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Abstract—Consider a unicast downlink beamforming optimiza-
tion problem with robust signal-to-interference-plus-noise ratio
constraints to account for imperfect channel state information
at the base station in a multiple-input single-output (MISO)
communication system. The convexity of this robust beamforming
problem remains unknown. A slightly conservative version of
the robust beamforming problem is thus studied herein as a
compromise. It is in the form of a semi-infinite second-order cone
program (SOCP) and, more importantly, it possesses an equiv-
alent and explicit convex reformulation, due to a linear matrix
inequality (LMI) description of the cone of Lorentz-positive maps.
Hence, the conservative robust beamforming problem can be
efficiently solved by an optimization solver. Additional robust
shaping constraints can also be easily handled to control the
amount of interference generated on other co-existing users such
as in cognitive radio systems.

Index Terms—Lorentz-positive map, quadratic matrix in-
equality, robust MISO downlink beamforming, SDP, semi-infinite
SOCP.

I. INTRODUCTION

I N multiuser communication systems, beamforming tech-
niques provide a powerful approach to transmit signals that

yield higher spectrum efficiency and larger downlink capacity
for the system. The base station (BS) is equipped with multiple
antennas, which allows the signals for different users to be
spatially weighted with beamforming vectors (beamvectors)
(see [1], [2]). In order to design the beamvectors, a basic
beamforming optimization problem formulation is to mini-
mize the transmission power while providing an acceptable
quality-of-service (QoS) to each user, as well as keeping
tolerable interference around some other directions.
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In a cellular unicast downlink (without considering limiting
the interference caused along somedirections), the beamforming
designproblemcanbesolvedbyconvexoptimization techniques,
e.g., semidefinite programming (SDP) relaxation (see [1]–[5]),
assuming that the perfect channel state information (CSI)
is available at the BS when optimizing the beamvectors.
In practical situations, however, the available CSI is not

perfect as it contains errors caused by estimation, limited channel
state feedback quantization, or feedback delays. Thus, the
design of beamforming robust to CSI errors is of great practical
interest and has been recently considered in a large number of
references (e.g., for multi-input single-output (MISO) systems
in the cellular context, see [1], [6]–[8] and references therein,
and for multi-input multi-output (MIMO) downlink systems,
see [9], [10] and the references therein). However, most of the
resulting robust downlink beamforming problems are inherently
non-convex and, consequently, no global optimality of an
efficient solution can be guaranteed theoretically. Nonetheless,
in [8], sufficient conditions are presented to constrain some
design parameters so that the robust beamforming problem
becomes convex and, in [7], an ellipsoid method is proposed for
a restricted (conservative) version of the robust problem. Note
that the robust beamforming designs in [8] and [7] consider
robust QoS constraints only (without external constraints),
while minimizing the total transmission power.
In modern communication systems, several nearby systems

employing a common frequency band may co-exist. This is to
make the best use of the frequency shortage in communication
systems.Examples includemultiple access systems,peer-to-peer
links, or cognitive wireless networks.When designing downlink
beamforming vectors, one may reasonably want to take into
consideration that the interference level caused to coexisting
systems must be kept under tolerable limits. This motivates the
introduction of the soft-shaping constraints on the beamvectors,
under the assumption of either perfect or imperfect CSI (see,
for example, [4], and cognitive radio (CR) [11]–[18] and
references therein).
In this paper, we first revisit the robust beamforming problems

of [8] and [7], and provide an equivalent and explicit convex
reformulation for the robust optimization problem considered in
[7]. The derived reformulation appears elegant and convenient
due to a profound recent result of linear matrix inequality (LMI)
description for the cone of Lorentz-positive maps [19]. Thanks
to this novel explicit convex characterization, the beamforming
optimization problem becomes very simple and one can make
use of existing optimization solvers, e.g.,SeDuMi [20]. Second,
we consider the robust beamforming optimization problem
involving not only the original QoS constraints, but also
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soft-shaping constraints to control the interference generated
on co-existing systems, also under the assumption of imperfect
CSI. The resulting robust beamforming optimization problem
therefore comprises two types of robust second-order cone
(SOC) constraints, and we reformulate it into a standard linear
conic program, resorting to the LMI characterization for the
cone of Lorentz-positive maps in [19] and a complex extension
of the LMI representation for a class of robust quadratic
matrix inequality (QMI) in [21]. The final reformulation of
the problem results in a standard linear conic program that can
be solved within polynomial-time computational complexity
and implemented in a convenient fashion.
This paper is organized as follows. In Section II, we introduce

the system model and formulate the optimal beamforming
problems in the cellular multiuser downlink. In Section III, we
study the LMI representation for the cone of Lorentz-positive
maps and build the SDP reformulation of the conservative
robust beamforming problem. In Section IV, we consider the
robust optimal beamforming problem involving the additional
robust soft-shaping constraints and reformulate it into a linear
conic program via QMI. Section V contains some illustrative
numerical results and Section VI draws some concluding
remarks.

