constant within a block of symbols
after which it changes to an independent realization. In this
situation, the received signal within one block can be gathered
in an matrix related to the transmitted
matrix as

(6)

where is the additive white Gaussian noise and has i.i.d.
entries with zero mean and unit variance. The transmitted signal
is normalized forcing the transmit power per block to satisfy

(7)

where is the average SNR at each receive antenna. In addi-
tion, the instantaneous CSI is assumed to be perfectly known at
the receiver.
Under such a system setup, the outage probability is the pri-

mary measure of interest in the sense that it is the best achiev-
able block error probability (BLER) in the limit of large code-
word length [26], [27]. The outage probability is defined as the
infimum of the probability that the instantaneous mutual infor-
mation falls below the transmission rate and, for the system
model in (6), is given by [17, Sec. III-B]

(8)

1When, in contrast to Definition 2, we have correlation at the side with max-
imum number of antennas, the joint distribution of the channel eigenvalues is
slightly different, but the proof techniques employed here for the min-semicor-
related channel model apply verbatim to the max-semicorrelated channel model
(see [25] for details).

C. DMA Analysis Formulation

Recall that our main objective is to complete the DMT frame-
work by including the array gain in order to provide additional
information on the system performance. Hence, let us first for-
malize the concepts of diversity, multiplexing, and array gains.
As in [17], we define a scheme as a family of codes

of block length , which employs a different code with
rate for each SNR level. Then, a MIMO coding scheme

is said to achieve a spatial multiplexing gain , a di-
versity gain , and an array gain if the data rate is such
that

(9)

where and the outage probability
satisfies2

(10)

(11)

The multiplexing gain definition coincides exactly with the
original DMT formulation in [17], while the diversity gain dif-
fers from that in [17] in the fact that we use the outage proba-
bility instead of the BLER. However, for the fundamental DMA
analysis addressed in this paper, both definitions become equiv-
alent, as the outage probability provides the best achievable
BLER.
Observe that definitions in (10) and (11) induce the fol-

lowing approximation of the high-SNR behavior of the outage
probability:

(12)

where “ ” denotes asymptotic equivalence as , i.e.,
if .

Hence, the DMA gains of a particular system can be directly
translated into a parameterized characterization of its associ-
ated outage probability performance as opposed to the DMT,
which only provides the slope of the outage probability curve
for a given multiplexing gain. This enables the direct compar-
ison of different strategies with equal diversity gain under dif-
ferent channel models and CSI assumptions.
A similar high-SNR affine characterization under ergodic

channel conditions is proposed in [29], being, thus, the ergodic
capacity the performance measure of interest. The authors
in [29] point out the importance of extending their results to
the nonergodic case when some of the degrees of freedom of
the channel are sacrificed to increase the diversity gain, i.e.,
in different operational points of the DMT curve, and this is
exactly the contribution of this paper. Our approach is also
similar to that in [18], where an affine approximation of the
high-SNR outage capacity is derived. The analysis in [18] is,
however, restricted to systems with fixed rate or, equivalently,
no multiplexing gain.

2The array gain definition in (11) holds whenever the limit exist as happens
with the MIMO point-to-point channel models addressed in this paper. If this is
not the case, the implicit definition in (12) should be adopted instead. See, for
instance, for the DMA analysis of the half-duplex static MIMO relay channel
in [28].
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III. DMA ANALYSIS OF MIMO SYSTEMS

In this section, we derive the DMA gains for the channel
models introduced in Section II-A. For technical reasons, we
restrict our attention to the case in which the transmit covari-
ance matrix is a scaled identity matrix, i.e.

(13)

Then, following the standard approach of generating an
equivalent system model by using the singular-value decompo-
sition of the channel matrix (see, e.g., [30, Sec. II]):

(14)

where and are unitary matrices containing the sin-
gular vectors of and , with

denoting the nonzero ordered eigenvalues
of . Since the distribution of is unitarily invariant [31,
Sec. 2.1.5], we can rewrite (14) without loss of generality as

(15)

where , , and . Finally,
given the transmit covariance matrix in (13) and assuming that
satisfies (9), it holds that

(16)

From (12), it is clear that the DMA analysis under the channel
models in Definitions 1, 2, and 3 results from obtaining the first-
order series expansion of the corresponding outage probability
in (16). It is well known, however, that these channel models
have the same DMT [32] as the one for uncorrelated Rayleigh
MIMO channels derived in [17, Th. 1]. Hence, we can already
present the diversity gain as a function of the multiplexing
gain in the next lemma.

