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Noncooperative and Cooperative Optimization of
Distributed Energy Generation and Storage in the

Demand-Side of the Smart Grid
Italo Atzeni, Luis G. Ordóñez, Gesualdo Scutari, Daniel P. Palomar, and Javier R. Fonollosa

Abstract—The electric energy distribution infrastructure is un-
dergoing a startling technological evolution with the development
of the smart grid concept, which allows more interaction between
the supply- and the demand-side of the network and results in a
great optimization potential. In this paper, we focus on a smart grid
in which the demand-side comprises traditional users as well as
users owning some kind of distributed energy source and/or energy
storage device. By means of a day-ahead demand-side manage-
ment mechanism regulated through an independent central unit,
the latter users are interested in reducing their monetary expense
by producing or storing energy rather than just purchasing their
energy needs from the grid. Using a general energy pricing model,
we tackle the grid optimization design from two different perspec-
tives: a user-oriented optimization and an holistic-based design. In
the former case, we optimize each user individually by formulating
the grid optimization problem as a noncooperative game, whose
solution analysis is addressed building on the theory of variational
inequalities. In the latter case, we focus instead on the joint opti-
mization of the whole system, allowing some cooperation among
the users. For both formulations, we devise distributed and iter-
ative algorithms providing the optimal production/storage strate-
gies of the users, along with their convergence properties. Among
all, the proposed algorithms preserve the users’ privacy and re-
quire very limited signaling with the central unit.

Index Terms—Demand-sidemanagement, distributed pricing al-
gorithm, game theory, proximal decomposition algorithm, smart
grid, variational inequality.

I. INTRODUCTION

T HE term “smart grid” refers to a manifold of concepts,
solutions, and products. Still, no internationally unified

definition for smart grids has been adopted [1]. Energy regu-
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lators describe the smart grid as an electricity network that can
cost-efficiently integrate all users connected to it—generators,
consumers, and those who do both—in order to ensure economi-
cally-efficient, sustainable power systems with low losses, high
levels of quality and security of supply, and improved safety
[2]. The smart grids task force set up by the European Com-
mission goes one step beyond and includes smart metering and
bidirectional communication capabilities as inherent parts of
smart grids [3]. Indeed, smart metering and the related smart
communication infrastructure provide information to the dif-
ferent grid users (distribution system operators, retailers, ser-
vice-providers, and end users) and allow interactions among
all of them. This opens up unprecedented possibilities for op-
timizing the energy grid and the energy usage at different net-
work levels.
Not surprisingly, these premises are arousing the interest of

the signal processing community. Indeed, the smart grid con-
cept has been recognized as “a major initiative related to the
field of energy with significant signal processing content” which
requires expertise in the fields of communication, sensing, anal-
ysis, and actuation [4]. The first publications were mainly fo-
cused on the communication aspects of the smart grid. How-
ever, these technologies are only an enabler of the envisioned
smart grid and, most importantly, they are not the sole aspects
that can benefit from the contribution of the signal processing
community.1

Recently, there has been a growing interest in adopting coop-
erative and noncooperative game theory to model the interac-
tion among the smart grid users (see [6], [7] for an overview on
this topic). In particular, real-time and day-ahead energy con-
sumption scheduling (ECS) techniques, common demand-side
management (DSM) procedures that intend to modify the de-
mand profile by shifting energy consumption to off-peak hours,
have been recently studied in literature using game theoretical
approaches (see, e.g., [8]–[11]). However, since the users’ in-
convenience2 must be taken into account, ECS presents limita-
tions in terms of flexibility that can be overcome by incorpo-
rating distributed generation (DG) and distributed storage (DS)
into the demand-side of the network.
In this paper, we propose a DSM method consisting in a

day-ahead optimization process that corresponds to energy pro-

1As evidence in support of this statement, the IEEE Signal Processing Mag-
azine published a special issue entitled “Signal Processing Techniques for the
Smart Grid” [5] during the reviewing process of the present paper.
2Note that ECS implies no cost for the residential customer, but this is not the

case for the industrial customer, for whom the rescheduling of activities may
result in monetary loss [12].
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duction and energy storage scheduling rather than shifting en-
ergy consumption as in ECS techniques. We associate to each
demand-side user, possibly owning a DG and/or a DS device, an
energy consumption vector containing his energy requirements
for each time-slot in which the time period of analysis is divided.
Here, we assume that this vector is set a priori by each user ac-
cording to his needs or as the result of an ECS algorithm. In
doing so, we suppose that, by participating in the day-ahead op-
timization process, demand-side users commit to follow strictly
the resulting consumption pattern.3 The main objective of these
end users is to reduce their monetary expense during the time
period of analysis by producing or storing energy rather than
just purchasing their energy needs from the grid.
DSM techniques have been traditionally formulated from the

selfish point of view of the end users. However, it has been
demonstrated that a collaborative approach can be more ben-
eficial for all actors in the energy grid by minimizing, e.g., the
peak-to-average ratio (PAR) of the energy demand or the total
energy cost [10]. In this paper, we attack the grid optimization
problem from two different perspectives, namely: a user-ori-
ented optimization and an holistic-based design. More specif-
ically, in the first approach, we formulate the DSM design as
a noncooperative game where the end users act as players with
objective functions and optimization variables given by their in-
dividual monetary expenses and production/storage strategies,
respectively. Building on the variational inequality (VI) frame-
work [14]–[16], we study the existence of a solution for the pro-
posed game, the Nash equilibrium (NE); we obtain sufficient
conditions on the energy cost functions guaranteeing the exis-
tence of Nash equilibria. Quite interestingly, we prove that all
the solutions are equivalent, in the sense that the optimal value
of the players’ objective function is constant over the set of the
Nash equilibria.We then focus on distributed algorithms solving
the game; we propose a proximal-based best-response scheme
and derive sufficient conditions guaranteeing its convergence to
any of the (equivalent) Nash equilibria.
The second method we propose consists in formulating the

DSM design as a standard nonlinear optimization problem,
where one minimizes the overall expense incurred by the
demand-side of the network. This approach is more suitable
for “collaborative” contexts, where the users are willing to ex-
change some (limited) signaling in favor of better performance
as, for example, when an energy retailer acts as intermediary
between the supply-side and a group of subscribers. To solve
the resulting nonconvex optimization problem, we build on the
recent results in [17], [18] and introduce a distributed dynamic
pricing-based algorithm (DDPA) that converges to a stationary
solution of the problem.
The proposed algorithms have many desired (complemen-

tary) features, which make them applicable to alternative sce-
narios. For instance, the DDPA i) requires essentially the same
signaling as the PDA (which is based on a noncooperative ap-
proach), ii) is proved to converge under very mild assumptions
(always satisfied in practice), and iii) has fast convergence speed

3We refer to [13] for an extended grid model that allows real-time deviations
with respect to the negotiated demand, and where the day-ahead energy require-
ments follow from a bidding process based on the individual consumption sta-
tistics.