II. PROBLEM FORMULATION

Consider a single-cell communication system with an
-antenna BS serving decentralized single-antenna re-

ceivers (users). The signal transmitted by the BS is the vector
, where the information signal

intended for receiver is temporally white with
zero mean and unit variance, and is the transmit
beamforming vector for receiver . The signal received by
user is given by

(1)

where is the channel vector between the BS and re-
ceiver , and is the additive zero-mean noise with vari-
ance . The received signal-to-interference-plus-noise ratio
(SINR) of user is then

(2)

The downlink beamforming problem with perfect CSI is formu-
lated as [6]:

(3)

where is the minimal acceptable SINR for user .
It is known that Problem (3) amounts to a second-order cone
program (SOCP) as follows (which is convex and solvable):

(4)

In the case that the CSI is not perfect, we model the -th
user’s uncertain channel as where is the
nominal channel vector (estimation) and is the perturbation
(channel estimation error) norm-bounded by , i.e.,
. Accordingly, the worst-case beamforming design problem

is the following non-convex robust optimization problem (cf.
[8])1:

(5)

It is shown in [8] that when the perturbation bounds are small
to some extent, or the number of transmit antennas is two (i.e.,

), the conventional SDP relaxation of (5) (cf. in [8]),
obtained by applying the -lemma (see e.g., ([22], p. 88), [24],
[25], Lemma 4.1 in Section IV-A) and dropping the rank-one
constraints , is tight:

(6a)

(6b)

(6c)

(6d)

Here, means that the complex Hermitian matrix
is positive semidefinite, i.e., , and the notation bullet
denotes the inner product between two matrices. However, it

remains to be understood whether (5) has an equivalent convex
reformulation in general2, notwithstanding existing numerical
simulations (see, e.g., [8], [18], [26]) showing that the SDP re-
laxation always gives a rank-one optimal solution with some
data sets.
Another interesting beamforming problem formulation is the

robust extension of the optimal beamforming problem (4):

(7)

1Besides the worst-case formulation of SINR, there is a so-called chance con-
strained formulation of SINR to treat stochastic data uncertainty (see the ro-
bust optimization lecture notes [22], and the paper [23]). The feasible set of the
chance constrained formulation very often is non-convex and a tractable safe
(conservative) approximation is usually considered (see ([22], pp. 30–31))
2A similar difficulty also exists for the MIMO downlink beamforming

problem, see e.g., [10] and [9].
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Note that the feasible set of (5)3 contains that of (7) (due to the
simple observation ),
and thus (7) is more conservative than the former. Observe that
(7) is a semi-infinite SOCP and hence convex, but that does not
mean that it can be solved efficiently.
Nevertheless, in [7], the authors present an iterative ellip-

soidal method for (7) and show its convergence within poly-
nomial complexity (see also [22]). In contrast, we herein show
that Problem (7) possesses an equivalent convex LMI reformu-
lation resorting to a recent profound result in [19], and thus can
be solved efficiently, e.g., using a solver like SeDuMi [20].

III. LORENTZ-POSITIVE MAPS AND ROBUST TRANSMIT
BEAMFORMING IN A CELLULAR MULTIUSER DOWNLINK

A. A Standard Form of Semi-Infinite SOCP for (7)
In this section, we will present an equivalent SDP reformu-

lation of Problem (7), resorting to a result on LMI descrip-
tion of a robust SOC constraint recently obtained in [19]. To
start with, let us rewrite (7) into a problem with real-valued
design variables. We denote the real and imaginary parts of

as follows:

(8)

and clearly and . Likewise,
are defined such that and
, respectively. Denote

(9)

and and are defined
analogously. Therefore, by letting

(10)

and

(11)

we can express Problem (7) as the following real-valued opti-
mization problem:

(12)

where represents the -dimensional SOC (also termed
Lorentz cone):

(13)

3For the prefect CSI case (cf. (3)), there is a full characterization of the fea-
sible region in [27]; since there are infinitely many SINR constraints in robust
problem (5), the feasible set could be empty especially when the perturbation
bounds are large to some extent.