Lemma 1: The diversity gain in an MIMO
system with multiplexing gain and isotropic sig-
naling as in (13) is given for the channel models in Definitions
1, 2, and 3 by

(17)

where , and

(18)

(19)

with and .

Proof: See [32, Th. 2, Th. 3, and Corollary 3] or
Appendices A.i–A.iii.
Now, in order to complete the DMT framework in Lemma 1,

we only need to obtain the array gain as done in the next
theorem.
Theorem 1: The array gain in an MIMO system

with multiplexing gain and isotropic signaling as in
(13) is given as follows.
i. For uncorrelated Rayleigh fading (see Definition 1):

(20)

where

(21)

matrix is defined as

(22)

and the rest of parameters are as given in Lemma 1.
ii. For semicorrelated Rayleigh fading (see Definition 2):

(23)

where denote the ordered eigenvalues of the channel
correlation matrix ,

(24)

and matrix is defined in (25), shown at
the bottom of the page.

iii. For uncorrelated Rician fading (see Definition 3):

(26)
where is the Rician factor and denote the ordered
eigenvalues of the noncentrality matrix defined in (5):

(27)

(25)
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and matrix is defined as

(28)

where
with denoting the generalized hyper-

geometric function [33, eq. (9.14.1)].
Proof: See Appendices A.i–A.iii.

Remark 1.1: The determinant in (20), (23), and (26)
can be evaluated in closed form using the multilinear property
of determinants [34, Sec. 0.3.6], as shown in (29) at the bottom
of the page, where the summation over
is for all and last equation involves
the evaluation of Cauchy’s double alternant [35, eq. (2.7)].
Since the channel models considered in our analysis offer

equal diversity gain but different array gain, the DMA analysis
elucidates the performance gap between them. Choosing the un-
correlated Rayleigh fading channel as the reference channel, we
define the asymptotic SNR gap as

(30)

where denotes the array gain under the channel model in
Definition and . Observe that a positive in-
dicates that the uncorrelated Rayleigh outage probability is out-
performed, whereas a negative implies the opposite situ-
ation. In other words, indicates in how many dB we have
to increase (if ) or reduce (if ) the nominal
SNR to achieve the same outage probability as in the uncorre-
lated Rayleigh case.

Corollary 1.1: The asymptotic SNR gap at a multi-
plexing gain point with respect to the uncorrelated
Rayleigh channel (see Definition 1) is given as follows.
i. For semicorrelated Rayleigh fading (see Definition 2):

(31)

ii. For uncorrelated Rician fading (see Definition 3):

(32)

For illustrative purposes, we show in Fig. 1 the numer-
ical outage probability and the high-SNR outage probability
characterization derived from the DMA analysis for the three
addressed channel models. The numerical results have been
obtained combining conventional Monte Carlo simulations
with numerical integration techniques. Under the semicorre-
lated Rayleigh channel model, the correlation matrices are

for , whereas, for
the uncorrelated Rician channel model, and the LOS
matrices have been randomly generated for each antenna setup.
Since the target data rate is , the numerical outage
probability is not representative for low SNR values. The
remaining part of the outage probability curve is, as expected,
well approximated by the DMA analysis. We emphasize that
the traditional DMT (Lemma 1) provides the slope of the curves
but not the horizontal shift, which is precisely the contribution
of this paper (Theorem 1).
In addition, we can observe in Fig. 1 that the SNR gap for

a fixed performance under different channel models is approxi-
mately constant in the range of outage probabilities of interest.
Hence, the asymptotic SNR gap given in Corollary 1.1 provides
a good prediction on the performance degradation/gain due to
the channel model.

IV. DMA ANALYSIS OF MIMO SYSTEMS
WITH ASYMPTOTICALLY FIXED RATE

The array gain expressions in Theorem 1 only hold for the
case in which the data rate scales logarithmically with , i.e.,
when satisfies (9) with . When , the data rate
scales with faster than the ergodic capacity of the channel
and, hence, [17], i.e.

