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On MMSE Crossing Properties and Implications in
Parallel Vector Gaussian Channels
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Abstract—The scalar additive Gaussian noise channel has the
“single crossing point” property between the minimum mean
square error (MMSE) in the estimation of the input given the
channel output, assuming a Gaussian input to the channel, and the
MMSE assuming an arbitrary input. This paper extends the result
to the parallel vector additive Gaussian channel in three phases.
1) The channel matrix is the identity matrix, and we limit the
Gaussian input to a vector of Gaussian i.i.d. elements. The “single
crossing point” property is with respect to the signal-to-noise ratio
(as in the scalar case). 2) The channel matrix is arbitrary, and
the Gaussian input is limited to an independent Gaussian input.
A “single crossing point” property is derived for each diagonal
element of the MMSE matrix. 3) The Gaussian input is allowed
to be an arbitrary Gaussian random vector. A “single crossing
point” property is derived for each eigenvalue of the difference
matrix between the two MMSE matrices. These three extensions
are then translated to new information theoretic properties on
the mutual information, using the I-MMSE relationship, a funda-
mental relationship between estimation theory and information
theory revealed by Guo and coworkers. The results of the last
phase are also translated to a new property of Fisher information.
Finally, the applicability of all three extensions on information
theoretic problems is demonstrated through a proof of a special
case of Shannon’s vector entropy power inequality, a converse
proof of the capacity region of the parallel degraded broadcast
channel (BC) under an input per-antenna power constraint and
under an input covariance constraint, and a converse proof of the
capacity region of the compound parallel degraded BC under an
input covariance constraint.

Index Terms—Entropy power inequality (EPI), Gaussian broad-
cast channel, Gaussian compound broadcast channel, Gaussian
noise, I-MMSE, minimum mean square error (MMSE), multiple-
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input multiple-output (MIMO), mutual information, parallel
vector channel, single crossing point.

I. INTRODUCTION

T HIS paper considers parallel vector channels, with an ar-
bitrary input distribution and additive standard Gaussian

noise. These channels are a subset of the important family
of multiple-input multiple-output (MIMO) additive Gaussian
noise channels, which have been extensively investigated in
the literature. For most Gaussian channel models studied in
information theory, Gaussian signaling happens to be optimal,
from point-to-point channels, to multiple-access channels
(MAC), and broadcast channels (BC) [1, Chs. 9 and 15],
[2], [3]. The methods used to prove this optimality were not
easy to come across, even when considering scalar Gaussian
channels. For example, in order to prove that Gaussian inputs
are optimal for the scalar Gaussian BC, Bergmans employed
Shannon’s entropy power inequality (EPI) [4]. The solution
for the MIMO Gaussian BC came only 30 years later in [2],
using a new enhancement approach. Since then, several other
proofs were derived, using different tools, such as the extremal
inequality in [5], the de Bruijn identity in coordination with
Dembo’s inequality in [6], and the “single crossing point”
property presented by Guo et al. in [7]. The “single crossing
point” stemmed from the I-MMSE relationship, a fundamental
relationship between estimation theory and information theory
revealed by Guo et al. in [8].
The relationship between estimation theory and information

theory goes back to the late 1950s, when Stam [9] used the de
Bruijn’s identity to prove Shannon’s EPI, and then in the early
1970s when the mutual information was represented as a func-
tion of the causal filtering error by Duncan [10] and Kadota
et al. [11]. The I-MMSE relationship, given for discrete-time
and continuous-time, scalar and vector additive Gaussian noise
channels, deepens the connection between these two fields [12].
Specifically, for a scalar additive Gaussian noise channel

(1)

where is standard Gaussian additive noise, then, regardless of
the input distribution of , the mutual information, ,
and minimum mean square error (MMSE) in the estimation
of given the observation , , are related (as-
suming real-valued inputs and outputs) by

(2)
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where is the derivative with respect to , and

(3)

The work in [8] has been extended in several directions, among
which we have the additive Poisson noise channel [13], [14],
the general additive noise channel [15], arbitrary channels [16],
representation of the relative entropy as a function of the differ-
ence between the mismatched MMSE and the matched MMSE
in [17] and [18], and others. One important extension, on which
we heavily rely, is the one done by Palomar and Verdú in [19],
where they obtain the gradient of the mutual information with
respect to different parameters of the MIMO channel.
Going back to the “single crossing point” property, one of

the goals in [7] was to show the applicability of the I-MMSE
relationship as a tool to solve information-theoretic problems.
Specifically, the authors of [7] examined the scalar Gaussian
BC and gave an alternative proof for the optimality of Gaussian
inputs. In order to show this, Guo et al. defined the following
function in [7]:

(4)

where the simplified notation will be used when there is no
confusion about the distribution of . It was shown that
has at most a single crossing point of the horizontal axis. In other
words, the first term, which is the MMSE assuming a standard
Gaussian input, may be smaller than the second term in some
range of SNR values (note that the parameter is the SNR);
however, once the two terms are equal, at some , the MMSE
of the standard Gaussian input remains greater than the MMSE
of the arbitrary input for all , and the function remains
nonnegative. This property, together with the I-MMSE relation-
ship, provides the missing link to derive a simple and elegant
converse proof of the capacity region of the scalar Gaussian BC.
The “single crossing point” was derived only for the scalar

additive Gaussian channel, as can be seen from the definition
of the function . The motivation of this study is to extend
this property to the vector Gaussian channel. We consider the
following general channel model:

(5)

where is a standard Gaussian random vector and is a square
and diagonal channel matrix known to the receiver(s). In the
vector case, the scalar MMSE does not capture all the needed
information, and we need to resort to the matrix extension, the
MMSE matrix defined as

(6)
from which we can see that, in general, the MMSE matrix

depends on the channel , but whenever the
channel coefficients depend on other parameters ,
we will write . Observe that the standard scalar MMSE
value in the vector case can be easily recovered from the
MMSE matrix as follows:

(7)

TABLE I
THREE PHASES OF THE “SINGLE CROSSING POINT” PROPERTY

EXTENSION DONE IN THIS PAPER

For the important case when the input distribution of is
Gaussian with covariance matrix , we will use the fol-
lowing notation:

(8)

where we assumed that is of full rank. As in the case of
, whenever the channel coefficients depend on other param-

eters , we will write . Another important
quantity is the MMSE given for a specific output, , de-
fined as

(9)

Although not specified explicitly, depends on the
channel matrix/parameters. Note that .
Interestingly, when the input distribution of is Gaussian,

is independent of and the following equality holds for
all : . Finally, given all these quantities
we can define the main player in this study: the MMSE matrix
difference (analog to in the scalar case)

(10)

(11)

(12)

where, similarly to the scalar case in (4), we will use the simpli-
fied notation when the distribution of and the covari-
ance matrix of the Gaussian distribution are clear from the
context. Note that there is no requirement that the covariance of
the random vector be equal to .
The extension of the “single crossing point” to the vector

Gaussian channel (5) is done in three phases, summarized in
Table I. Note that in all three phases, the arbitrary input distri-
bution over is general.
In the first phase, the dependence remains on a scalar param-

eter—the . This is obtained by setting in the gen-
eral MIMOmodel in (5). We further limit our observation to the
comparison of an arbitrary input distribution with the subset of
Gaussian random vectors with i.i.d. elements. For this case, we
show that the “single crossing point” property extends smoothly
to any linear function of the form , where
is a positive-semidefinitematrix. Although this is the simplest

scalar-to-vector extension, the proof is not straightforward. In
order to demonstrate the applicability of this result, we extend
the proof of the special case of Shannon’s EPI, where one of
the two random variables is Gaussian, done in [7], to the vector
case.
Proceeding with the scalar-to-vector extension, we assume

that the channel matrix is diagonal; thus, our dependence is
now on a vector parameter. In this setting, we have two distinct
results, given in phases 2 and 3, that cannot be trivially deduced
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from each other. In phase 2, we limit the Gaussian distribution,
to which we compare, to any independent Gaussian distribution
characterized by its diagonal covariance matrix, . Under this
assumption, we show that a “single crossing point” property ex-
ists for each and every diagonal element of . This
is not a straightforward extension of the scalar property, since
the elements of the random input vector are, in general, not
independent. Together with the I-MMSE relationship, this result
provides some interesting properties of the mutual information,
and its applicability is demonstrated by providing a simple con-
verse proof for the parallel Gaussian BC capacity region under
an input per-antenna power constraint.
The third phase, which is the main result of this study, does

not require any further assumptions (apart from the diagonal
channel matrix). That is, we compare an arbitrary input distri-
bution with any general Gaussian input distribution, with co-
variance . In this setting, we show that a “single crossing
point” property exists for each and every eigenvalue of the ma-
trix . Surely, this is not a straightforward exten-
sion of any of the previous results. Moreover, the results of
phase 2 cannot be trivially deduced from the results of phase
3, since restricting only the Gaussian covariance to be diag-
onal does not guarantee that the eigenvalues of will be on its
diagonal. The applicability of this result is demonstrated with
two information-theoretic problems: the converse proof of the
parallel Gaussian BC capacity region under an input covari-
ance constraint and the converse proof of the compound par-
allel Gaussian BC capacity region under an input covariance
constraint.
All three results fall back to the scalar “single crossing point”

property result [7], [20] when both the arbitrary input vector
and the Gaussian input random vector are restricted to have

independent elements.
Much of this work regards the behavior of functions around

zeros, the existence and amount of actual crossings of the hori-
zontal axis. Thus, before proceeding with the technical content
of this paper and, in order to make these observations rigorous,
we require the next definitions which will be used throughout
this paper.