(considerably faster than the scheme presented in [10]). How-
ever, despite having the same communication cost as the PDA,
the DDPA is not incentive compatible, implying that its best-re-
sponse update must be imposed as a protocol to the demand-side
users, in order to avoid selfish deviations from it. The PDA,
instead, can be implemented by selfish users; moreover, quite
surprisingly, numerical results show that it yields the same per-
formance as the DDPA (at least for the scenarios simulated in
this paper), but its convergence conditions are more stringent
than those of the DDPA. Lastly, the PDA is based on a totally
asynchronous update of the users’ strategies, as opposed to the
DDPA and the synchronous user-oriented DSM method pre-
sented in [19].
Notably, both approaches addressed in this paper are valid

for a general energy pricing model, which includes the energy
pricing used in [19] as a special case. Furthermore, they equiv-
alently allow to achieve a generally flattened energy demand
curve, from which both demand- and supply-side benefit in
terms of reduced energy cost and emissions, as well as
overall power plants and capital cost requirements [1].
The rest of the paper is structured as follows. In Section II, we

introduce the smart grid, the production, and the storage models,
as well as the energy cost and pricing model. Section III formu-
lates the grid optimization problem as a Nash game; we then
derive sufficient conditions for the existence of a solution, pro-
pose a distributed algorithm solving the game, and study its con-
vergence. In Section IV, we present an holistic-based optimiza-
tion of the system and devise an efficient, distributed algorithm
for computing its solutions. Section V shows some experiments,
whereas Section VI draws the conclusions.

II. SMART GRID MODEL

The modern electric grid is a complex network comprising
several subsystems, which, for our purposes, can be conve-
niently divided into [20]–[22] (see Fig. 1):
(i) Supply-side: it incorporates the utilities (energy pro-
ducers) and the energy transmission network;

(ii) Central unit: it is the regulation authority that coordinates
the grid optimization process. It serves both as indepen-
dent system operator, by maintaining the reliability of a
control area and optimally matching energy supply and
demand, and asmarket operator, by fixing the energy price
in the day-ahead market;

(iii) Demand-side: it includes the end users (energy con-
sumers), possibly equipped with DG and/or DS, energy
retailers, and the energy distribution network.

Since in this paper we are designing a DSM mechanism, we
focus in particular on the end users, whereas the supply-side
of the smart grid and the central unit are modeled as simply as
possible.

A. Demand-Side Model

Demand-side users, whose associated set is denoted by ,
are characterized in the first instance by their individual per-
slot energy consumption profile , defined as the energy
needed by user to supply his appliances at time-slot .
Accordingly, we also introduce the energy consumption vector
, which gathers the energy consumption profiles for the
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Fig. 1. Connection scheme between one end user and the smart grid.

TABLE I
CHARACTERISTICS OF THE DIFFERENT TYPES OF DEMAND-SIDE USERS

time-slots in which the time period of analysis is divided, i.e.,
. We assume that demand-side users know ex-

actly their energy requirements at each time-slot in the time pe-
riod of analysis in advance. A stochastic formulation that deals
with the uncertainty induced by the end users’ energy consump-
tion and renewable generation is addressed in [13].
Our demand-side model distinguishes between passive and

active users. Passive users are basically energy consumers
and resemble traditional demand-side users, whereas active
users denote those consumers participating in the optimization
process, i.e., reacting to changes in the cost per unit of energy
by modifying their demand. Hence, each active user is con-
nected not only to the bidirectional power distribution grid, but
also to a communication infrastructure that enables two-way
communication between his smart meter and the central unit, as
shown in Fig. 1. For convenience, we group the passive users
in the set and the active users in the set .
Furthermore, active users include two broad categories:

dispatchable energy producers and energy storers. We use
to denote the subset of users possessing some dis-

patchable energy generator. For users ,
represents the per-slot energy production profile at time-slot
, to which corresponds the energy production scheduling
vector . Likewise, we introduce as
the subset of users owning some energy storage device. Users

are characterized by the per-slot energy storage profile
at each time-slot : when the storage device

is to be charged (implying an additional energy consump-
tion), when the storage device is to be discharged
(resulting in a reduction of the energy consumption), and

when the storage device is inactive. The per-slot
energy storage profiles are gathered in the energy storage
scheduling vector . It is worth remarking

that , but we also contemplate the possibility of
some active users being both dispatchable energy producers
and storers, i.e., , as shown in Fig. 2.
Finally, let us introduce the per-slot energy load profile as

if
if

(1)

which gives the energy flow between user and the grid at time-
slot , as shown schematically in Fig. 1. Observe that
if the energy flows from the grid to user and

otherwise. Due to physical constraints on the user’s individual
grid infrastructure, the per-slot energy load profile is bounded
as

(2)

where and are the outgoing and the
incoming capacities of user ’s energy link, respectively. These
capacities are negotiated between the users and the energy
provider and are thus known to the central unit for each user

. The energy load profiles and capacities for the different
demand-side users are provided in Table I.

B. Energy Production Model

Let us first characterize energy producers depending upon the
type of DG they employ, as done in [19].
Non-dispatchable DG: , e.g, renewable resources

of intermittent nature such as solar panels and wind turbines.
These energy producers generate electricity at their maximum
capacity whenever possible since they only have fixed costs
and, therefore, they do not adopt any strategy regarding en-
ergy production. For convenience, we consider that the per-slot
energy consumption profile already takes into account
the non-dispatchable energy production of each user .
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Fig. 2. Supply-side model and demand-side model including the sets of passive users and active users .

Hence, for this type of users, we can have when
the non-dispatchable energy production is greater than the en-
ergy consumption at a given time-slot . Observe that any de-
mand-side user can belong to regardless of his condition
of passive or active participant in the day-ahead optimization
process.
Dispatchable DG: , e.g., internal combustion engines,

gas turbines, or fuel cells, to be operated mostly during high de-
mand hours in order to lower the peak in the load curve. These
energy producers, beside fixed costs, have also variable produc-
tion costs (due to, e.g., the fuel) and they are thus interested in
optimizing their energy production strategies. We introduce ac-
cordingly the production cost function , which gives
the variable production costs for generating the amount of en-
ergy at time-slot , with .
In the following, we provide, as an example, the dispatch-

able productionmodel adopted in [19]. It is important to remark,
however, that the optimization process analysis and algorithms
provided in Sections III and IV hold for any production model
resulting in a compact and convex strategy set. Dispatchable en-
ergy producers are characterized in [19] by their max-
imum energy production capability and their capacity
factor requirements, i.e., the minimum and maximum amount
of energy generated during the time period of analysis,
and , so as to remain efficient. The strategy set for
dispatchable energy producers is consequently defined
as (see [19, Sec. II-B] for details)

(3)

where the operator for vectors is defined componentwise, and
denotes the -dimensional unit vector.