(33)

In this section, we address the case in which the rate
is fixed or tends to a fixed value

(34)

(29)
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Fig. 1. Numerical outage probability (solid) and DMA analysis (dashed) under uncorrelated Rayleigh fading (blue), semicorrelated Rayleigh fading (red), and
uncorrelated Rician fading (green). (a) and . (b) and . (c) and . (d) and .

and, hence, . This case is important to analyze those
schemes whose rate adaptation policy saturates at certain rate
or do not modify the transmission rate at all. The DMA anal-

ysis under this assumption follows from using the diversity gain
predicted by Lemma 1 and the array gain

presented in the next theorem.

Theorem 2: The array gain in an MIMO system
when the data rate satisfies (34) and with isotropic signaling as
in (13) is given as follows.
i. For uncorrelated Rayleigh fading (see Definition 1):

(35)

where is given in (44), the summation over
is for all permutations of integers

, denotes the sign of the permutation,
and is defined as

(36)

ii. For semicorrelated Rayleigh fading (see Definition 2):

(37)

iii. For uncorrelated Rician fading (see Definition 3):

(38)
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Fig. 2. Numerical outage probability (solid) and DMA analysis (dashed) under uncorrelated Rayleigh fading. (a) and . (b) and .

Proof: See Appendix B.
Observe that Theorem 2 implicitly gives the following

asymptotic SNR gaps with respect to the uncorrelated Rayleigh
channel:

(39)

(40)

The SNR gap for uncorrelated Rician channels coincides with
that derived in [36, Th. 1], while the strictly negative nature of
the SNR gap for semicorrelated Rayleigh channels recalls the
known fact that the outage probability with isotropic inputs is
increased by antenna correlation [37]. As in the ergodic case
addressed in [29], this penalty can be arbitrarily large if one or
some of the eigenvalues of the correlation matrix are small.
Finally, it is worth remarking that assumption (34) does not

include all rate adaptation strategies with . It remains to
consider the case in which the rate scales sublogarithmically
with but does not saturate, i.e.,

(41)

This case, however, has less practical interest and can be easily
obtained combining the methods used in the proofs of Theorems
1 and 2.
For illustrative purposes, we show in Fig. 2 the numerical

outage probability and the high-SNR outage probability char-
acterization derived from the DMA analysis under uncorrelated
Rayleigh fading when the transmission rate is fixed. Again,
we assume isotropic inputs and obtain the numerical results
using Monte Carlo simulations and numerical integration
techniques. In Fig. 2, we see that the DMA analysis for fixed
rate in Theorem 2 does not always provide an acceptable
approximation, as happens with Theorem 1 when scales
with . More exactly, the DMA characterization does
not capture the outage probability behavior in the SNR region
of interest for high values. The reason is simple; when
is high, we need impractically large SNR values for the

assumption to hold. Furthermore, this effect is
hardened when the number of receive and/or transmit antennas
is increased, since the higher associated diversity gains result
in even lower outage probabilities at moderate SNR values.
The previous observations suggest that a better approx-

imation can be obtained by removing the assumption that
. Following this intuition, we can apply

Theorem 1 with and obtain a different
affine characterization of the outage probability for each

. Then, taking the minimum
among these individual DMA curves, the outage probability
with fixed is approximated (for instance, for the uncorrelated
Rayleigh channel) as3

(42)

The resulting piecewise linear approximation is heuristic due
to its asymptotic nature and, hence, it becomes more accurate
for large and when increases. This can be observed in
Fig. 3, where we plot the numerical outage probability and the
proposed asymptotic DMA approximation. The outage proba-
bility behavior is perfectly captured for small-size MIMO sys-
tems. However, the effect of using an asymptotic formulation
for the description of the finite rate case at finite SNR values is
again hardened as the number of antennas increases.