Definition 1: Given a function continuous within a
neighborhood of , we say that a negative-to-nonnegative zero
crossing occurs at if, and only if, and there
exists a positive value such that for
and for .

Definition 2: Given a function continuous within a
neighborhood of , we say that a nonnegative-to-negative zero
crossing occurs at if, and only if, and there
exists a positive value such that for
and for .
Similar definitions can be given for positive-to-nonpositive

and nonpositive-to-positive zero crossings. Another required
definition is the following:

Definition 3: Given a function continuous within a
neighborhood of , we say that a negative–zero–positive
crossing occurs at if, and only if, a negative-to-nonega-
tive zero crossing occurs at and there exists a positive
such that for and a nonpositive-to-pos-
itive zero crossing occurs at .

Similarly, we can define a positive–zero–negative crossing.
The remaining of this paper is organized as follows. Section II

considers the first phase of our extension from scalar to vector,
in which case the dependence is on the scalar parameter, . In
Section III, we provide the framework in which we handle the
assumption of a diagonal channel matrix, . This framework
is relevant for phases 2 and 3 of our scalar-to-vector extension.
In Section IV, we consider phase 2 of our extension, where we
limit our observations to an independent Gaussian input distri-
bution. Section V considers phase 3, where we compare the ar-
bitrary input to any general Gaussian input distribution.
Notation: Straight boldface denotes multivariate quantities

such as vectors (lowercase) and matrices (uppercase). Upper-
case italic denotes random variables (boldface if we consider
random vectors rather than random variables), and their realiza-
tions are represented by lowercase italics. The set of -dimen-
sional positive-semidefinite matrices is denoted by . The el-
ements of a matrix are represented by . The operator

represents a column vector with the diagonal entries
of matrix , and represents a diagonal matrix whose
nonzero elements are given by the elements of vector . The su-
perscript denotes the transpose. The operator denotes
the trace function, and denotes the determinant function.
The operator denotes the Schur product, that is

. The operator denotes the Jacobian matrix of
with respect to [21]. The operator , for any dif-

ferentiable function , and matrix , is a
matrix with the following elements: .

Note that we also consider the conditioned version of the pre-
viously defined quantities. That is, when the random vector
depends on the random vector , we require, for example, a
conditioned version for the MMSE and the matrix given for
a specific value of . In this case, both quantities depend
on an additional parameter , i.e., and

(the precise definitions given in Section IV-B).

II. SCALAR MIMO CHANNEL

As pointed out in Section I, we begin our study with the sim-
plest multivariate extension of the result in [7, Prp. 16], that is,
we consider that the scalar random variables involved in the
model in (1) become random vectors. In other words, in this
section, we consider the following model:

(13)

where the input random vector is arbitrarily distributed
and follows a standard Gaussian distribution. Observe
that (13) is obtained by setting in the vector model
in (5).
Moreover, we further limit our discussion in this section to

the comparison with a Gaussian input with i.i.d. elements, i.e.,
we assume that .
Thus, for the settings in this section, the general MMSE ma-

trix difference function in (12) simplifies to

(14)

where plays the role of the estimation SNR.



BUSTIN et al.: ON MMSE CROSSING PROPERTIES AND IMPLICATIONS IN PARALLEL VECTOR GAUSSIAN CHANNELS 821

A. Single Crossing Point

Motivated by the “single crossing property” of pre-
sented in [7, Prp. 16], an immediate question that comes to mind
is “does this property extend to the MIMO scenario?” Our hy-
pothesis was that for the setting in (13) this property will have
a simple extension. Thus, we examine the simplest scalar func-
tion of the MMSE matrix difference function of (14), that is, we
consider some linear combination of it. Accordingly, we define

(15)

(16)

where is a weighting matrix.
The “single crossing point” property of extends natu-

rally to the function , for a specific subset of ma-
trices . This result is given in the next theorem.

Theorem 1: Let be a positive-semidefinite matrix.
Then, the function , defined in (16), has no
nonnegative-to-negative zero crossings and, at most, a single
negative-to-nonnegative zero crossing in the range .
Moreover, assume that is a negative-to-non-

negative crossing point. Then:
1) ;
2) is a strictly increasing function in the range

;
3) for all ;
4) .
Proof: We start with the following three lemmas that are

instrumental for this proof.

Lemma 1: Let be a positive-semidefinite matrix
and let the random vector be arbitrarily distributed.
Then, we can always find a random vector such that
the number of nonnegative-to-negative and negative-to-non-
negative zero crossings of is the same as those of

.
Proof: See Appendix A1.

Lemma 2: Let be a random vector such that
. Then, for every , we have

(17)

with equality if and only if is a Gaussian vector with i.i.d.
elements of variance .

Proof: See Appendix A2.

Lemma 3: Let be a square matrix. The derivative
of the function with respect to is given by

(18)
Proof: See Appendix A3.

With these three lemmas at hand, we are now ready to con-
tinue with the proof of Theorem 1.
Since we are assuming that the matrix is positive semidef-

inite and the distribution of is arbitrary, from Lemma 1, we
see that we can restrict our study of to that of

. For the sake of simplicity, throughout this proof
we will use .
Now, according to Lemma 2, for the case where

, the function has no zeros and
the statement in Theorem 1 is true. In addition, if is
Gaussian distributed with covariance matrix equal to ,
then , which is also consistent with Theorem 1.
Thus, from this point, we can assume that

and that is not a Gaussian vector with covariance matrix
. Now, for we have

as required.
From the smoothness of as a function of , as done

in [7, Prp. 16], in order to prove that no nonnegative-to-nega-
tive and at most one negative-to-nonnegative zero crossings of

can occur, we only need to show that the derivative of
is positive for all values of for which .

Observe that implies that

(19)

Now, particularizing Lemma 3 for , we have that

(20)

(21)

(22)

(23)

(24)

where (21) follows directly from (19); in (22), we have defined
as the column vector whose entries are all 1s; (23) follows from
Jensen’s inequality; finally, (24) follows from [22, Prp. H.9].
Observe that the inequality in (24), which holds for values

of such that , also proves the second item in
Theorem 1 and the third one follows directly from the inexis-
tence of nonnegative-to-negative zero crossings. Furthermore,
regarding the fourth item, it is clear that ,
as both terms in tend to zero.

Remark 1: Note that the aforementioned theorem also holds
for the normalized function, . Specifically, for the case
of , this is simply the difference between the MMSE of
a general Gaussian random variable, with variance , and the
averageMMSE of the elements of the random vector .

Remark 2: For negative-semidefinite , it can easily be
seen from the proof of Lemma 1 that has the
inverse properties, since it is a mirroring of some
over the x-axis. This is to say that it has at most a single posi-
tive-to-nonpositive zero crossing and, if such a crossing exists,

will be nonnegative at , strictly decreasing
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up to the crossing, nonpositive after the crossing, and will tend
to zero as .

Remark 3: For indefinite , “single crossing point” proper-
ties, such as those shown in Theorem 1, do not hold in general.

B. Application: A Proof of the Special Case of Shannon’s
Vector EPI, Where One of the Two Random Vectors Is Gaussian

We now show that Theorem 1 can be used to prove the special
case of Shannon’s EPI, where one of the two random vectors is
Gaussian [1, Th. 17.7.3], similarly as it was done in [7] for the
scalar case. Precisely, we will show that

(25)

for any independent -dimensional vectors and as long as
the differential entropy of is well defined and is Gaussian
distributed with a positive-definite covariance matrix .
We define to be an -dimensional Gaussian vector with

covariance and independent of both and . Thus,
without making any assumptions on the covariance matrix of ,
we can find such that the following equality holds:

(26)

Since is positive definite, there exists an invertible matrix
such that . Defining , ,

and , we have the following chain of equalities:

(27)

(28)

(29)

(30)

(31)

(32)

where we have used the function defined in (7) and the
integral expression for the entropy function in [8].
Now, from (29) together with (26), it follows that

(33)

which, from the integral expression in (32), further implies that
the (smooth) integrand must have, at least, one zero crossing.
However, from Theorem 1, we know that can
have, at most, one zero crossing. Consequently, in this case,

must have exactly one zero crossing. Also,
from Theorem 1 and (33), we can infer that there exists some

such that ,
and . Thus, it immediately
follows that for finite , and

(34)

(35)

It is now straightforward to see that

(36)

(37)

(38)

(39)

(40)

which is exactly (25) up to scaling in , whichwe can always
take equal to 1. We note here that the I-MMSE relationship was
used in [23] to prove Shannon’s EPI, Costa’s EPI, and also the
generalized EPI for linear transformations of a random vector.