Note that and are affine with
respect to (w.r.t.) , and that the optimal value of (12) is
the square root of that of (7).
To simplify the notations, we drop the arguments

in and , and
rewrite the second set of constraints of (12) equivalently into:

(14)

which is equivalent to

(15)

which in turn is recast into

(16)

where . To see the equiv-
alence between (15) and (16), we assume that (15) holds and

. If , then and we have
. Now, suppose that . From

the observation and (15), it follows that (16)
is true. The implication from (16) to (15) is trivial.
Let us denote

(17)

keeping in mind that is indeed affine w.r.t.
the design variables. We can finally rewrite (12) (or (7)) using
the Lorentz cone notation as:

(18)

In order to solve (18), let us deal with the second set of con-
straints, i.e., the robust SOC constraints. Define the set

(19)
The set (19) contains linear maps (or matrices) which take

to . Note that any Lorentz cone is self-dual. Thus,
we have another equivalent expression for the set as follows.
Lemma 3.1: The set in (19) is equivalent to the matrix

being Lorentz-positive, i.e.,

The set in (19) of all Lorentz-positive matrices forms a
closed convex cone, and the cone has an LMI description, as
shown in ([19], Theorem 5.6). Having such a convex LMI de-
scription of (19), we can claim that (18) has an equivalent SDP
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(or linear conic) reformulation. In order to present the theorem
and reformulate it in an implementable way, we need some basic
notions and facts to be introduced.

B. An LMI Characterization of the Cone of Lorentz-Positive
Maps

Let and be the set of all symmetric matrices
and the set of all skew-symmetric matrices, respectively,
and let stand for the -dimensional
linear space of biquadratic forms (cf. ([21], p. 1148)):

...
. . .

...

(20)

The set is a subspace of , and the orthogonal comple-
ment of it within is clearly the -di-
mensional subspace:

...
. . .

...

(21)

That is, . By the notations, it is immedi-
ately seen that where stands for the set
of positive semidefinite real symmetric matrices, and

(22)

where denotes the Kronecker product throughout the paper.
Given the vector (with ), it is

evident that amounts to the arrow matrix (generated
by )

...
...

...
. . .

...

(23)

being positive semidefinite.
Let with denoting the -th row of
(i.e., ), and denote by the arrow

matrix generated by the arrow matrices
(with ):

...
...

...
. . .

...

(24)

where and .
It is easily seen that and

, and that , where

is given. It is clear also that is matrix with element
substituted by (cf. ([22], p. 95)).

With the above notations in hand, we are ready to cite the
following result ([19], Theorem 5.6) as a lemma, albeit written
in a different way.
Lemma 3.2: Suppose that . Then a matrix

is Lorentz-positive, if and only if there is
such that

(25)

where is defined in (24).
By exploiting the notation in (21), the relationship in (22), and

Theorem 3.1 in [19], one can show the following which appears
easily implementable.
Proposition 3.3: Suppose that . Then a ma-

trix is Lorentz-positive, if and only if

(26)

Proof: See Appendix A.
Capitalizing on Proposition 3.3, we can derive an equivalent

condition for complying with (19). In other words, be-
longing to set in (19) is tantamount to the condition that there
is such that

(27)

which is an implementable LMI description for (con-
sidering that is affine in ).

C. Equivalent SDP Reformulation of Problem (7)

Considering that the robust beamforming problem (7)
amounts to (18), we obtain an identical form of linear conic
program (cf. [22]) for (7) and summarize it as follows.
Proposition 3.4: The robust MISO downlink beamforming

problem (7) is equivalent to the following linear conic program:

(28)

We remark that
is affine w.r.t. the design variables , and

hence so is , and that the set
defined in (21) is easily characterized as symmetric matrices
with skew-symmetric blocks.