V. CONCLUSION

Zheng and Tse 2003 paper was the first one to reveal and
quantify the fundamental interconnection present in MIMO
channels between the multiplexing gain, associated to rate, and
the diversity gain, related to the slope of the error rate. This
characterization is, however, difficult to be translated into prac-
tical performance indicators like block error rate without the
addition of a third parameter: the array gain, which provides the

3This approach is similar to that in [24] with the advantage that it captures
the effect of the channel model.
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Fig. 3. Numerical outage probability (solid) and heuristic DMA approximation (dashed) under uncorrelated Rayleigh fading. (a) and . (b)
and . (c) and . (d) and .

shift to the diversity gain slope resulting in an asymptotic affine
characterization of the error curve in the logarithmic domain.
This paper introduces the DMA analysis under uncorrelated
Rayleigh, semicorrelated Rayleigh, and uncorrelated Rician
MIMO channels, opening the door for a more illustrative
performance evaluation of MIMO schemes.

APPENDIX A
PROOF OF THEOREM 1

A.i. Proof of Theorem 1.i (Uncorrelated Rayleigh):

Under uncorrelated Rayleigh fading, either or is
uncorrelated central Wishart distributed [25, Sec. II]. Since the
nonzero ordered eigenvalues of and

coincide, the joint probability density function (pdf) of
is given by [38, eq. (95)]

(43)

where the normalization constant is

(44)

Let us now introduce the ordered variables
with

(45)

so that the outage probability in (16) can be rewritten in terms
of as

(46)
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where
for and denotes the joint pdf of

given by

(47)

In order to obtain the asymptotic characterization in (12), it is
important to observe first that not all contribute
to the high-SNR behavior of in (46). This follows
from using Laplace’s principle for multidimensional integrals
[39, Ch. 5], which states that the term with highest SNR expo-
nent comes from integrating in a neighborhood of points

, where all satisfy

(48)

or, equivalently (see the proof of [17, Th. 4])

(49)

where . Observe now that, when , the
following asymptotic equivalences hold:

(50)

(51)

(52)

since are , whereas are .4

Taking into account these asymptotics and noting that

(53)

the high-SNR behavior of in (46) is given by

(54)

4We say that as if there exist numbers
and such that for [40, eq. (1.2.7)]
and we say that if as
[40, eq. (1.3.1)].

where . Let us define

(55)

(56)

where

(57)

(58)

and (49) is satisfied. This guarantees that and,
hence, integrating over and subsequently over

is equivalent to integrating directly over .
We can now rewrite (54) as

(59)

The integral in (56) is shown in
Appendix A.i.1 to satisfy

(60)

where matrix is defined in (74). Furthermore, the asymp-
totic behavior of , when substituting (60) back in
(55), is shown in Appendix A.i.2 to be given by

(61)

Finally, combining (61) with (59), the array gain provided
in Theorem 1 for the uncorrelated Rayleigh channel follows.

A.i.1) Integral : The objective of this ap-
pendix is to derive the asymptotic behavior of the integral

defined in (56).
Since with

denoting the Vandermonde determinant of order [41, eq.
(6.1.33)], it follows that

(62)
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where the summation over and
is for all permutations of integers

. Substituting back in (56) and exploiting the
symmetry of the integrand (see details, for instance, in the
proof of [25, Th. 1]), it holds that

(63)

where denotes the corresponding un-
ordered domain, i.e.,

.
Again, due to the symmetry of the integrand in (63), we can

replace the integration variables with any per-
mutation of them. For instance, we can choose ,
and obtain

(64)

For simplicity of notation, let us now introduce

(65)

so that

(66)

for and for .

Then, using Newton’s binomial [42, eq. (3.1.1)] to expand
as

(67)

and integrating with respect to , it follows that

(68)

(69)

with . Observe that exponent of
is maximum when and ,

leading to . If we keep integrating the term in (68)
and we evaluate in the upper limit, the exponent only gets

reduced, since for any
and any . Following the same reasoning,
the exponent of the integral in (69) is also strictly smaller
than . Thus, for
where is any permutation of integers

, we have that

(70)

where the constant follows from evaluating the
integrals of (68) in the lower limit and is given by

(71)
Now, recovering the equality in (66), it finally holds that

(72)

where and has the form
of a determinant

(73)

and matrix is, consequently,
defined as

(74)

A.i.2) Integral : The objective of this appendix is
to derive the asymptotic behavior of

(75)

where is defined in (57), , and
matrix is defined in (74).
First, we expand as in Appendix A.i.1

(76)

where the summation over and
is for all permutations of integers .