III. FROM SCALAR TO VECTOR CHANNELS:
DEFINITIONS AND PRELIMINARIES

In the previous section, we discussed the simple model pre-
sented in (13). We have shown that the “single crossing point”
property initially proved for the scalar channel in [7] extends
very smoothly and intuitively to this model. The reason for the
smooth transition is that even though we are considering a mul-
tivariate scenario, all elements of the input vector undergo the
same effect in the channel. They are all amplified by and dis-
torted by additive standard Gaussian noise. From a more tech-
nical viewpoint, when one wants to search for a “single crossing
point” property, one must define some scalar function of some
scalar parameter, for which the property holds. In the model of
(13), the intuitive choice is simply to take the trace of theMMSE
as a function of . And indeed, this is just one possible linear
combination included in Theorem 1, for which we have shown
that the property can be extended.
Taking the next step, from this initial extension to the gen-

eral model of (5), is a harder task. Moreover, there is no single
method of doing so. In fact, there are two degrees of freedom
in this transition. First of all, there is a need for some scalar pa-
rameter that will define . This parameter will be equivalent
to the parameter in the scalar case or the simple model of
(13). Second, there is a need for some scalar function of the
matrix . In the simple model of (13), we defined the func-
tion which was simply taking some linear (pos-
itive-semidefinite) combination of the elements of the matrix.
The trace function is one example of such a combination, which
is also the most intuitive extension; however, in the general
model (or even the parallel model, which we will discuss later)
the “single crossing point” property does not hold, in general,
for the trace function. Thus, our goal is to find a “single crossing
point” property that will be both elegant and, more importantly,
useful and applicable.
As such, in this study we narrowed our investigation to the

subset of parallel channels or diagonal matrices , for which
we have the following result.
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Lemma 4: For any two diagonal channel matrices, and
, such that , there exists a path such that

the following holds.
1 For all , and is a diagonal matrix.
2 For all , and is a diagonal matrix.
3 .
4 and where .
5 The diagonal elements of go to in a linear rate.
Proof: We need to define a function for each diagonal

element of the matrix . It suffices to choose any nonnega-
tive function such that the area from 0 to will equal

and the area from to will equal .
Given that, we can set the function to be .
The entire path will be given by

(41)

As required, this path passes between the zero matrix at ,
at , and at . Since are chosen nonnegative for

all , we have a nonnegative and monotonically nondecreasing
path for all . The aforementioned construction guarantees that
both and will be diagonal matrices for all . More-
over, we may also assume that the functions plateau after
complying with all other requirements, that is, from onward.
This assures that goes to in a linear rate.

Note that the aforementioned lemma can be extended to
matrices for , using a similar
construction.
Under the aforementioned detailed limitation, of restricting

ourselves to parallel channels, we examine two different cases:
phases 2 and 3 of our extension.
Before proceeding to examine these two cases, we require a

preliminary result. The basis for the applicability of the “single
crossing point” property in the scalar case and in the simple
model of (5) is the I-MMSE relationship [8]. This is still the case
in the extensions we are considering next; however, we require
also an extension of the I-MMSE result, derived by Palomar
and Verdú in [19], valid for any general deterministic channel
matrix,

(42)

where is the MMSE matrix defined in (6). This relationship
was derived for complex-valued variables; however, it holds
verbatim for real-valued variables. Assuming that the channel
coefficients can be written as a function of a single parameter
and using line integral of a vector field [24], we can rewrite the
aforementioned relationship as an integral over this parameter,
which results with the following expression:

(43)

(44)

where we have used the following definition:

(45)

This also carries over to the conditioned case as follows:

(46)

(47)

IV. VECTOR CHANNEL: COMPARING WITH AN INDEPENDENT
GAUSSIAN DISTRIBUTION

We begin our analysis of the extended model (5), limited to
parallel channel matrices, by assuming that the Gaussian co-
variance matrix, defining the matrix , is that of an indepen-
dent distribution, that is, , throughout this section.
Recall, nonetheless, that remains completely arbitrary. More
precisely, we consider the following matrix:

(48)

(49)

Under these assumptions we will see, in Section IV-A, that a
“single crossing point” property occurs for each and every di-
agonal element of the matrix . After extending this result to
the conditioned case, in Section IV-B, we will use the I-MMSE
relationship, in Section IV-C, to show the effect of this prop-
erty on information-theoretic quantities, and more specifically
on the mutual information. Finally, in Section IV-D, we will put
these results to use on a variant of the degraded BC, in order to
show their applicability to information theory problems.

A. Single Crossing Point Property on the Diagonal Elements
of

As pointed out previously, our main result, in this section, is
an extension of the “single crossing point” property. Precisely,
we show that the property extends on each and every diagonal
element of thematrix . This result is given in the next theorem.

Theorem 2: The diagonal entries of the matrix-valued func-
tion , defined in (48), have no nonnegative-to-
negative zero crossings and, at most, a single negative-to-non-
negative zero crossing in the range . Moreover, let

be the negative-to-nonnegative crossing point for
. Then:

1) ;
2) is a strictly increasing function in the
range ;

3) for all ;
4) assuming , we have that

.
5) is a continuous and monotonically in-
creasing function in .
Proof: Before giving the actual proof, let us first present

an intermediate result.
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Lemma 5: Let be a random vector such that
, where . Then, for every ,

we have
(50)

with equality if and only if is Gaussian distributed, inde-
pendent of the other entries of and such that .

Proof: See Appendix A4.

Now, according to Lemma 5, for the case where
, the function has no zeros and the state-

ment in Theorem 1 is true. In addition, if is Gaussian dis-
tributed (and independent of the other entries of the vector )
with variance equal to , then

, which is also consistent with Theorem 1.
Thus, from this point, we can assume that

and that is not Gaussian distributed, independent of the
other entries of , and with . Now, for
we have as required.
Similarly as was done in the proof of Theorem 1, in order

to prove that no nonnegative-to-negative and at most one
negative-to-nonnegative zero crossings of
can occur, we only need to show that the derivative of

with respect to is positive for all values of for
which . Observe that
implies

(51)

Now, from (48), it is clear that, in order to compute the deriva-
tive of , we first need the derivative of :

(52)

(53)

where, in the last step, we have used the assumption that
is a diagonal matrix for all . From [22, eq. (131)], we have

(54)

(55)

Recalling the definition
in (45), we are now ready to compute the derivative of

, which reads as

(56)

(57)

(58)

(59)

(60)

where (56) follows from the fact that for Gaussian input
distributions (not necessarily i.i.d.), the conditional MMSE

matrix does not depend on the observation , i.e.,
. Equation (57) is due to the fact that the

entries of the Gaussian input distribution are independent,
and thus, its MMSE matrix is diagonal; (58) is due to the fact
that , as shown in Lemma 4; (59) follows from the
assumption that and (60) can be derived
from Jensen’s inequality.
Observe that the inequality in (60), which holds for values of
such that , also proves the second item in
Theorem 2 and the third one follows directly from the inexis-
tence of nonnegative-to-negative zero crossings. Regarding the
fourth item, it is clear that , as both
terms in the expression of in (49) tend to zero,
when . Finally, the last property is a di-
rect consequence of the definition of the function
(49).

We now define the following function:

(61)

and also

(62)

for which we can give the following two corollaries.

Corollary 1: Let be any random vector. The func-
tion has the following properties.
1) .
2) It has at most a single negative–zero–positive crossing in
the range .

3) When , we have that
.

4) If , then for all . Fur-
thermore, is a continuous and monotonically
increasing function in .
Proof: The first three properties follow from Theorem 2

and the fact that is zero at , is nonnegative for
all other values of , and goes to in a linear rate,
as shown in Lemma 4. The fourth property is a direct result of
Lemma 5 and the fifth item of Theorem 2.

Fig. 1 illustrates this property, in which the negative–
zero–positive crossing of is simply a nega-
tive-to-nonnegative zero crossing and, thus, agrees with the
negative-to-nonegative zero crossing of .

Corollary 2: Let be any random vector. The func-
tion is either negative for all , or there exists

such that for all the function is non-
negative. Moreover, when , we have that

, and if for all , then
for all .

B. Conditioned Case

Before proceeding to understanding the implications of the
aforementioned results on information-theoretic quantities, we
would like to extend these results to the conditioned case.
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Fig. 1. Example of the function (dashed) and the matching function (solid). Both have the same single negative-to-nonnegative
zero crossing in the range .

Let us begin with the conditioned MMSE matrix. We first
consider the following matrix quantity:

(63)

(64)

where is a random vector distributed according to .
The conditionedMMSEmatrix is simply the expectation of (63)
according to the distribution of the random vector

(65)

Another important quantity that needs to be extended to the con-
ditioned case is

(66)

(67)

where, as in the unconditioned case, this function, in gen-
eral, depends on both and ; thus, we have

, where the expectation is over . However,
when the input distribution of is Gaussian, is
independent of . In a similar manner, we have the following:

(68)

and, thus, we also have

(69)

Using these definitions, we can now extend the results of The-
orem 2 to the conditioned case in the following theorem.