IV. QUADRATIC MATRIX INEQUALITIES AND ROBUST
OPTIMAL BEAMFORMING

In a modern communication system4, one may be interested
in Problem (7) with some additional soft-shaping constraints to
limit the interference generated around certain co-existing ex-
ternal users (e.g., the primary users who are the license owners
of operating spectrum in the context of a spectrum sharing-
based CR network). In such a practical scenario, the following

4For example, the secondary transmissions in a spectrum sharing-based CR
network, see [16], [18]
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optimal beamforming problem is of interest (assuming that per-
fect CSI is available at the transmitter):

(29)

where is the tolerable interference generated to external
user . The soft-shaping (the second set of) constraints in (29)
is also termed interference temperature (IT) constraints or CR
constraints in the literature of CR network (cf. [12], [11]). Evi-
dently, Problem (29) is equivalent to the following SOCP:

(30)

thus can be solved with polynomial-time complexity.
When the CSI is not perfectly known at the transmitter, the

following robust optimization to account for the uncertainty of
CSI is considered:

(31)

where and are the nominal estimations (they are known
to the transmitter). In what follows, we will remove the super-
script prime in the robust soft-shaping constraints (as long as the
meaning of the notation is clear in the context) for the sake of
notational simplicity. Several related robust designs have been
studied in ([18], Problem (4)), [15], [12]. The SDP relaxation of
(31), similar to (6), is formulated as

(32a)

(6b), (6c) satisfied (32b)

(32c)

(32d)

(32e)

which is again obtained via the -lemma while relaxing the
rank-one constraints. In general, the convexity of the problem
(31) remains elusive, similar as in the situation of (5); in other
words, it is not known yet whether or not the SDP (32) will al-
ways have a rank-one optimal solution.
As a compromise, we consider the following robust (conser-

vative) beamforming design (similar to (7)):

(33)

aiming at an equivalent SDP reformulation of the semi-infinite
SOCP (33). We only need to handle the robust CR constraints,
considering that the robust SINR constraints have LMI repre-
sentations as shown in Section III. To proceed, let us start by
studying a specific class of robust QMIs.

A. Robust Quadratic Matrix Inequalities

The Hilderbrand theorem (cf. Lemma 3.2) presents an LMI
description for the set consisting of Lorentz-positive maps
(indeed the set is a cone). In contrast, the famous -lemma (see
e.g., ([22], Lemma 3.3)) gives another completely different
tool to derive an LMI characterization for a set of nonnegative
quadratic functions over a domain defined by a quadratic
function. In this subsection, we will extend the complex-valued
-lemma (see [28]) to a Hermitian matrix case. Let us first cite
the complex -lemma (see e.g., [28], [29]) in the following
general formulation.
Lemma 4.1: Suppose that the quadratic functions
are given as ,

where (the set of -by- complex Hermitian ma-
trices), , and . Suppose that there is such that

. Then, it holds that

(34)

if and only if there are , such that

(35)

Note that if Lemma 4.1 is applied to the second set of con-
straints in (33), then we can turn them into the corresponding
QMI constraints, i.e., (32c) with therein.
These are still computationally intractable. Nevertheless, as
shall be seen, the second set of constraints in (33) can be
transformed into robust LMI (a special type of robust complex
QMI) constraints. By employing Lemma 4.1, we will be able
to characterize the type of robust complex QMI (in a more
general form) via LMI (which is a slight extension of the finite
convex representation of real QMI in ([21], Theorem 3.5)).
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This leads to equivalent LMI reformulations for the second set
of constraints in (33).
To proceed, let us define the following four matrix inequality

systems:

(36)

(37)

(38)

such that

(39)

Note that in the above systems, the parameters and
could be of any proper dimensions so that the systems (36)–(39)
are well-defined. With the systems defined, we have the fol-
lowing theorem.
Theorem 4.2: It holds that the matrix inequality systems

(37)–(39) are equivalent to each other. Furthermore, if ,
then the four systems (36)–(39) are equivalent.

Proof: See Appendix B.
Based on the proof of the above theorem, we have an imme-

diate corollary as follows.
Corollary 4.3: If , then the following QMI

system is equivalent to (37)–(39):

(40)

B. Equivalent Convex Representation of Problem (33)

Employing the LMI description (39) for the robust QMI (37)
(or (36)), we can reexpress the second set of constraints of (33)
into LMIs. In fact, let , and then the robust
interference temperature constraints amount to the formulation:

which in turn is tantamount to

(41)

Setting

, and in (36),
one obtains (41). In other words, (41) is a particular form of
(36). It follows from Theorem 4.2 that the LMI representation
for (41) is (39) specified to (with ): such that

(42)

which is identical to

(43)

We remark that it is also possible to extend the robust convex
quadratic inequality with the unstructured norm-bounded uncer-
tainty ([22], Theorem 3.2) from the real context to the complex
context, and apply it to reformulate (41) into (42).
Having (43) together with Proposition 3.4, we establish

a convex (SDP) reformulation for the robust beamforming
problem (33), as stated below.
Proposition 4.4: The robust MISO cognitive beamforming

problem (33) is equivalent to the following linear conic pro-
gram:

(44)

Since (44) is a standard form of SDP, one can employ solver
SeDuMi to solve it. We note that the optimal value of (44)
equals the square root of that of (33).