Substituting (76) back in (75) and exploiting the symmetry of
the integrand, we have that

(77)
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Each of the individual integrals in (77) satisfies

(78)

where denotes the gamma function [42, eq. (6.1.1],
denotes the lower incomplete gamma function [42, eq. (6.5.2)],
and last equation comes from the fact that as

and as [42, Sec. 6.5]. Accord-
ingly, it holds that

(79)

where and the constant
is given by

(80)

Hence, has the form of a determi-
nant [43, eq. (38)]

(81)

where last equality comes from [44, eq. (4.5)]. Finally, the
asymptotic behavior of is

(82)

A.ii Proof of Theorem 1.ii (Semicorrelated Rayleigh):

Under semicorrelated Rayleigh fading, either or
is correlated central Wishart distributed [25, Sec II]. The joint
pdf of the nonzero ordered eigenvalues is
then given by [43, eq. (17)]

(83)

where the normalization constant is

(84)

and matrix is defined as

(85)

Let us now introduce the ordered variables
defined in (45) so that the outage probability in (16) can be

rewritten in terms of as in (46). However, the joint pdf of is
in this case given by

(86)

where matrix is defined as

(87)

As we state in the proof of Theorem 1.i, not all
contribute to the high-SNR behavior of , but only
those where (49) is satisfied and the following
asymptotic equivalences hold:

(88)

(89)

(90)

since are , whereas are . Fur-
thermore in Appendix A.ii.1, we show that

(91)

where and matrix is defined in
(108). Then, expanding as in (53) and using
the previous asymptotic equivalences, the high-SNR behavior
of the outage probability is

(92)

Similarly to the proof of Theorem 1.i, let us introduce

(93)
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where is defined in (57) and and
its asymptotic behavior are given in (56) and (60), respectively.
Now, we can rewrite (92) as

(94)

where the asymptotic behavior of , when substi-
tuting (60) back in (93), is shown in Appendix A.ii.2 to be
given by

(95)

where and matrices and are
defined in (74) and (25), respectively. Finally, combining (95)
with (94), the array gain provided in Theorem 1 for the
semicorrelated Rayleigh channel follows.

A.ii.1) Asymptotic Expansion of : The objective of
this appendix is to obtain an asymptotic expansion of
defined in (87) as and when satisfies (49), i.e., when

.
First, in order to separate the columns with functions of

from the ones including functions of ,
we use the Laplace expansion of the determinant [34, Sec
0.3.1]:

(96)

where and the summation over
is for all permutations of integers

such that and , and
and are defined as

(97)

for and

(98)

for . Then, the asymptotic expansion of
follows from obtaining the first-order Taylor expan-

sion of around with :

(99)

where denotes the minimum such that the th derivative of
evaluated at does not equal 0. Using

[45, eq. (10)], it follows that

(100)

where the summation over is for all
such that and , and matrix

is defined as

(101)

This shows that all in the set have to be different to
avoid having linearly dependent columns. Thus, the minimum

that leads to a nonzero determinant has

(102)

where is a permutation of integers
, and is equal to

(103)

The asymptotic equivalence in (99) results then in

(104)

where the determinant can be simplified as [35, Proposition 1]

(105)

(106)

Finally, undoing the Laplace expansion, it follows that

(107)
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where matrix is defined as

(108)

1) Integral : The objective of this appendix is to
derive the asymptotic behavior of

(109)

where is defined in (58), , and
matrix is given in (74).
First, we expand the determinants

(110)

(111)

where the summation over is for all per-
mutations of integers and the summation over

is for all permutations of integers . Sub-
stituting back in (109) and exploiting the symmetry of the inte-
grand, we have that

(112)

(113)

Now, observing that

(114)

it follows that

where matrix ( ) is defined as

(115)

and can be rewritten as shown in (116) at the bottom of the
page, where denotes the generalized exponential integral
[42, eq. (5.1.4)] and denotes the upper incomplete gamma
function [42, eq. (6.5.3)].
Now, the original problem reduces to finding an asymptotic

expansion for the determinant . Let us concentrate on
the first columns, which satisfy [42, (5.1.12)]

(117)

where denotes the digamma function [42, eq. (6.3.2)]. Now,
expanding over the th ( )
column using the multilinear property of determinants [34, Sec.
0.3.6], it follows that