Theorem 3: Let form a Markov chain.
Then, the diagonal entries of the matrix-valued function

, defined in (69), have no nonnega-
tive-to-negative zero crossings and, at most, a single nega-
tive-to-nonnegative zero crossing in the range .
Moreover, let be the negative-to-nonnegative
crossing point for . Then:
1) ;
2) is a strictly increasing function in the
range ;

3) for all ;
4) when , we have that

;
5) is a continuous and monotonically in-
creasing function in .
Proof: If is Gaussian distributed (independent of

and independent of the other entries of the vector ) with vari-
ance equal to , then ,
which is also consistent with Theorem 3. Thus, from this point,
we can assume that is not “Gaussian distributed, indepen-
dent of and independent of the other entries of , and such
that .”
In this conditioned case, it is harder to determine, up front,

all cases in which the function has no zeros.
Thus, contrary to the approach used in the proof of Theorem 2,
we first prove that no nonnegative-to-negative and at most one
negative-to-nonnegative zero crossings of
can occur. The first property is a direct consequence of this,
and there is no need to determine the exact conditions under
which the function has no zeros. This approach could have
also been used in proving Theorem 2; however, in the uncondi-
tioned case we can easily determine the set of cases in which

has no zeros.
Similarly to the proof of Theorem 2, in order to prove that

no nonnegative-to-negative and at most one negative-to-non-
negative zero crossings of can occur, we
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only need to show that the derivative of
with respect to is positive for all values of for which

. According to (56) and (58), we have
the following lower bound:

(70)

(71)

Now we can take expectation over on both sides and attain
the following:

(72)

(73)

(74)

(75)

(76)

where (73) is due to (71), (75) follows from the assumption
, and (76) can be derived from Jensen’s

inequality.
Observe that the inequality in (75), which holds for values of
such that , also proves the second item
in Theorem 3 and the third one follows directly from the inexis-
tence of nonnegative-to-negative zero crossings. Regarding the
fourth item, it is clear that , as
both terms in the expression of in (69) tend
to zero, when . Finally, the last prop-
erty is a direct consequence of the definition of the function

in (69).

We now extend the definition of the function
(61) and the function (62) to the conditioned case

(77)

(78)

and also

(79)

(80)

for which we can extend corollaries 1 and 2 as follows.

Corollary 3: Let form a Markov chain such
that the random vector has covariance ma-
trix . The function has the following
properties:
1)
2) It has at most a single negative–zero–positive crossing in
the range .

3) When we have that
.

4) If , then for all .
Furthermore, is a continuous and mono-
tonically increasing function in .
Proof: The first three properties follow directly from The-

orem 3 and the fact that is zero at and nonnegative
for all other values of and goes to in a
linear rate, as shown in Lemma 4. The fourth property is a direct
result of Lemma 5, and the fifth property in Theorem 3.

Corollary 4: Let form a Markov chain. The
function is either negative for all , or there exists

such that for all the function is
nonnegative. Moreover, when we have
that , and if for
all , then for all .

C. Properties of the Mutual Information

So far, we have seen properties of the matrix or,
more precisely, of its diagonal elements.We have seen that these
properties extend naturally to the conditioned case, and also to
the function and its conditioned version. In this
section, our goal is to use these results to derive new properties
on the mutual information between the input and the output of
parallel Gaussian channels. In order to derive these results, we
put to use the I-MMSE relationship, as given in (43)–(44) and
(46)–(47).
For the sake of compactness, we will write the properties

in this section only for the more general, conditioned case,
from which one can easily derive the respective unconditioned
theorems.

Theorem 4: Let form a Markov chain. Assume
an independent Gaussian input , with covariance , such
that for all

(81)

where
(82)

(83)

Then, for all .
Proof: Let us define as a random vector

with independent elements when conditioned on , and with
distribution of each pair being the same as

the marginal distribution of the corresponding pair .

Thus, is basically the MMSE of

from and , which is

where the equality holds due to the fact that the channel matrix
is diagonal for all and is standard Gaussian. Using

these definitions, we can give the following special case of (47):

(84)

(85)

(86)
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Putting this together with the assumption, we have

(87)

Now, due to Corollary 4 we can conclude that there exists
such that for all

and as a result, for all . Now,
for all we have that . Thus, if
the negative–zero–positive crossing of
is at , the negative–zero–positive crossing of
is at . From this, we can conclude also that

for all . Finally, since this holds
for every , it also holds for the summation over , i.e., for the
function , concluding the proof.

We are now ready to give the main theorem of this section.

Theorem 5: Let form a Markov chain. For any
, there exists an independent Gaussian input

with covariance such that the following properties hold.
1) for all .
2) , where and

are as defined in (82) and (83), respectively.
3) for all .
Proof: We provide a constructive proof, and show how one

can build an independent Gaussian input distribution complying
with all three requirements.We begin by examining themeaning
of the second requirement. First, recall the I-MMSE relationship
in the parallel setting, given in (47)

(88)

Now, the second requirement is equivalent to the following
equality:

(89)

Thus, wewish to show the existence of an independent Gaussian
input distribution which complies with requirements 1, 3, and
(89). There are different ways to attain equality in (89); how-
ever, since we need only to show the existence of a specific
independent Gaussian distribution, we follow one possible ap-
proach, which is to require the following:

(90)

Now, according to the fourth property in Corollary 3 we know
that

(91)

for all when , and that it is continuous and
monotonically increasing in the value of (and trivially
negative, for all , when ). Thus, there exists a
number such that setting re-
sults with the equality in (90). Due to the second property in
Corollary 3, we know that either for all
or that there exists a single negative–zero–positive crossing in
the range . In both cases, the setting
results with for all . Since there
exists such for every , we comply also with requirements 1
and 3, and conclude the proof.

Remark 4: Note that the aforementioned choice of does
not necessarily imply . However, we can conclude
that .
The following is a simple corollary of the aforementioned

theorem.

Corollary 5: Given any arbitrary independent input distri-
bution over , with covariance , and any , there
exists an independent Gaussian input with covariance
such that

(92)

(93)

(94)

D. Application: The Degraded Parallel Gaussian BC Capacity
Region Under Per-Antenna Power Constraint

We now show that Theorem 5 can be used in providing a con-
verse proof for the degraded parallel Gaussian BC capacity re-
gion under an input per-antenna power constraint. We consider
the following model:

(95)

where and are standard additive Gaussian noise
vectors independent of different time indices , and and

are diagonal positive-semidefinite matrices such that
. is the random input vector, and it is assumed

independent of different time indices . Note that is the time
index and should not be confused with the scalar parameter
which is used as a “MIMO parameter,” i.e., the parameter
determines the channel matrix .
We consider an input per-antenna power constraint

(96)

Since we have a degraded BC, we can use the single-letter ex-
pression given in [25]

(97)

where is an auxiliary random vector over a certain alphabet
that satisfies the Markov relation . The fol-
lowing proof was originally given for the scalar Gaussian BC
in [7] and [20] and we now extend it to the degraded parallel
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Gaussian channel. Using Lemma 4, we can construct a path such
that

(98)

where and is diagonal for all .
Now, assume a pair such that has covariance .

According to Theorem 5, there exists an independent Gaussian
vector with covariance matrix such that the following
properties hold:

(99)

(100)

(101)

Using the I-MMSE relationship (47), we can write

(102)

(103)

(104)

Using the aforementioned properties on (104), we have that for
any

(105)

where the second transition is due to (99) and the inequality is
due to (100). Thus, we have shown the existence of an indepen-
dent Gaussian vector with covariance matrix , with the
following properties:

(106)

(107)

(108)

Using these properties on the single-letter expression (97), we
obtain the following outer bound:

(109)

(110)

where is a diagonal matrix with for all . This outer
bound is tight and the achievability is well known using super-
position coding. This approach can be extended to the -user
scenario as shown in Appendix B.

V. VECTOR CHANNEL: COMPARING WITH A GENERAL
GAUSSIAN DISTRIBUTION

This section provides phase 3 of our “single crossing point”
extension (see Table I), and extends the analysis of the previous
section. More precisely, we continue looking into the model
given in (5), limited to parallel channel matrices; however, we
now allow the Gaussian covariance matrix, defining the matrix
, to be any proper covariance matrix. In other words, we no

longer limit ourselves to independent Gaussian inputs. For this,
more general setting, we will see in Section V-A that a “single
crossing point” property occurs for each and every eigenvalue
of the matrix . After extending this result to the conditioned
case, in Section V-B, we will use the I-MMSE relationship, in
Section V-C, to show the effect of this property on informa-
tion-theoretic quantities, and more specifically on the mutual
information. We will relate these results to the Fisher informa-
tion in Section V-D. Finally, in Sections V-E and V-F we will
put these results to use in the degraded BC capacity converse
proof, for both the compound and noncompound scenarios.