C. Energy Storage Model

Let us present, for illustration purposes, a simplified version
of the energy storage model introduced in [19]. Nonetheless,
as pointed out in the previous section for dispatchable energy
producers, any storage model resulting in a compact and convex

strategy set ensures the validity of the results in Sections III and
IV.
We characterize storage devices by the following three at-

tributes: leakage rate, capacity, and maximum charging rate.4

The leakage rate models the decrease in the energy
level of the storage device with the passage of time: let
denote the charge level at time-slot , indicating the amount of
energy contained in the storage device of user at the
end of time-slot , then reduces to at the end of
time-slot . The capacity denotes the maximum amount
of energy that the storage device can accumulate. Lastly, the
maximum charging rate represents themaximum amount
of energy that can be charged into the device during a time-slot.
Observe that charging and discharging are mutually exclusive
operations during the same time-slot, which results from the
leakage of the storage device. Additionally, it is convenient to
include a constraint on the desired charge level at the end of the
time period of analysis . Following the discussion in [19,
Sec. II-C], we impose that

(4)

where denotes the initial charge level and is a suffi-
ciently small constant. Finally, we can define the strategy set

for energy storers as (see [19, Sec. II-C] for details)

(5)

where is a lower triangular matrix with elements
, and and are -dimensional vectors

with elements and , respectively.
Now that we have gone through all possible types of users

in the demand-side, we summarize their main characteristics in
Table I.

4The storage model in [19] also takes into account charging and discharging
efficiencies, which are not considered here for clarity of presentation.
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TABLE II
LIST OF IMPORTANT SYMBOLS WITH CORRESPONDING DEFINITIONS AND DOMAIN

D. Energy Cost and Pricing Model

This section describes the cost model on which depends the
price of energy. Let us first define the aggregate per-slot energy
load at time-slot as

(6)

where is the aggregate per-slot en-
ergy consumption associated with the passive users connected
to the grid. Then, we canmodel the supply-side as a single utility
that provides, at each time-slot , a one-way energy flow
through the transmission grid to the demand-side (see Figs. 1
and 2). We work under the hypothesis that the aggregate energy
demand is always guaranteed by the supply-side5 and satisfies

(7)

where is the minimum aggregate energy load
throughout the grid, and is the maximum aggre-
gate energy load that the grid can take before experiencing
a blackout. Observe that both and are known
to the central unit based on the actual grid infrastructure and
on the available load statistics. A summary of the principal
variables introduced throughout Section II, along with their
main characteristics, is reported in Table II.
Given the aggregate per-slot energy load , let us now

define the cost per unit of energy as the price for a
unit of energy at time-slot resulting from the day-aheadmarket
[20], [24], [25]. Then, represents the amount of
money paid by user to purchase the energy load from the
grid (if ) or received to sell the energy load to the
grid (if ) at time-slot . Observe that can repre-
sent either the actual energy cost (as a result of energy genera-
tion, transmission, and distribution costs among other issues) or
simply a pricing function designed to incentivize load-shifting
by the end users [9]. In any case, is generally different at
each time-slot , since the energy production changes along the
time period of analysis according to the energy demand and to
the availability of intermittent sources. For instance, the energy
price can be less during the night compared to the day time (as in

5The day-ahead optimization allows the supply-side to know in advance the
amount of energy to be delivered to the demand-side over the upcoming time
period of analysis, in order to plan its production accordingly [13], [23].

the practical test case in Section V). Equivalent pricing models
are given in [9], [10], [19].
We now have all the elements to introduce the cumulative

expense of each group of users in the demand-side of the net-
work. Let denote the individual cumulative expense over
the time period of analysis of active user , representing
his cumulative monetary expense incurred for obtaining the de-
sired amount of energy in the time period of analysis:

(8)
where we have included the individual production costs

. Note that, in general, the amount of money
paid/received by user to purchase/sell the same amount of
energy from/to the grid is different during distinct time-slots
due to the fact that the grid cost function and the aggregate
per-slot energy load vary along the day. Likewise, the aggregate
cumulative expense incurred by the passive users is given by

(9)

which indirectly depends on the strategies adopted by the ac-
tive users through the cost per unit of energy at each time-slot

. Lastly, we introduce the aggregate cumulative ex-
pense , which expresses the overall grid expense over the
time period of analysis, and which is related to the individual
cumulative expenses of the active users in (8) and to the aggre-
gate cumulative expense of the passive users in (9) as

(10)

E. Introduction to the DSM Approaches

In the rest of the paper, we focus on the optimization problems
posed by our DSM mechanisms, through which active users de-
termine in advance their generation/storage strategies for the
upcoming time period of analysis (corresponding usually to a
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day [26]). Once the grid cost functions are fixed
in the day-ahead market, active users react to the prices pro-
vided by the central unit by iteratively adjusting their genera-
tion and storage strategies and and, thus, their day-ahead
energy demands , given the aggregate energy loads

. The final objective of the active users is either i)
to individually minimize their individual cumulative expense
over the time period of analysis in (8) (see Section III), or ii)
to jointly minimize the aggregate cumulative expense of all de-
mand-side users in (10) (see Section IV). In the first method,
active users act selfishly to reduce their cumulative monetary
expenses without consulting or coordinating with each other.
Despite the flexibility of this approach, the second solution may
be more desirable from the point of view of both the individual
users and the supply-side, since it takes into account the overall
production costs and results in a more efficient demand-side en-
ergy consumption.
One could consider to solve the aforementioned optimiza-

tion problems in a centralized fashion, with the central unit
imposing every single user how much energy he must pro-
duce, charge, and discharge at each time-slot. Nonetheless,
such solution requires every user to provide detailed informa-
tion about his energy production and storage capabilities and
this could lead to privacy issues. Besides, a centralized ap-
proach is not scalable and cannot account for an unpredictably
increasing number of participants. In consequence, we adopt
distributed solutions for both DSM techniques in Sections III
and IV, respectively.

III. NONCOOPERATIVE DSM APPROACH

In this section, we focus on the optimization problem posed
by the noncooperative DSM mechanism through which active
demand-side users aim at individually minimizing their indi-
vidual cumulative expense over the time period of analysis in-
troduced in (8).
For convenience, let us first distinguish three main groups

among the users participating actively in the optimization (see
Table I for details):
(i) Dispatchable energy producers: , for
whom and ;

(ii) Energy storers: , for whom
and ;

(iii) Dispatchable energy producers-storers: ,
for whom and .