(118)

where equals except for the th column
which is given by (119) at the bottom of the next page. Let us
now remove from the infinite summation in (118) the terms that
lead to a zero determinant

(120)

(116)
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since the th and th columns of are
linearly dependent for . In addition, the
term with highest SNR exponent, , can be
further simplified using again themultilinear property to remove
the summands that are linearly dependent to the th
column:

(121)

where equals except for the th column
which is given by

(122)

Performing this procedure recursively for
, and substituting the incomplete gamma functions by

their asymptotic equivalent, as [42, Sec.
6.5], we have that

(123)

Hence, it finally results that

(124)

(125)

and from (123), we know that matrix is defined
as in (25).

A.iii. Proof of Theorem 1.iii (Uncorrelated Rician):

Under uncorrelated Rician fading, either or
is uncorrelated noncentral Wishart distributed [25,

Sec. II]. The joint pdf of the nonzero ordered eigenvalues
of is given by [46, eq. (45)]

(126)

where the normalization constant is

(127)

and matrix is defined as

(128)

where denotes the Bessel-type hypergeometric func-
tion [42, eq. (9.6.47)]. Let us now introduce the ordered vari-
ables defined in (45) so that the outage
probability in (16) can be rewritten in terms of as in (46). The
joint pdf of is now given by

(129)

with and matrix defined as

(130)

Now, using the same techniques as in the proofs of Theorem
1.ii and expanding as shown in Appendix A.iii.1, the
high-SNR behavior of outage probability in (46) satisfies

(131)

with

(132)

where is given in (137) and and
are defined in (56) and (57), respectively. Then,

the asymptotic behavior of , when substituting
the asymptotic equivalence for obtained in
Appendix A.i.1, is shown in Appendix A.iii.2 to be given by

(133)

(119)
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where and matrices and
are defined in (74) and (144), respectively. Finally, combining
(133) with (131), the array gain provided Theorem 1 for
the uncorrelated Rician channel follows.

A.iii.1) Asymptotic Expansion of : The objective of
this appendix is to obtain an asymptotic expansion of
defined in (130) when satisfies (49) and . We can
use exactly the same procedure as in the asymptotic expansion
of in Appendix A.ii.1.
Observing that [42, eq. (9.6.47) and eq. (9.6.10)]

(134)

it follows that

(135)

Thus, we finally have that

(136)

where matrix is defined as

(137)

A.iii.2) Integral : The objective of this appendix
is to derive the asymptotic behavior of

(138)

where is defined in (58), , and
matrix is given in (74). Following the same procedure as
in Appendix A.ii.2, we have that

(139)

where matrix is defined in (140) at the bottom
of the page. Note that for , it holds

(141)

where we have used the series expansion in (134). Now, re-
moving the linearly dependent terms as in Appendix A.ii.2, we
have that

(142)

where matrix is defined as

(143)

or, equivalently, as

(144)

where we have introduced

(145)

(146)

with denoting the generalized hypergeometric function
[33, eq. (9.14.1]. Hence, it finally follows that

(147)

APPENDIX B
PROOF OF THEOREM 2

The outage probability in (16) when satisfies
(34) can be expressed in terms of the ordered variables

introduced in (45) as

(148)

(140)
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where
and denotes the joint pdf of given in (47)

for uncorrelated Rayleigh channels, in (86) for semicorre-
lated Rayleigh channels, and in (129) for uncorrelated Rician
channels.
Observe now that for all it holds that

for , and, hence, we can reuse the
derivations in Appendices A.i–A.iii with to obtain the
following.
i. In uncorrelated Rayleigh fading (see Definition 1):

(149.1)

where is given in (44).
ii. In semicorrelated Rayleigh fading (see Definition 2):

(149.2)

where is given in (84) and matrix denotes
defined in (108) for .

iii. In uncorrelated Rician fading (see Definition 3)

(149.3)

where is given in (127), matrix denotes
defined in (137) for , and the last equality

follows from noting that .
In (149.1)–(149.3), is defined as

(150)

and, similarly to the integral addressed in Appendix A.i.1, it can
be calculated as

(151)

where the summation over is for all permu-
tations of integers and is defined as

(152)

Finally, the array gain given in Theorem 2 for channel
model follows from substituting (151) back in (149.j).
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