V. SIMULATION RESULTS

We consider the simulated scenario with an -antenna BS
serving three single-antenna users . The elements of
the nominal channel vectors are the i.i.d. standard
complex Gaussian variables. The noise variance is set
for each user, and the SINR threshold value for the users is set
to a common 12 dB. The bound of the error norm is chosen as

for user (so that ), and all results
are averaged over the 2 000 Monte Carlo simulation runs.
Example 1: In this example, we examine the beamforming

design problem without external users, and compare the per-
formance of the SDP relaxation problem (6) of (5), i.e., a
benchmark, with the performance of the proposed convex
equivalent reformulation (28) of the semi-infinite SOCP (7).
The two convex problems (i.e., (6) and (28)) are termed “SDR”
and “Robust-SOCP”, respectively, in the figures. We run
simulations for the scenarios with different ,
and 2 000 sets of channel realizations are generated for each
given , and both convex problems are solved respectively for

, for each set of channel
realization.
Fig. 1 shows the problem feasibility rate versus the relative

perturbation bound for different values of . As we can see,
the feasibility rate of the SDP relaxation problem is only slightly
higher than that of (28), and this behavior coincides with the fact
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Fig. 1. Feasibility rate versus the perturbation bound for different values of
transmit antennas ( 3 users).

Fig. 2. Average transmission power versus the perturbation bound for dif-
ferent values of transmit antennas ( 3 users). (Average over the chan-
nels where the SDP (6) is feasible.)

that (7) is a more conservative (but convex) form, but not exces-
sively so. It is observed that the feasibility rate increases when
the number of transmit antenna increases, and that the feasi-
bility rate decreases when the perturbation bound increases.
Figs. 2 and 3 display the average transmission power versus

the error norm bound for the scenarios with various . Partic-
ularly, in Fig. 2, the transmission power by the SDP relaxation
method (by the semi-infinite SOCP method) is averaged over
all channel realizations where only the SDP (6) (only the linear
conic program reformulation (28)) is feasible, while in Fig. 3 the
transmission power is averaged over all channels where both the
two convex problems ((6) and (28)) are feasible. The average
transmission power by (28) in the both figures is taken over the
channels where it is feasible. As expected, the higher transmis-
sion power is required to meet the robust QoS constraints for

Fig. 3. Average transmission power versus the perturbation bound for dif-
ferent values of transmit antennas ( 3 users). (Average only over the
channels where both (6) and (28) are feasible.)

the larger bound of uncertainty, as well as for less transmit an-
tennas. From the simulations results, it is clearly seen that the
more conservative model in (7) is sufficiently tight (namely, not
too conservative) in practice.
Example 2: In this example, we test the optimal beamforming

problem (31) (i.e., with presence of external coexisting users),
and compare the performance of the SDP relaxation (32) and the
equivalent linear conic program formulation (44) for the con-
servative design (33). We set (one external user), in
order to avoid low problem feasibility rate, fix (4-an-
tenna BS), and run simulations for different channel error norm
bounds . A total of 2 000 sets of
channel realizations are generated for a given , and in each set
of channel realizations, the two convex problems (32) and (44)
are solved respectively for the tolerable interference threshold
value dB.
Fig. 4 shows the problem feasibility rate versus the allowable

interference threshold , for two different uncertainty bound
. It can be seen that the feasibility rate reduces as the de-
creases, which is expected since the feasible set is larger when
the tolerable interference level is higher. Besides, in contrast to
Fig. 1 (with and ), we observe that the
feasibility rate dramatically decreases (from about 0.95 to less
than 0.8 for , and from about 0.9 to less than 0.6 for

), which is accounted as cost for protecting the external
user (of course, more antennas at the BS provide more degrees
of freedom to deal with additional constraints).
Figs. 5 and 6 show the average transmission power versus the

allowable interference upper bound , for different values of the
perturbation . Again, in Fig. 5, the transmission
power by the SDP method is obtained by averaging over the
channel realizations where (32) is feasible and the transmission
by the semi-infinite SOCP method is averaged over the chan-
nels where (44) is feasible, while in Fig. 6 the average transmis-
sion power is taken over the channels where both the convex
problems (32) and (44) are feasible. We report that the SDP re-
laxation problem (32) always has rank-one solutions in our nu-
merous simulations, as long as it is solvable. As observed, more
efforts need to be paid (in term of higher transmission power
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Fig. 4. Feasibility rate versus the tolerable interference bound for different
channel perturbation bounds ( 4 antennas, 3 users, 1 external
user).