Then, we can define the strategy vector and the per-slot strategy
profile of a generic active user as

(11)

In addition, taking into account the limitations on the link ca-
pacity given in (2), we denote the corresponding strategy set by
[see (12) at bottom of page] with dimension ,
where we have introduced the auxiliary variables
, , with

(13)

and , with denoting the -dimen-
sional zero vector. Furthermore, let be the
vector including the strategies of the other users .
Bearing in mind the individual cumulative expense given in (8),
the objective function of user is given by

(14)

with being the joint strategy vector and the vector
functions and given by

(15)

and

(16)

A. Game Theoretical and VI Formulation

Here, we model our DSM procedure as a (noncooperative)
Nash game. Each active user is a player who competes
against the others by choosing the production and storage
strategies and that minimize his objective function

in (14), i.e., his cumulative expense over the
time period of analysis. The formal definition of the game
is the following: , where is
the -dimensional joint strategy set, , and

is the vector of the objective functions.
Each player aims at solving the following optimization
problem, given :

(17)

Note that the dependence of the objective function in (14)
on lies within the argument of the cost functions
in (14), since

. The solution of the game is
given by the well-known concept of Nash equilibrium, which
is a feasible strategy profile with the property that no single

(12)
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player can benefit by unilaterally deviating from his strategy
, if all other players act according to [27], i.e.,:

(18)

Variational inequality theory provides a general framework
for investigating and solving various optimization problems and
equilibrium models, even when classical game theory may fail.
Throughout this and the next section, we refer extensively to
[15]. For a detailed description of the subject, we refer the in-
terested reader also to [14], [16], [28], [29], [30] for a compre-
hensive treatment of VIs.
In order to analyze the existence of the Nash equilibria as well

as the convergence of distributed algorithms while keeping the
pricing model general, it is very convenient to reformulate the
game as a partitioned VI problem, which is formally defined
next.

Definition 1 ([30] Def. 1.1.1): Let be a
vector-valued function defined as ,
where is the th component block
function of , , and . Then,
the VI problem, denoted by , consists in finding

such that

(19)

The equivalence between the game theoretical and the VI for-
mulation is established in the following lemma.

Lemma 1 ([15, Prop. 4.1], [30 Prop. 1.4.2]): The Game
is equivalent to the VI problem , with

, if:
(a) The strategy sets are closed and convex;
(b) For every fixed , the

objective function is convex and twice con-
tinuously differentiable on .

Since the individual strategy sets in (12) are nonempty
polyhedra [31, Sec. 2.2.4], Lemma 1(a) is readily satisfied. On
the other hand, Lemma 1(b) is satisfied if and only if the gradient
of , , is monotone
on for any given [29],6 where

(20)

with . This requirement is accomplished
under the conditions of Theorem 1 given in the next section.
Assuming that Lemma 1 holds, we can formulate the game

as the VI problem , where the vector
function is

(21)

6We say that is monotone on when
, , for

every fixed [15, Def. 4.3(i)].

with , ,
, and .

B. Nash Equilibria Analysis

Sufficient conditions on the grid cost functions per unit of
energy and on the production cost functions that guarantee the
existence of the Nash equilibria of the game , i.e.,
of the solutions of the VI problem , are derived in the
next theorem.

Theorem 1: Given the game , suppose that the
following conditions hold:
(a) The grid cost functions per unit of energy

are increasing and convex on , and satisfy

(22)

where denotes the maximum
amount of energy that can be sold to the grid by any
single user at any time-slot;

(b) The production cost function is convex on
, .

Then, the game has a nonempty and compact solution set.

Proof: See Appendix I-A.

Remark 1.1: Observe that any realistic grid cost function
is increasing as required by Theorem 1(a) (see, e.g.,

the power price function in [32]). Actually, for non-strictly
increasing , a game-theoretical approach may not even
be necessary since the individual optimization problems can
possibly be decoupled (see details in Example 1.1(a)). The
convexity of in Theorem 1(a) and the convexity of
in Theorem 1(b) simply impose that the grid cost per unit of
energy and the production cost function do not tend to saturate
as the aggregate energy load and the per-slot energy produc-
tion profile, respectively, increase, which is a very reasonable
assumption. Still, the condition in (22) has to be verified case
by case, although it is not difficult to be fulfilled (see Example
1.1(d)).

Example 1.1: Suppose, for instance, that the grid cost func-
tions are given by , with
and . Then:
(a) If , we have that : this means that

the cost per unit of energy is constant at each time-slot
, and the resulting optimization problem for users in
does not depend on the aggregate energy load (and, in
consequence, on the strategies of the other users ),
but only on the energy cost at each time-slot . In such
trivial case, the game-theoretical approach proposed in
this paper is not necessary.

(b) If , the grid cost functions are not convex but
concave. This is, however, unrealistic, since energy gen-
eration becomes less efficient as the aggregate demand in-
creases (in fact, peaking power plants that allow to meet
rapidly increasing demand are extremely expensive to op-
erate [33, Sec. 3.9]).
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(c) If , the grid cost functions are linear (hence strictly
increasing and convex), and condition (22) is immediately
satisfied since . This particular case is
treated in detail in [19].

(d) If , the grid cost functions are strictly increasing and
strictly convex and Theorem 1 guarantees the existence
of the Nash equilibria of the game in (17)
whenever

(23)

This is a very mild condition, since the ratio between the
aggregate demand and the maximum energy that
can be individually injected into the grid can be
very large in practice. Alternatively, this condition can be
understood as a tradeoff between the minimum demand
generated by the passive users and that coming from the
active users, as explained in Remark 2.2.

Theorem 1 guarantees the existence of a solution of the game
in (17), but not the uniqueness. Interestingly, all

Nash equilibria for this problem happen to have the same quality
in terms of optimal values of the players’ objective functions, as
stated in the following proposition.

Proposition 1.1: Given the game , suppose that
the conditions in Theorem 1 hold; let be the set of the
Nash equilibria of . Then, the following holds:

, and .

Proof: See Appendix I-B.

C. Proximal Decomposition Algorithm

We focus now on distributed algorithms to compute one of the
(equivalent) Nash equilibria (see Proposition 1.1) of the game

. We consider the class of totally asynchronous al-
gorithms, where some users may update their strategies more
frequently than others and they may even use outdated infor-
mation about the strategy profiles adopted by the other users.
This adds more flexibility and robustness with respect to the
well-known Jacobi (simultaneous) and Gauss-Seidel (sequen-
tial) schemes, as the sequential ECS algorithm proposed in [10].
To provide a formal description of the algorithms, let

be the set of times at which user updates
his own strategy , denoted by at the th iteration. We use

to denote the most recent time at which the strategy of
user is perceived by the central unit at the th iteration. Each
individual user updates his strategy by minimizing his cumu-
lative expense over the time period of analysis referring to the
most recently available value of the per-slot aggregate energy
load

(24)

where is the energy load of user as perceived
by the central unit at time , which can possibly be outdated

when computation occurs. Finally, to emphasize the dependence
of the strategy of user on the aggregate energy loads of the
other users, we rewrite the objective function in (14) as

(25)

Some standard conditions in asynchronous convergence
theory, which are fulfilled in any practical implementation,
need to be satisfied by the schedule and , [14,
Sec. 1.2.2] [34, Ch. 6], namely:
(A1) : at any given iteration , each user can

use only the aggregate energy loads re-
sulting from the strategies adopted by the other players
in the previous iterations;

(A2) , where is a sequence of
elements in that tends to infinity: for any given
iteration index , the values of the components of

generated prior to are not used in
the updates of the aggregate energy loads at the iteration
, when becomes sufficiently larger than ;

(A3) : no player fails to update his own strategy as
time goes on.