A. Single Crossing Point for Each Eigenvalue of

In this section, we prove the main result of this paper:
showing that each eigenvalue of the matrix has at most
a single negative-to-nonnegative zero crossing. This is, to
our understanding, not an intuitive extension of the “single
crossing point” property, which emphasizes the importance of
the eigenvalues in the analysis of MIMO scenarios.
For the proof of the main theorem, we require the following

lemma, which is also interesting on its own.

Lemma 6: The following lower bound holds:

(111)
where was defined in (45) and assumed a positive-semidef-
inite diagonal matrix for all (see Lemma 4).

Proof: See Appendix A5.

We are now ready to proceed to the main result of this paper:

Theorem 6: Each eigenvalue of has, at most, a
single negative-to-nonnegative zero crossing of the horizontal
axis.

Proof: Loosely speaking, the proof is based on proving that
once an eigenvalue has become (or is) nonnegative, it cannot be-
come negative. Thus, from the (weak) continuity of the eigen-
values as a function of , that follows from [26, App. D], the
eigenvalues can cross the horizontal axis, at most, once. Also
from continuity arguments, it is easy to see that we must limit
our study of the eigenvalues of to the values of
where the matrix is singular (i.e., a subset of its
eigenvalues are zero) as it is the only possible situation where
a zero crossing can occur. Finally, throughout this proof and
for the sake of simplicity we will use the simplified notation

because the entire proof
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is given for any constant setting of the input random vector
and the Gaussian covariance .
We begin by stating a few supporting results and giving some

preliminary definitions.

Lemma 7: Let and be two -dimensional posi-
tive-semidefinite matrices, i.e., , . Then, there
exists an invertible matrix such that both and
are diagonal matrices.

Proof: See Appendix A6.

Let us consider the simultaneous decomposition of
according to Lemma 7 as

(112)

where is an invertible matrix and and are
diagonal matrices. It will be convenient to define , for

, according to

(113)

where is the same as defined in (112).
The remainder of the proof is split into two parts. In the first

part, we will prove that each eigenvalue of has at most
a single negative-to-nonnegative zero crossing. In the second
part, we will show that this property transfers to , thus com-
pleting the proof. Coincidentally, both parts of the proof will be
based on contradiction arguments, i.e., we assume that the op-
posite of what we want to prove is true and, then, end up with
an inconsistency.
1) Single Crossing Point for the Eigenvalues of : Let

us start by presenting a result on the differentiability of the
eigenvalues of a symmetric matrix with respect to some scalar
parameter , which was studied by Rellich in [27, Ch. 1].1

Lemma 8 [27, Theorem on p. 57]: Suppose that is an
-dimensional symmetric matrix defined on some open interval

. Suppose that the derivative exists and it is
continuous for each . Then, there exist functions

, , with continuous derivatives in ,
such that

(114)

for some properly chosen orthonormal system of vectors ,
.

Since is a symmetric matrix whose derivative
exists, Lemma 8 ensures the existence of con-

tinuous and differentiable functions such that they are equal
to the eigenvalues of the matrix , for any choice of .
These functions will be denoted from now on by , for

.
Now, let us assume that, at , of these eigenvalues

(with ) are equal to zero, i.e., , for
. Furthermore, we also assume that, from these eigen-

values that are zero at , of them (with ) have a non-

1Rellich studied the eigenvalue differentiability for Hermitian matrices. We
specialized his result for the real case studied in this paper.

negative-to-negative zero crossing at . To sum up, we as-
sume that the differentiable functions with
have a nonnegative-to-negative zero crossing at .
Let us now present a property of differentiable functions that

contain nonnegative-to-negative zero crossings.

Lemma 9: Assume that has a nonnegative-to-negative
zero crossing at and that has a continuous derivative
with respect to . Then, there exists a positive value such that

(115)

(116)

Proof: From Definition 2, (115) follows immediately for
any . The proof for (116) follows easily from the mean
value theorem and elementary calculus.

Applying Lemma 9 to the set of functions , with
, we readily obtain

(117)
where we have written to make explicit the dependence
of on the specific value of . For the sake of convenience, we
want to eliminate the dependence of on . A possible method
to eliminate this dependence is to define

(118)

where, for the sake of convenience, we have restricted the values
of in the interval , with being an arbitrary fixed
positive value (observe that since can be made arbitrarily
small, we can always guarantee that ), and
where the second equality follows from the fact that the opti-
mization set is a closed interval and the third one follows from

.
Consequently, after this simplification, we have that,

assuming that the differentiable functions , with
, have a nonnegative-to-negative zero crossing at

, they must fulfill

(119)

Now, we can particularize the aforementioned expression for

the case where and where we also choose
. We obtain

(120)

From this point, our goal is to prove that the two conditions
in (120) cannot hold at the same time. For that purpose, we
need an expression for the derivative of the eigenvalue function

. Since we have that for
(i.e., the multiplicity of the zero eigenvalue is ), we cannot
guarantee that the multiplicity of the eigenvalue is
equal to 1. From this point, we assume that the multiplicity of

is .
Consequently, we now require the following result by Lan-

caster in [28, Th. 7] (it is also reproduced in [21, Ch. 8, Sec. 12,
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Th. 13]), which gives us an expression for the derivatives of the
multiple eigenvalues.2

Lemma 10 [28, Th. 7]: Under the assumptions in Lemma 8,
let us consider the case where has a repeated eigenvalue
with multiplicity , i.e., .

Assume further that the matrix spans the space associ-
ated with the repeated eigenvalues (i.e., contains one par-
ticular set of eigenvectors associated with the repeated eigen-
value). Then, the derivatives of the eigenvalues, which coin-
cide at , are the eigenvalues of the matrix

(121)

Using Lemma 10 and denoting by the upper-left
submatrix of matrix , we can write

(122)

(123)

where denotes the eigenvalue function of a generic
matrix . Observe that, thanks to the fact that

is a diagonal matrix, in (122) we have chosen

(124)

with being the identity matrix and being the
zero matrix. Moreover, the inequality in (123) is due to

the fact that implies both that and
that [26, Cor. 7.7.4(c)] and the lower bound on
the derivative of the matrix given in Lemma 6. We further
used the definition

(125)

Observe that since is a positive-semidefinite diagonal ma-
trix (see Lemma 4), we have , which further implies
that , for all . Finally, the upper-left submatrix
of matrix has been denoted by , and the last transi-
tion in (123) is due to the fact that both and are
diagonal matrices.
In order to proceed with the proof, we require the following

lemma.

Lemma 11: Let us consider a positive-semidefinite matrix
and two diagonal positive-semidefinite matrices and

such that . Then, we have that

(126)

where denotes the maximum eigenvalue function.
Proof: See Appendix A7.

2The assumptions [28, Th. 7] are different from those in Lemma 8, but, once
existence of the derivatives of the eigenvalues has been established, their ex-
pression has to be the same.

Now, using the fact that is positive semidefinite, and
the first condition in (120) that for ,
which further implies that
we can use Lemma 11 to conclude that

(127)

Last result together with (122)–(123) implies that there
exists some such that and

, which clearly contradicts the
conditions in (120).
Since the contradiction described previously holds for any ar-

bitrary values for , , and (under the condition
), we have thus proved that no nonnegative-to-negative zero
crossing can occur for the eigenvalues of or, equiva-
lently, we have proved that the eigenvalues of have at
most a single negative-to-nonnegative zero crossing of the hor-
izontal axis.
2) Single Crossing Point for the Eigenvalues of : The

relation between the sign of the eigenvalues of and those
of is stated in the following lemma.

Lemma 12: For all as a function of , the number of positive,
zero, and negative eigenvalues of and coincide.

Proof: The proof follows straightforwardly from the defi-
nition of , given in (113), and Sylvester’s law of inertia
for congruent matrices [29, p. 5].

In the first part of the proof, we have shown that has,
for each eigenvalue, at most, a single negative-to-nonnegative
zero crossing. From this and Lemma 12, we can conclude that
the number of negative eigenvalues of both functions cannot
increase. Now, let us assume that has an eigenvalue of
multiplicity with a nonnegative-to-negative zero crossing at
, i.e., and for ,

for some positive and for . In order to refrain
from increasing the number of negative eigenvalues, negative
eigenvalues at must become zero. However, if we examine
the number of eigenvalues at for a sufficiently small ,
the eigenvalues that were negative at are still negative at
, and the total number of negative eigenvalues has increased,

thus contradicting the possibility of a nonnegative-to-negative
zero crossing of the multiplicity eigenvalue of . This is
valid for any arbitrary , thus concluding our proof.

The following corollary is a simple consequence from
Theorem 6.

Corollary 6: If for a given the function ,
then for all the function .

B. Conditioned Case

The results of the previous section can be simply extended to
the conditioned case. Given an extension of the lower bound on
the derivative of , the extension of all other results is trivial.
Thus, we briefly give the extension of the lower bound with a
full proof (given in Appendix A8) and then for completeness we
restate the main result of this paper, for the conditioned case,
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without detailing the proof, which follows precisely the proof
given previously.