Fig. 5. Average transmission power versus the tolerable interference bound
for different channel perturbation bounds ( 4 antennas, 3 users,

1 external user). (Average over the channels where the SDP (32) is fea-
sible.)

required) to better protect the external user (by lessening the al-
lowable interference level ) while keeping the acceptable QoS
for the three internal users. This is consistent with the fact that
the feasible sets of the minimization problems are smaller (thus
the optimal values become higher) when decreases. It is noted
from Fig. 6 that the conservativeness of the design (33) is mar-
ginal, comparing to the SDP relaxation (32) of the original ro-
bust design, the same phenomenon we observed in Fig. 3.

VI. CONCLUSION

In a unicast MISO transmission system, we have considered
the robust downlink beamforming problem, which minimizes
the total transmission power subject to robust SINR constraints.
Given that the convexity of the robust problem remains un-
known, we have considered a conservative formulation in the
form of a semi-infinite SOCP, and have derived an equivalent

Fig. 6. Average transmission power versus the tolerable interference bound
for different channel perturbation bounds ( antennas, users,

external user). (Average only over the channels where both (32) and
(44) are feasible.)

convex reformulation. The optimization tool we utilized is the
exact LMI description of the cone of Lorentz-positive matrices.
The resulting problem reformulation is a standard form of linear
conic program, and thus can be implemented in a convenient
fashion. Further, we have also considered the optimal transmit
beamforming problem with additional robust soft-shaping con-
straints to protect external co-existing systems, and a conser-
vative design of the robust problem is formulated into another
semi-infinite SOCP. It is shown that the semi-infinite SOCP has
an equivalent SDP reformulation, by employing an LMI repre-
sentation for a class of QMIs. The numerical performance shows
the conservativeness of the two proposed semi-infinite SOCP
formulations is not excessive, compared to the SDP relaxations
of the original robust downlink beamforming problems.

APPENDIX

A. Proof of Proposition 3.3

Proof: Necessity: Since is Lorentz-positive, it then fol-
lows from Lemma 3.2 that there is such
that . Note that

(22). Therefore, one has

.

Sufficiency: Suppose that is a singular
value decomposition, with and . It thus is
verified that

Since , hence

(45)
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(47)

where , and

. In
other words, . Observe that ,
where , and
“cl” and “cone” denote the closure and convex cone hull
operators, respectively; namely the primary set is the par-
abolic section of the boundary of (see ([19], p. 722)).
Then, (45) implies that satisfies

, which
amounts to (cf. ([19], Corollary
2.7) and ([21], Lemma 2.2)), i.e., is Lorentz-positive.

B. Proof of Theorem 4.2

Proof: By Lemma 4.1 ( -lemma), it follows that systems
(38) and (39) are equivalent to each other. Therefore, we need
to show the equivalence between (37) and (38).
“(37) (38)”: Suppose that and are given such that

. Suppose . Let . It is

easily seen that complies with .
It follows from (37) that

(46)

which implies [see (47) at the top of the page]. Here in the last
equality, we use the fact that . Suppose . Let

. It is clear again that ,
and it follows from (37) that (46) is true with the just defined
. In other words, one has that

(48)

where is applied. We can pick up a with sufficiently
small norm so that the first term in (48) is nonnegative, which
means (38) is true.
“(38) (37)”: Suppose that is given such that

. Then, we have with
. Thus (38) together with (47) leads to (37). Conse-

quently, the systems (37)–(39) are equivalent.
Now, suppose , and we wish to show the systems

(36)–(38) are equivalent (noting that (38) and (39) are equiva-
lent due to -lemma).

“(37) (36)”: Since , hence im-
plies the eigenvalues . which means

. Therefore, the uncertainty set
in (37) contains the uncertainty set in (36)

and, consequently, (36) follows immediately from (37).
The proof for (36) (38) is the same as that of (37) (38),

and thus we omit it. Furthermore, we have shown (38) (37).
Thus we conclude that (36)–(38) are equivalent.
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