Since all Nash equilibria are equivalent (in the sense of
Proposition 1.1), we focus next on proximal-based best-re-
sponse algorithms, whose convergence to some of the solutions
is guaranteed even in the presence of multiple solutions.
According to [15, Alg. 4.2], instead of solving the original
game, i.e., the VI problem , one solves a se-
quence of regularized VI problems, each of them given by

, where is the identity map (i.e.,
), is a fixed real vector, and is a positive

constant. It can be shown that, under the monotonicity of
on , this regularized problem is strongly monotone and has
thus a unique solution [15, Th. 4.1(d)] denoted by ;
such a unique solution is a nonexpansive mapping, meaning
that, starting at a given initial point , the sequence
generated by a proper averaging of and converges
to a solution of the , even when this is not unique.7

Note also that, given , the solution
of the regularized coincides

with the unique Nash equilibrium of the regularized game,
where each user solves the following optimization problem:

(26)
The solution can then be computed in a distributed way
with convergence guarantee using any asynchronous best-re-
sponse algorithm applied to the game (26) [15, Cor. 4.1] (see,

7Replacing the exact computation of the solution of the regularized VI with
an inexact solution does not affect convergence of Algorithm 1, as long as the
error bound goes to zero as [14]–[16].
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e.g., [15, Alg. 4.2]). The above scheme is formalized in Algo-
rithm 1 below, whose convergence conditions are given in The-
orem 2.

Algorithm 1 Asynchronous Proximal Decomposition
Algorithm (PDA)

Data : Set and the initial centroid .

Given , , , and any

feasible starting point :

(S.1) : If a suitable termination criterion is satisfied:
STOP.

(S.2) : For , each user computes as [see
(27) at the bottom of the page].

End

(S.3) : If the NE is reached, then each user sets
and updates

his centroid: .

(S.4) : ; Go to (S.1).

Theorem 2: Given the game , suppose that the
conditions of Theorem 1 and the following hold:
(a) The grid cost functions per unit of energy are

strictly increasing and convex on , and
additionally satisfy

(28)
where is the number of active users connected
to the grid, and

denote the maximum amount of energy
that can be sold to or bought from the grid by any single
user at any time-slot, respectively;

(b) The regularization parameter satisfies

(29)

where is the maximum aggregate energy load al-
lowed by the grid infrastructure;

(c) is chosen such that , with
[15, Th. 4.3].

Then, any sequence generated by Algorithm 1 con-
verges to a Nash equilibrium of the game, for any given updating
schedule of the users satisfying assumptions (A1)–(A3).

Proof: See Appendix I-C.

Remark 2.1 (on Algorithm 1): Algorithm 1 can be seen as
an asynchronous algorithm with an occasional update of the
individual centroids , performed simultaneously .
Nonetheless, it is a double-loop algorithm in nature: in the inner
loop, the computation of requires the solution of the
regularized game in (26) via asynchronous best-response al-
gorithms (such as [15, Alg. 4.2]); in the outer loop, all users

update their centroid and proceed to solve the inner
game again, until an equilibrium is reached. Observe that the
update of the centroids is performed locally by the users at the
cost of no signaling exchange with the central unit. However,
since this update must be simultaneous, some sort of synchro-
nization must be provided by the central unit to the users (see
[16] for a detailed discussion on synchronization methods for
this class of distributed algorithms). The central unit also checks
whether the termination criterion in step (S.1) is met, con-
cluding thus the algorithm. Since the central unit only receives
the individual energy loads from each user, a practical criterion
can be to guarantee that the difference of the users’ energy loads
between two consecutive iterations is below the prescribed ac-
curacy (c.f. Section V).
Summarizing, the proposed demand-side day-ahead op-

timization based on Algorithm 1 works as follows. At the
beginning of the optimization process, is computed as in
Theorem 2(b) and broadcast to each user , together with
the grid cost functions per unit of energy . Then, at
each iteration, any active user who wants to update his strategy
solves his own optimization problem in (26) based on the most
recent values of the aggregate energy loads ,
which are calculated by the central unit referring to the (pos-
sibly outdated) individual demands, and communicates his new
load to the central unit. When an equilibrium in the inner loop
is reached, the central unit proceeds to the next iteration, and
this process is repeated until convergence is reached.

Remark 2.2 (on Theorem 2(a)): The interpretation of the con-
dition (28) given in Theorem 2(a) is twofold. First of all, it pro-
vides a guideline to choose the grid cost functions per unit of
energy . Second, it represents a tradeoff between
the minimum demand generated by the passive users and that
coming from the active users, as explained next. Suppose, for
instance, that with and ; then
(28) actually implies that

(30)
where and denote the minimum aggregated
demand of the passive and the active users, respectively. Ob-
serve that is increasing with the number of passive
users in the demand-side, whereas the right-hand side of (30) is

if

otherwise
(27)
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not affected by it. On the other hand, when more active users are
added, the previous condition becomes more restrictive, since
the resulting increment of the right-hand side of (30) is always
greater than the one of the left-hand side (as the individual de-
mand of any active user satisfies ). It
turns out that, for any given number of passive users, (28) pro-
vides an upper bound on the number of active users that can be
tolerated in the demand-side of the network.

Remark 2.3 (on Theorem 2(b)): From the proof of
Theorem 2(b), it follows that Algorithm 1 can converge
under a milder bound on the regularization parameter than the
one given in (29). However, the peculiarity of the provided
expression of is that none of the terms in (29) depends on
the particular energy generation or storage equipment owned
by user , but only on the transmission grid infrastructure.
Thus, the regularization parameter can be calculated by the
central unit a priori without interfering with the privacy of the
users. These considerations apply also to the lower bound of
provided in (36) for Algorithm 2.

IV. COOPERATIVE DSM APPROACH

In contrast to the noncooperative approach discussed in
Section III, we now consider an alternative DSM technique, in
which demand-side users collaborate to minimize the aggregate
cumulative expense over the time period of analysis introduced
in (10).
Recalling the definitions of strategy vector and strategy set

given in (11) and (12), respectively (see Section III), we formu-
late our DSM optimization problem as

(31)

with

(32)

where represents the individual cumulative ex-
pense of user defined in (14) and where denotes
the aggregate cumulative expense of the passive users defined
in (9), where we made explicit the dependence on the strategies
of the active users. Note that in the objective function
there is a common term (equal for all users) , which is
the cost associated with the aggregate load of the passive users.
This cost is, in fact, a transferable utility and can be distributed
among the active users in any arbitrary manner (e.g., as we did
in (32)) without affecting the optimal value of the social func-
tion in (31).