Lemma 13: The following lower bound holds:

(128)

where was defined in (45), and assumed a posi-
tive-semidefinite diagonal matrix for all (see Lemma 4).

Proof: See Appendix A8.

Thus, the following theorem follows.

Theorem 7: Each eigenvalue of has, at most,
a single negative-to-nonnegative zero crossing of the horizontal
axis.

Proof: The proof follows the same steps as those in the
proof of Theorem 6.

C. Properties of the Mutual Information

So far we have seen the “single crossing point” property of
the matrix , or more precisely, of its eigenvalues.
As seen, this property also extends naturally to the conditioned
case. In this section, our goal is to relate this result to the mu-
tual information between the input and the output of a parallel
Gaussian channel. As expected, the advantage of this result is
in the comparison between the mutual information assuming
that the input to the channel has an arbitrary distribution and
the mutual information assuming that it has a Gaussian distri-
bution with an arbitrary covariance, . Our goal is to make
use of this result through the I-MMSE relationship, as given
in (43)–(44) and (46)–(47). The results given in this section
can be viewed as supporting theorem/lemmas that make our
“single crossing point” property applicable through the use of
the I-MMSE relationship.
For clarity, we will write the results in this section only for,

the more general, conditioned case, from which one can easily
derive the respective unconditioned theorems.
According to (47), the difference between the mutual infor-

mation assuming that the input to the channel has an arbitrary
distribution and the mutual information assuming that it has a
Gaussian distribution with an arbitrary covariance is

(129)

Thus, we are interested in the properties of

where we have used the fact that the trace of a matrix is the
sum of its eigenvalues [26, Th. 1.2.12]. The following theorem
extends the “single crossing point” property of the eigenvalues
of to the eigenvalues of .

Theorem 8: Each eigenvalue of has, at
most, a single negative-to-nonnegative zero crossing of the hor-

izontal axis. Moreover, the eigenvalues of
have the following property:

Proof: For a nonsingular and due to similarity [26,
Cor. 1.3.4], we can write the following:

Recalling that is a positive-semidefinite diagonal ma-
trix, we have an eigenvalue of a congruent transformation.
Thus, the proof follows similarly to the second part of the
proof of Theorem 6 (given in Section V-A2), concluding the
preservation of the signs of the eigenvalues of
in and, as a result, concluding that all
eigenvalues have, at most, a single, negative-to-nonnegative
zero crossing of the horizontal axis.
If is singular, we can assume without loss of generality

that the diagonal element is zero. Due to that, the row
of is all zeros, that is, one of the eigen-
values of is zero (and its sign is also zero).
The rest of the eigenvalues can be calculated from the reduced
problem, the matrix without the row
and column. Recalling that is a diagonal matrix, this is
simply the product of and both without
the row and column. This procedure can be repeated as long
as the reduced matrix is singular. When the reduced ma-
trix is nonsingular, we again follow the proof of Theorem 6.
Thus, we have shown that the eigenvalues preserve the sign

of the eigenvalues of with the additional possi-
bility of falling to zero when becomes singular.

The next two lemmas provide the link between the afore-
mentioned results, regarding the behavior of the eigenvalues of
the matrix and the matrix ,
and the mutual information. Thus, they facilitate the usage of
these results on information theory problems, as will be shown
in the sequel. More particularly, so far we discussed the behavior
of each and every eigenvalue of the matrix and
thematrix , which holds true for any proper
choice of with no regards to the random vector . The next
two lemmas identify the existence of specific Gaussian inputs
which have unique properties with respect to the given random
vector .

Lemma 14: Assume that is an arbitrary distributed
random vector. For any , there exists a Gaussian
input covariance matrix such that the following hold:
1)
2) ;
3)
Proof: See Appendix A9.

Note that the aforementioned claim can be extended to a gen-
eral nonsingular , that is, not necessarily diagonal, by
defining . Due to the nonsingularity of ,

the mutual information is unchanged, i.e.,

. Requirements 1 and 3 are preserved under any
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congruent transformation, specifically under the transformation
.

The next lemma is an extension of Lemma 14 that will be
prove useful in the sequel.

Lemma 15: Assume that for a given input distribution on the
pair there exists a Gaussian random vector, , with
covariance such that for some we have that

1) ;

2)
Thus, there exists a Gaussian random vector with covari-
ance such that the following holds:
1) ;
2) ;
3)
Proof: The proof follows the proof of Lemma 14, where

instead of using (196) as a trivial upper bound we use

(130)

and the assumptions stated previously.

D. Connections to Fisher Information

In addition to the MMSE matrix, another important quantity
in estimation theory is the Fisher information matrix [30]. Its
connection to information theory has been established in the late
1950s and has been attributed to de Bruijn [9]. The de Bruijn
identity relates the derivative of the differential entropy to the
Fisher information matrix defined as

(131)

where the expectation is over . Note that this is a special form
of the Fisher Information matrix (with respect to a translation
parameter) which does not involve an explicit parameter as in its
most general definition [30]. In [8], the authors have shown that
the de Bruijn identity is equivalent to the I-MMSE relationship.
Using this connection, the de Bruijn identity has been extended
to a multivariate version in [19, Th. 4]. For our purposes, we
will use the following notation:

(132)

when we have some arbitrary input distribution on the random
vector . For the case of a Gaussian distribution on with co-
variance matrix , we will write . We further note
that, as in the case of the MMSE matrix, whenever the channel
coefficients depend on other parameters, , we will
write . We can now extend the idea of the the matrix
to the Fisher Information, using the following definition:

(133)

As in the case of the matrix , the matrix has some distinct
properties. Using the relationship between the two matrices, we
can derive these properties directly from the results of the pre-
vious sections. We first require the following lemma, given by
Palomar and Verdú in [19].

Lemma 16 [19, App. E]: Assuming the Gaussian additive
noise channel (5), the following connection between the Fisher
Information matrix and the MMSE matrix holds:

(134)

Proof: The result follows directly from (106) in [19] by
setting equal to the identity matrix and recalling that the
MMSE matrix in (106) is the MMSE matrix of , from
which it follows that .

We can now state the main result of this section.

Theorem 9: The matrix is related to the matrix
as follows:

(135)

Moreover, the properties given in Sections IV and V for the
matrix transfer to the matrix .

Proof: Equation (135) is obtained through the use of
Lemma 16. The properties given in Section IV regarding the
matrix transfer to the matrix , due
to the fact that is a diagonal positive-semidefinite matrix
for all . The properties given in Section V regarding the matrix

transfer to the matrix , since it is
simply a congruent transformation of (this was
explained in detail in part two of the proof of Theorem 6).

E. Application: The Degraded Parallel Gaussian BC Capacity
Region Under a Covariance Constraint

In this section, we show that the result of Section V-C can
be used to provide a converse proof for the degraded parallel
Gaussian BC capacity region under an input covariance con-
straint. We consider the following model:

(136)

where and are standard additive Gaussian noise
vectors independent of different time indices , and and

are diagonal positive-semidefinite matrices such that
. is the random input vector, and it is assumed

independent of different time indices .
We consider an input covariance constraint

(137)

where is some positive-definite matrix.
Since we have a degraded BC, we can use the single-letter

expression as given in (97). As in Section IV-D, we will follow
the proof given for the scalar Gaussian BC in [7] and [20]. Using
Lemma 4, we can construct a path such that

(138)

where and is diagonal for all .
Now, assume a pair with covariance for . Ac-

cording to Lemma 14, there exists a Gaussian random vector
with covariance such that the following properties hold:
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1) ;
2) ;
3) for all .
Using the I-MMSE relationship (47), we can write

(139)

(140)

Using the aforementioned properties on (140), we have that for
any ,

(141)

where (141) follows from property 2, and the inequality follows
from property 3 and Theorem 8.
Thus, we have shown the existence of a Gaussian random

vector with covariance matrix , with the following
properties:

(142)

Using these properties on the single-letter expression (97), we
obtain the following outer bound:

(143)

(144)

This outer bound is tight and the achievability is well known
using superposition coding. This approach can be extended to
the -user scenario as shown in Appendix C.

F. Application: The Compound Degraded Parallel Gaussian
BC Capacity Region Under a Covariance Constraint

In this section, we show that the results of Section V-A can
also be used to provide a converse proof for the compound de-
graded parallel Gaussian BC capacity region under an input co-
variance constraint. We consider the following model:

(145)

where , , are standard additive
Gaussian noise vectors independent of different time indices ,
and , , are diagonal positive-
definite matrices such that

(146)

Since these matrices are diagonal, there exist matrices
for such that

(147)

Note that the equivalence between conditions (146) and (147)
is not true in general (for nondiagonal matrices), as explained
in [31]. is the random input vector, and it is assumed
independent of different time indices . We consider an input
covariance constraint

(148)

where is some positive-definite matrix.
Before proceeding, we provide the following single-letter ex-

pression for the capacity region of this user memoryless
channel. This is a simple extension of [31, Lem. 4].