A. Distributed Dynamic Pricing Algorithm

Traditionally, optimization problems of the form of (31) have
been tackled by using gradient-based algorithms, which solve a
sequence of convex problems by convexifying the whole so-
cial function: because of that, they generally suffer from slow

convergence. A faster algorithm can be obtained by following
the approach recently proposed in [17] (see also [18] for more
details): since each is convex for any feasible

(under the settings of Theorem 1), one can convexify only
the nonconvex part, i.e., , and solve the se-
quence of resulting optimization problems. Since such a proce-
dure preserves some structure of the original objective function,
it is expected to be faster than classical gradient-based schemes.
A formal description of the algorithm is given next.

Let us preliminary define as the joint
strategy vector at iteration and the resulting aggregate load as

(33)

where is the energy load of user at iteration .
We can then introduce the best-response mapping

, where we have defined

(34)

and

(35)

where , with defined as in (13). Note that each
individual optimization in (34) is strongly convex under The-
orem 1 and, therefore, has a unique solution (see Appendix II-A
for details); (34) is thus well-defined. The proposed algorithm
solving the social problem in (31) is formally described in Al-
gorithm 2 below, whose convergence conditions are given in
Theorem 3.

Algorithm 2 Distributed Dynamic Pricing Algorithm (DDPA)

Data : Set . Given ,

, , and any feasible

starting point :

(S.1) : If a suitable termination criterion is satisfied:
STOP.

(S.2) : For , each user computes as

End

(S.3) : ; Go to (S.1).
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Theorem 3: Given the social problem (31), suppose that the
conditions of Theorem 1 hold and that the regularization param-
eter satisfies

(36)
where is the number of active users connected to the grid
and is the maximum aggregate energy load allowed by
the grid infrastructure. Then, either Algorithm 2 converges in
a finite number of iterations to a stationary solution of (31) or
every limit point of the sequence is a stationary so-
lution of (31).

Proof: See Appendix II-A.

Differently from Algorithm 1, Algorithm 2 is not incentive
compatible, in the sense that demand-side users need to reach
an agreement in following the best-response protocol (34). In
addition, it differs from Algorithm 1 mainly in the synchronous
update of the users’ strategies. However, Algorithm 2 converges
under consistently milder conditions on the grid cost functions
than those of Algorithm 1 and, most importantly, it does not
impose any limitation on the number of active users with respect
to the total number of demand-side users, which means better
scalability. Lastly, the signaling required by the two algorithms
is essentially the same.
Let us summarize the proposed demand-side day-ahead op-

timization based on Algorithm 2. At the beginning of the opti-
mization process, is computed as in (36) by the central unit
and broadcast to each user , together with the grid cost
functions per unit of energy and the terms related

to the transferable utility . Then, at each itera-
tion, all users simultaneously update their strategies by solving
their own optimization problems in (34) based on the aggre-
gate energy loads , which are calculated by the
central unit summing up the individual demands. Then, active
users provide their new energy loads to the central unit, and this
process is iterated until a suitable termination criterion imposed
by the central unit is satisfied.

V. EVALUATION OF THE DSM APPROACHES

A. Smart Grid Setup

Let us consider a smart grid consisting of 1000 demand-side
users , each one having a random energy consumption
curve with average daily energy consumption

[35], and ranging between 8 kWh and 16 kWh. We
suppose that higher consumption occurs more likely during day-
time hours, i.e., from 08:00 to 24:00, than during night-time
hours, i.e., from 00:00 to 08:00, reaching peak demand generally
between 17:00 and 23:00. The energy grid cost function per unit
of energy is given by

for
for

(37)
where as in [10] and whose values
are chosen so as to obtain an initial average price per
kWh of 0.1412 £/kWh [36]. Additionally, we consider

, , ,
and . With this setup, condition (22) is
immediately satisfied, guaranteeing that the game
has a nonempty and compact set of Nash equilibria. Recalling
Theorem 2, Algorithm 1 is ensured to converge to one of these
Nash equilibria for any , which
implies that the number of active users should satisfy ,
and for any . Lastly, according to The-
orem 3, Algorithm 2 converges to a stationary solution of the
social problem in (30) for any .
In the following, we consider active users, with

, and passive users.
This corresponds to having 12% of active users equally dis-
tributed among dispatchable energy producers, energy storers,
and dispatchable energy producers-storers. For the sake of sim-
plicity, we assume that all dispatchable energy producers and
energy storers adopt generators and storage devices with the
same features as in [19, Sec. IV]. In particular, all generators
employed by users are characterized by a linear produc-
tion cost function, resembling that of a combustion engine (e.g.,
a biomass generator [37]) working in the linear region:

(38)

with [38], ,
, and . Likewise, we sup-

pose that all energy storage devices adopted by users
present the following parameters: leakage rate ,8

capacity (this value is also used in [24] and is
equivalent to the capacity of the battery of a small PHEV), max-
imum charging rate , , and

.

B. Simulation Results

In this section, we provide some numerical results that illus-
trate the performance of the proposed noncooperative and coop-
erative day-ahead DSM mechanisms formalized in Algorithms
1 and 2, respectively. In doing so, we delineate the overall re-
sults and examine the convergence of both schemes, comparing
the benefits achieved by the different types of active users. In
particular, we show that all active users substantially reduce
their monetary expense by adopting distributed energy gener-
ation and/or storage.
Interestingly, the overall results produced by the noncoop-

erative and the cooperative approaches happen to be equiva-
lent in our case: beyond any doubt, this constitutes a major
strength of Algorithm 1. Fig. 3 illustrates the global results ob-
tained equivalently using Algorithms 1 and 2. In the specific,
Fig. 3(a) shows, for each hour , the aggregate per-slot energy
consumption together with the aggregate per-slot
energy load resulting from both approaches. Likewise,
Fig. 3(b) delineates the aggregate per-slot energy production

and storage at each hour . As ex-
pected, energy storers charge their battery at the valley of the
energy cost, resulting in a substantially more flattened demand
curve. Contrarily, they discharge it at peak hours, shaving off

8This value of corresponds to having a leakage rate of 0.9 over the 24
hours.
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Fig. 3. (a) Initial aggregate per-slot energy consumption and aggregate per-
slot energy load after both DSM optimizations at each ; (b) aggregate per-slot
energy production and storage at each ; and (c) initial and final grid price per
unit of energy at each .