Lemma 17: Consider a memoryless compound BCwith input
, outputs , , and auxil-

iary random outputs with . All
outputs are defined by their conditional probability functions:

and . Furthermore, assume that these outputs

are stochastically degraded such that there exists some distribu-
tion such that

form a Markov chain for every choice of . The
capacity region of this channel is given by the union of the rate
tuples satisfying

(149)

where , , and the union is over all probability
distributions satisfying

(150)

Proof: See Appendix D.

Using Lemma 17, we prove the following theorem.
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Theorem 10: The capacity region of the compound de-
graded parallel Gaussian BC (145) is given by the following
expression:

(151)

where are some positive-semidefinite matrices such that
.

Proof: According to Lemma 4 (and the remark after this
lemma) for any set of where , we can
construct a diagonal path such that

(152)

with

Now, let us examine a tuple of rates on the boundary of the
capacity region: . Assume that this tuple
has been attained by the joint distribution on the
tuple with covariance as required by the constraint
(148).
We begin by looking at the following partial Markov chain:

(153)

Now, assuming that are the outputs, we can use
Lemma 22 (given in Appendix C) which states that there exist
Gaussian inputs , with covariance matrices such

that

(154)

(155)

and such that , for and
. Furthermore,

(156)

for all .
Using this result, and according to Corollary 6 we know that

for all . This holds for any

diagonal path, such that . Now, using
Theorem 8 and (154) we can conclude that

(157)

Due to the Markov chain

(158)

Equation (157) is particularly valid for

(159)

for any . Equation (149) can be written ex-
plicitly, as follows:

(160)

Using (159) and the trivial bound on , we can upper
bound these expressions as follows:

(161)

Defining

(162)

(161) becomes the following set of upper bound:

(163)
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where are some positive-semidefinite matrices such that
.

The aforementioned upper bounds can be attained simultane-
ously using a joint Gaussian distribution on the tuple

(164)

as follows:

(165)

where for , independent of
each other, and where are positive-semidefinite matrices
such that . This concludes the proof of the ca-
pacity region.

VI. SUMMARY

In this study, we extended the “single crossing point” prop-
erty from the scalar setting to the parallel vector setting. We
have shown three different “single crossing point” properties,
given in three phases of extension from scalar to vector. These
properties cannot be trivially deduced from each other. All three
emphasize the basic optimality of the Gaussian input distribu-
tion in the Gaussian regime. The most general of these prop-
erties, given in the third phase, shows a “single crossing point”
property for each of the eigenvalues of the matrix ,
the difference between the MMSE matrix assuming an arbitrary
Gaussian input, and the MMSE matrix assuming an arbitrary
input distribution. We demonstrate the applicability of these
properties on several information theoretic problems: a proof
of a special case of Shannon’s vector EPI, where one of the two
random vectors is Gaussian, a converse proof of the capacity re-
gion of the parallel degraded BC under per-antenna power con-
straint and under an input covariance constraint, and a converse
proof of the capacity region of the compound parallel degraded
BC under an input covariance constraint.
An open question is: Can we extend the “single crossing

point” property to the general MIMO channel? Note that
although the optimality of the Gaussian input is known for
several MIMO Gaussian multiterminal problems, we cannot
necessarily conclude the existence of a “single crossing point”
property. However, the implications of a general “single
crossing point” property go beyond the specific applications
shown here, and are also of interest on their own [12].

APPENDIX

A) Proofs of Lemmas:
1) Proof of Lemma 1: Since is positive semidefinite, we

can always write such that and
. Then, it can be checked that

(166)

(167)

(168)

(169)

where we have defined . Now, from (169) and the
fact that , the desired result follows.

2) Proof of Lemma 2: Let us consider the random vector
, whose covariance is given by and denote its

eigenvalues by . Recalling the model in (13), it is well
known that [30].
Thus, we have that

(170)

(171)

(172)

Now, realizing that the right-hand side in (172) is a
Schur-concave function (it follows directly from the con-
cavity of ) and that, from the statement of Lemma 2, we
have , it follows directly from majorization
theory [32] that the right-hand side in (172) is maximized when

are uniformly distributed, i.e., .

3) Proof of Lemma 3: From the definition in (16), it fol-
lows that

(173)
The expression for can be computed from the
results in [22] and applying the chain rule as

(174)

where we have used that ,
, and

(see [22, App. A] for the definitions of
the matrices and and some of their properties).
Plugging (174) into (173), the desired result follows.

4) Proof of Lemma 5: For any arbitrarily distributed
random vector , with zero mean (assumed w.l.o.g.) and
covariance matrix given by , it is well known that

, from which it follows that [26, Obs.
7.1.2]

(175)

where we recall that is the MMSE matrix attained
assuming a zero mean Gaussian input with covariance matrix
equal to . Observe that equality in (175) is attained if and
only if .
Furthermore, from the fact that dependence among entries

can only improve the MMSE, we have

(176)
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where represents the MMSE matrix when the
entries of the input vector are independent Gaussian random
variables (thus, with diagonal covariance matrix). Observe that
equality in (176) is obtained if and only if the entries of the
Gaussian distribution on the left-hand side are independent.
Now, the desired result follows immediately from the fact that

the right-hand side in (176) is an increasing function of .

5) Proof of Lemma 6: We first provide the derivative of
the MMSE with respect to the parameter . Using (52), we have

(177)

Using the result ([22, eq. (131)]),

(178)

where was defined in (9). The second equality in (178)
is due to the fact that is diagonal. Thus, we can write the
derivative of as

(179)

since (45). We can put this ex-
pression into a matrix form as follows:

(180)

where is the column of the matrix . Using
the fact that for a Gaussian input distribution does not
depend on and thus [22], we
can obtain the following lower bound on the derivative of the
matrix :

where the inequality is due to Jensen. This concludes the proof
of the lemma.

6) Proof of Lemma 7: Since and are two general
positive-semidefinite matrices, the dimension of the intersection
of their null spaces denoted by fulfills

(181)

Let be an orthonormal basis of the -dimensional
space such that is an orthonormal basis of

and define . We thus have

(182)

where and are the nonzero lower
right square submatrices of and , respectively.
Observe that now we have .
Now, from [26, Sec. 4.5,Prob. 8(e)], we have that and

are simultaneously diagonalizable by an invertible matrix if
and only if and are also simultaneously diagonalizable.
Consequently, we have reduced our proof to showing the simul-
taneous diagonalization of two positive-semidefinite matrices
such that the dimension of the intersection of their null spaces
is 0.
From this point, we can thus assume the following:

(183)

(184)

(185)

The next step is to prove that and have no common
isotropic vector, which is defined in [33, Def. 1.7.14] as a vector

such that and are both simulta-
neously fulfilled.
Using the expression in (183), we have that

(186)

which can also be applied to . Consequently, if a
vector fulfills and , we have nec-
essarily that . However, since

and, similarly, , from (185) we have that
, which implies that and have no

common isotropic vector. Now, from [33, Th. 1.7.17] we have
that and are simultaneously diagonalizable.

7) Proof of Lemma 11: For this proof, we require the fol-
lowing result.

Lemma 18: Let us consider two positive-semidefinie ma-
trices and . Then, we have

(187)

where we recall that denotes themaximum eigenvalue
of matrix .

Proof: The proof follows directly from [26, Th. 4.3.1] re-
calling that .

Now, it is clear that for a positive-semidefinite matrix and
two positive-semidefinite diagonal matrices and we
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have that , . Now, from the aforementioned
lemma we have

(188)

where the last equality follows from [26, Th. 1.3.20] and the re-
mark, for square matrices, in the paragraph preceding it. Finally,
since and they are both diagonal, we have that

and, using [26, Obs. 7.7.2] and [26, Cor. 7.7.4]
we can write

(189)

from which the desired result follows.

8) Proof of Lemma 13: We extend the lower bound derived
in Lemma 6 to the conditioned case, that is, we assume
. From (180), for the conditioned case we have the following:

(190)

Taking expectation according to on both sides, we have

(191)

The derivative of is then given in (192), shown
at the bottom of the page, where the inequality is due to Jensen.
This completes the proof of the lemma.

9) Proof of Lemma 14: We first claim that w.l.o.g. we can
restrict the proof to . This is shown by redefining

. Now, if is nonsingular, then this redefinition

does not change the mutual information i.e.,

, and requirements 1 and 3 are preserved under

any congruent transformation. If is singular, the problem
can first be reduced in size, since is diagonal for all .
Thus, from this point on, we will assume .
We provide a constructive proof, and show how one can build

a Gaussian input distribution such that all three requirements are
fulfilled. We begin by rewriting requirement 1 as a condition on
the matrix rather than on the covariance ma-
trix . We do so by defining a new matrix, which is the dis-
tance of the MMSE matrix from the linear MSE ma-
trix . We proceed by showing that there exists a fraction
such that by defining to be that fraction of the
newly defined matrix, we comply also with requirement 2.
As explained previously, we begin by rewriting requirement

1 in terms of the matrix . Requirement 3 is al-
ready a requirement on the matrix and is as
follows:

(193)

The MMSE for the Gaussian input is

(194)

From (193) complies with the following:

(195)

Note that the aforementioned equation connects
with . Thus, given a specific sub-

stitution of we have a complete definition of
the Gaussian input distribution. Similarly, the MMSE assuming
an optimal linear estimator of (only from ) is given by

(196)

and we have that

(197)

(192)
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Thus, we can define

(198)

Note that is completely defined by the input random vector
. Inserting (198) into (195), we have

(199)

We now require the following supporting lemma.

Lemma 19: Assume is an arbitrary distributed
random vector. For any , there exists a Gaussian
random vector with covariance matrix such that:
1) ;
2) ;
3) .
Proof: See Appendix A10.

Note that according to Lemma 19, we have that for
there exists a Gaussian random vector

, which ensures that .
On the other hand, if we have, ac-
cording to (199), that in which case we have

. Moreover, from (199) we
can observe that instead of requirement 1, i.e., ,
we may simply require (199); thus,
requirements 1 and 3 can be written as follows:

(200)

where is defined in (198). The question is whether there ex-
ists such that will also attain requirement
2, i.e., . From the afore-
mentioned, we know that

(201)

where

(202)

(203)

Thus, (201) can be rewritten as

(204)

We now need the following result.

Lemma 20: Let us define the function

(205)

For , , and , the function, is continuous
and monotonically decreasing in for .

Proof: The proof is similar to the proof of Lemma 10 in
[6].

In our case, we have

(206)

(207)

(208)

and

(209)

Thus, according to Lemma 20, there exists such that
. That is

(210)

where the last equality is due to (199). That is,

(211)

and since we have that
, as required. To conclude, we can construct a Gaussian input

distribution, complying with all three requirements, as follows:

(212)

where is derived from the equality in (210). This completes
the proof of the lemma.

10) Proof of Lemma 19: We first show that there exists a
covariance matrix such that requirements 1 and 2 are ful-
filled. Then, we will show, using contradiction, that requirement
3 is also fulfilled.
First note that requirement 2, i.e., , com-

pletely defines

(213)
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where we have used the expression in (194), and using the ex-
pression in (196) we can show that is an invertible
matrix since

(214)

We now need to check that the first requirement holds

(215)

and

(216)

Thus, we have shown that given an arbitrary input we can find
the required .
We nowwant to show that .

For any Gaussian random vector with covariance
such that , we have , and thus,

. Using Theorem 8, assuming that we
do not have for all ,3 and the I-MMSE
relationship (47), we have

(217)

Now, let us assume that

(218)

The function is continuous in the value of its
eigenvalues, since

(219)

We can construct by reducing by the value of all eigen-
values of . According to (218), we can find a small enough
, such that the following inequality still holds:

(220)

but this contradicts (217) and by that proves that

(221)

This concludes the proof of the lemma.

3 for all ; then all mutual information equals zero
regardless of the input distribution and the lemma holds trivially.

B) Converse Proof of BC Capacity Under Per-Antenna
Constraints for -Users: We consider the degraded parallel
Gaussian BC channel:

(222)

where , , are standard additive Gaussian
noise vectors independent of different time indices (and
can be considered independent of each other), and ,

, are diagonal positive-semidefinite matrices such
that , for all . is the
random input vector and it is assumed independent of different
time indices .
We consider an input per-antenna power constraint:

(223)

Since we have a degraded BC, we can use the single-letter
expression given in [25]

(224)

where are auxiliary random variables, , ,
and the union is over all probability distributions satisfying

(225)

This is an extension of the proof given for the two-user case. We
begin by rewriting the single-letter expression (224) as follows:

(226)

and more explicitly

...

(227)

According to Lemma 4 (and the remark after this lemma), we
can construct a diagonal path such that

(228)

with . Now, assume a
distribution on the tuple

with covariance matrix
. We begin by proving the following lemma.
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Lemma 21: There exist independent Gaussian inputs
, with covariance matrices such that

(229)

and such that , for and
.

Proof: We will prove the above using induction.
The case of : This is identical to the proof given in

Section IV-D.
For a general : We assume that the above holds for and

prove for . Due to the Markov relation (225), we have that

(230)

and thus

(231)

where the inequality is, again, due to the Markov relation (225)
and the definition of the function , given in
(77). This provides us with the following inequality:

(232)

where the first inequality is due to (231) and the second is due to
the induction assumption on (229). Again, following the same
derivation as in the proof in Section IV-D, we know that there
exists an independent Gaussian input with covariance
such that

(233)

(234)

where (234) is true specifically for . Finally, from
(233) and (232) and the monotonically increasing property of

in (fourth property of Corollary 3),
and the fact that it is independent of all other entries in ,
we can conclude that . This concludes the
proof of the induction.

Now, inserting the aforementioned bounds (229) [with the ad-
dition of the trivial bound on , under the input per-an-
tenna constraint (223)] into the single-letter expression in (227),
we obtain the following outer bound:

...

(235)

where is a diagonal matrix with , and are
positive-semidefinite diagonal matrices such that

. The achievability of this
outer bound is well known using superposition coding.

C) Converse Proof of BC Capacity Under Covariance
Constraints for -Users: We consider the same setting as in
Appendix B, given in (222), but now with an input covariance
constraint

(236)

where is some positive-definite matrix.
As in Appendix B, since we have a degraded BC, we can use

the single-letter expression given explicitly in (227), with aux-
iliary random variables complying with the Markov chain as
detailed in (225). Furthermore, we construct a path as was done
in (228). Now, assume distribution
on the tuple with covari-
ance matrix . We begin by proving the following lemma.

Lemma 22: There exist Gaussian inputs , with co-
variance matrices such that

(237)

and such that , for and
. Furthermore, , for all
.

Proof: We will prove the above using induction.
The case of : This is identical to the proof given in

Section V-E.
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For a general : We assume that the above holds for and
prove for . Due to the Markov relation (225), we have that

(238)

from which we can conclude that

(239)

and thus

(240)

Since is a diagonal positive-semidefinite matrix for all ,
this leads to

(241)

Now, taking into account the induction assumptions on , to-
gether with (240) and (241), we have

(242)

(253)

(254)

(255)

(256)

(257)

(258)

(259)

(260)
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which can also be written as

(243)

These are the two conditions required for Lemma 15, with
. Thus, according to Lemma 15 there exists a

Gaussian random vector with covariance such that:
1) ;
2) ;
3)
Property 2 is equivalent to

(244)

and from property 3, Corollary 6, and Theorem 8 we can con-
clude the following:

(245)

Together with property 1, this concludes the proof of the
induction.

Lemma 22 provides us with Gaussian random vectors
with covariance matrices with the following properties:
1) , for and

;
2) , for

;
3) , for

.
Substituting these results into the single-letter expression (227)
and defining

(246)

provides the following upper bound:

(247)

where are some positive-semidefinite matrices such that
. This completes the converse proof.

The aforementioned upper bounds can be attained simultane-
ously using a joint Gaussian distribution on the tuple

(248)

as follows:

(249)

where for , independent of
each other, and where are positive-semidefinite matrices
such that . Thus, we attain the upper bounds for

as follows:

(250)

For , we obtain the following:

(251)

Thus, we have shown that (247) is the capacity region under the
input covariance constraint.

D) Proof of Lemma 17: The proof of this lemma follows
the proof of [31, Lem. 4], which is very similar to the well-
known proof for the capacity region of a degraded BC in [1].
The proof of the direct part relies on successive decoding at the
stronger user and is practically identical to that found in [1]. We
will detail the converse proof only.
Let denote a sequence of channel outputs of the th re-

alization of user . Let for denote themessage
indices, and denote the vector . Furthermore,
let be the th sample of and be the
set of all samples up to (including). We use similar notation
for all other random variables. As the capacity region depends
only on the marginals , we may assume without loss of

generality that indeed the mutual distribution is such that

(252)

form a Markov chain for every choice of .
Using Fano’s inequality and the fact that are indepen-

dent messages, an upper bound of for any
which holds for every is given in (253)–(260)
shown at the bottom of the previous page, where as

. The equality in (253) is due to the chain rule of mutual
information. The equality in (254) is due to the Markov chain

and the memoryless nature of the
channel, as can be seen in the identity given in (261) at the top
of the next page. The inequality in (255) follows from the fact
that conditioning decreases entropy. Equations (256) and (257)
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(261)

follow, again, from the Markov chain
and the memoryless nature of the channel. Equa-

tion (258) follows from the fact that conditioning decreases en-
tropy. In (259), we used the following definition of auxiliary
random variables:

(262)

Next, we replace the index with a random variable which
is uniformly distributed over the integers and define

. As the channel
is memoryless, we get

(263)

for all and for all . Note that as the channel is memoryless,
these auxiliary random variables satisfy the Markov chain de-
fined in (150). Moreover, from this definition one can easily
see that and the largest region will be attained when

. Finally, as the aforementioned inequalities hold for
every and every , we complete
the proof by taking to infinity.
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