the peak of the load. For the sake of comparison with ECS
techniques [8]–[11], our day-ahead DSM optimization with just

energy storers and the adopted storage capacities al-
lows to shift 327 kWh from the peak hours to the valley of the
demand curve: this is equivalent to having a shiftable load cor-
responding to 2.7% of the daily aggregate load among all 1000
demand-side users. On the other hand, dispatchable energy pro-
ducers generate little energy during night-time hours, when they
rather buy it from the grid. The average grid price per kWh re-
duces to 0.1156 £/kWh (i.e., 20.8% less) and, considering the
individual energy production costs for users , the overall
price further decreases to 0.1116 £/kWh. The comparison be-
tween the initial and the final grid price at each hour is illus-
trated in Fig. 3(c). Moreover, the aggregate cumulative expense

reduces from £1705 to £1351. Finally, the peak-to-average
ratio (PAR), defined as

(39)

Fig. 4. (a) Convergence of Algorithm 1 (PDA) and Algorithm 2 (DDPA) with
termination criterion ; and (b) average cumu-
lative expense over the time period of analysis for each subset of active users,
as a function of the iteration .

which expresses the ratio between the peak demand and the av-
erage energy demand calculated along the day, decreases from
1.5254 to 1.3337 (i.e., 12.6% less) resulting in a generally flat-
tened demand curve.
We employ for Algorithm 1, whereas the

termination criterion used to finalize both algorithms is
. Fig. 4(a) plots this measure over the

first 10 iterations. With the above setup, Algorithm 1 converges
after 8 iterations and Algorithm 2 after just 2 iterations. In this
regard, Fig. 4(b) shows how the average cumulative expenses
over the time period of analysis for each type of active users,
as well as for the passive users, converge to their final value:
this further highlights the faster convergence of Algorithm 2,
since the final values of the objective functions are approxi-
mately reached after the first iteration, even though active users
keep adjusting their production and storage strategies until the
above termination criterion is satisfied. From this figure it is
also straightforward to conclude that active users with more de-
grees of freedom (i.e, both generation and storage equipment)
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Fig. 5. (a) Average cumulative expense over the time period of analysis for each subset of users as a function of the percentage of active users; and (b) total
percentage saving and PAR as functions of the percentage of active users. The active users are equally distributed among dispatchable energy producers, energy
storers, and dispatchable energy producers-storers.

obtain better saving percentages, although the employment of
distributed energy production and storage benefits all users in
the smart grid. In particular, the average savings obtained for
each subset of active users are: £1.3225 (i.e., 79.3% less) for
users , £0.8717 (i.e., 52.3% less) for users ,
and £0.7348 (i.e., 40.9% less) for users . On the
other hand, passive users save on average £0.2695
(i.e., 15.8% less) each. Evidently, the saving for users
is greater than for users , i.e., all demand-side users
are incentivized to directly adopt distributed energy generation
and/or storage. Moreover, users save more than
users : this means that using both dispatch-
able energy sources and storage devices allows to further de-
crease the individual cumulative expense over the time period
of analysis.
In Fig. 5(a) we plot the average cumulative expense over the

time period of analysis for each subset of demand-side users
versus different percentages of active users equally distributed
among dispatchable energy producers, energy storers, and dis-
patchable energy producers-storers, with each demand-side user

having the same consumption curve. Interestingly, Al-
gorithm 1 keeps performing equivalently to Algorithm 2 even
when the theoretical bound on the number of active users,
, provided in Theorem 2 to ensure its convergence, is not

fulfilled. Furthermore, we observe that the average cumulative
expense of the active and passive users tend to the same value
as the production and storage capacities increase. Besides, as
illustrated in Fig. 5(b), the total saving of all (active and pas-
sive) users in the smart grid raises in inverse proportion with
the decreasing PAR, which diminishes almost linearly as the
percentage of active users increases. Note that, as the PAR ap-
proaches 1 with (54%), its value raises unexpectedly
when (60%). This is due to the lower coefficients
adopted during (c.f. (37)): in fact, once a perfectly
flattened demand curve is achieved, active users naturally keep
lowering the aggregate load during the last 16 hours when the
price is higher in favor of the first 8 hours during which the price
is lower.

Lastly, Fig. 6 depicts the number of iterations needed for the
convergence of Algorithms 1 and 2 as a function of the per-
centage of active users, using the same termination criterion

. In the first instance, the former
always requires several more iterations than the latter, not to
mention that each iteration in the proximal decomposition algo-
rithm implies solving a (regularized) Nash game. Moreover, it
is evident that the convergence speed of the proximal decompo-
sition algorithm is substantially more related to the number of
active participants than that of the distributed dynamic pricing
algorithm, which emphasizes the better scalability properties of
the latter.

VI. CONCLUSIONS

In this paper, we propose a general grid model that accom-
modates distributed energy production and storage, and a day-
aheadDSMmechanism. In particular, we formulate the resulting
grid optimization problem using a noncooperative method and
a more classical nonlinear programming approach. In the first
case, each active user on the demand-side selfishly minimizes
his cumulative monetary expense for buying/producing his
energy needs.We use noncooperative game theory and, building
on the general framework of variational inequality, we derive
(sufficient) conditions on the generalized energy cost functions
that guarantee the existence of (multiple, yet equivalent) op-
timal strategies, as well as the convergence of the proposed
asynchronous proximal decomposition algorithm. As for the
second approach, we devise a distributed scheme based on the
distributed dynamic pricing algorithm. Both methods allow
to compute the optimal strategies of the users in a distributed
fashion and with limited information exchange between the
central unit and the demand-side of the network. Simulations on
a realistic situation employing practical energy cost functions
show that, despite their different (sufficient) convergence con-
ditions, the two algorithms achieve equivalent overall results,
sensibly flattening the demand curve and reducing the need for
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Fig. 6. Number of iterations required for the convergence of Algo-
rithm 1 (PDA) and Algorithm 2 (DDPA), with termination criterion

, as a function of the percentage of ac-
tive users.

carbon-intensive and expensive peaking power plants. Regard-
less, the two approaches present different characteristics in terms
of strategy update and convergence speed that favor the employ-
ment of one over the other according to the situation. Finally, it
is worth mentioning that the DSM techniques presented in this
paper, being directly applicable to end users like households
and small businesses, can also be extended to larger contexts,
such as small communities or cities, by means of energy ag-
gregators. In fact, flattening the energy demand along time is
clearly beneficial at any layer of the energy grid.

APPENDIX I
NONCOOPERATIVE DSM APPROACH

A. Proof of Theorem

In this appendix, we derive the conditions on the cost func-
tions per unit of energy and on the production cost
functions that guarantee the existence of the Nash
equilibria of the game in (17).
Recalling Lemma 1, the VI problem , with

, is equivalent to the game
if the objective function in (14) is convex on
for any , ; note that the individual strategy
sets in (12) are closed and convex. The convexity of each
objective function is equivalent to the monotonicity of the asso-
ciated mapping function in (20) on , for every
given [29], i.e.,

(40)
Next, we derive the conditions for to satisfy (40). We

rewrite the left-hand side of (40) as

(41)

(42)

(43)

where ,

, and is accordingly defined. Observe,
then, that the term in (43) is nonnegative if is convex,
i.e., if is monotone:

(44)

since, under this condition, each element in the summation is
nonnegative itself.
In addition, the sum of the terms in (41) and (42) is nonnega-

tive if the function is increasing
in for any time-slot or, equivalently, if

(45)
Assuming that for any time-slot the grid cost function
is convex, i.e., , we can distinguish between two
cases:
(i) When , the inequality in (45) is satisfied if

, which forces to be increasing;
(ii) When , it holds that

(46)
where represents the maximum amount of
energy that can be sold to the grid by any single user
at any time-slot. Hence, (45) is verified if ,

i.e., if is strictly increasing and, additionally, for
any time-slot it holds

(47)

So far, we have proved that is monotone on ,
for any given , when the production cost func-
tion is convex and the cost functions per unit of energy

are increasing and convex and satisfy (47). Never-
theless, this must be verified and, therefore, constraint
(47) becomes

(48)

whereas the condition on the production cost function in (44)
must be satisfied . Now that Lemma 1 holds, the so-
lution set of is nonempty and compact [15, Th.
4.1(a)], since the strategy sets are bounded . This
concludes the proof of Theorem 1.
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B. Proof of Proposition

Theorem1provides theconditions thatguarantee theexistence
of theNash equilibria of the game in (17).Although
thesolutionisnotunique,allNashequilibriayield thesamevalues
of the objective functions in (14). In fact, consider a generic user

: given two optimal strategy vectors ,
with and , we have
that if the following
conditions hold (see the strategy sets (3) and (5) for details):

(49)

(50)

(51)

Since in any realistic situation , and being
for , it follows that , implying that user

can choose among infinitely many optimal strategy
vectors , each of them giving the same value of the objective
function . We can extend the previous considera-
tions to all users: since all produce the same ,

, the aggregate demands , with

, are not affected by the multiplicity of the

Nash equilibria. Hence, any leads to the same
values of the objective functions .

C. Proof of Theorem

It follows from [15, Th. 4.3] that the sequence generated by
the proximal decomposition algorithm described in Algorithm 1
converges to a solution of the game if the following
conditions are satisfied: (a) the mapping function is mono-
tone on ; and (b) the regularization parameter is such that
the mapping is strongly monotone on ,
for any given . Both conditions are proven next.

Proof of Theorem : In this appendix, we derive ad-
ditional conditions on the grid cost functions per unit of
energy that guarantee the monotonicity of

on , with
defined in (14). We assume next that the requirements given by
Theorem 1 are satisfied.
The mapping is monotone on if and only if the Ja-

cobian matrix satisfies [15, eq. (4.8(i))]

(52)

Given in (20), the partial Jacobian matrices of
are

(53)

(54)

where , ,
and are diag-
onal matrices. By defining

and decomposing vector as , where
, we can rewrite the left-hand

side of (52) as in (55)–(56) at the bottom of the page. Observing
the first term in (55), we are already in the position to state that,
as long as , cannot even be positive definite: in
fact, we can have that with for ,
whereas we cannot guarantee to be strictly convex (i.e.,

) for these users.9 Hence, let us now introduce

(57)

so that we can express the left-hand side of (52) as

(58)

(59)

Let us now concentrate on the term in (56). Note that, under
condition (22) in Theorem 1(a),
at any time-slot , . Then, it follows that [see (60)

9Recall that best-response algorithms such as [15, Alg. 5.1] converge under
sufficient conditions that imply the strict monotonicity of on . It is
not difficult to show that such requirement forces , which is too
restrictive and cannot be guaranteed.

(55)

(56)



ATZENI et al.: NONCOOPERATIVE AND COOPERATIVE OPTIMIZATION OF DISTRIBUTED ENERGY GENERATION AND STORAGE 2469

at the bottom of the page] where we have defined
, , and the sets

(61)

Then, assuming for instance that and re-
calling the inequality in (60), we have that

(62)

(63)

where in (63) we have used

(64)
On the other hand, when , we know that

(65)
and, following similar steps, we obtain

(66)

Let us consider the lower bound in (63): the term in (56) satisfies

(67)

with

(67) (68)

and, by substituting back in (56), it holds that

(69)

Then, invoking the Cauchy-Schwartz Inequality [39, eq.
(3.2.9)]:

(70)
it follows that

(71)

(72)

The result in (72) can be equivalently obtained by considering
the lower bound in (66), which simply corresponds to swapping

and in (67)–(71). Finally, the inequality in (52) is sat-
isfied as long as

(73)

Therefore, is monotone on if (73) is satisfied, and this
completes the proof of Theorem 2(a).

if

if
(60)
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Proof of Theorem : Here, we derive the condition on the
regularization parameter for the convergence of Algorithm 1
to one of the Nash Equilibria of the game . By [15,
Cor. 4.1], it is sufficient to choose large enough such that the
matrix is a P-matrix, where

if

if

(74)

with

(75)

where is the partial Jacobian matrix defined
in (53)–(54), and denotes the smallest
eigenvalue of .
In the proof of Theorem 2(a), we have shown that, under the

conditions of Theorem 1, is monotone on , for
any given , implying that
[15, eq. (4.8(i))], , . Hence, we have that

.
Now, let us examine for , for

whom if or if and
otherwise. Considering the first and worst case,

we have:

(76)

(77)

with

(77)

(78)

(79)

On the other hand, for , we have that, for any
matrix , it holds , where

denotes the 2-dimensional unit matrix, and hence

if
otherwise

if
otherwise

(80)

Combining the previous results, we can state that

(81)

(82)

where we have considered the worst case of .
Then, is a P-matrix if the condition in (83)–(84) at the

bottom of the page is fulfilled [15, Prop. 4.3]. Evidently, the

(83)

(84)

(87)

(88)

(89)
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previous inequality is verified for any regularization parameter
satisfying

(85)

Finally, note that

(86)

In consequence, we can substitute the term on the right-hand
side of (86) into (85), and this s completes the proof of
Theorem 2(b).

APPENDIX II
COOPERATIVE DSM APPROACH

A. Proof of Theorem

By [17, Th. 2], Algorithm 2 converges to a stationary solution
of the social problem in (31) if the following conditions are satis-
fied: (a) the objective function in (32) is convex
on for any , ; (b) the regularization

parameter satisfies , where
denotes the Lipschitz constant of on and
is defined in (75). Recall that the individual strategy sets in
(12) are closed and convex and that the set is bounded.
Condition (a) is satisfied under the setting of Theorem 1.

Therefore, we just need to prove that (36) implies condition
(b) above. Recalling that ,
and the definitions of the partial Jacobian matrices of

given in (53)–(54), the previous state-
ment comes readily from (87)–(89) at the bottom of the previous
page, with denoting the Hessian of and defined
as in (13). This concludes the proof of Theorem 3.
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