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Abstract—The full potential of multi-input multi-output
(MIMO) communication systems relies on exploiting channel state
information at the transmitter (CSIT), which is, however, often
subject to some uncertainty. In this paper, following the worst-case
robust philosophy, we consider a robust MIMO precoding design
with deterministic imperfect CSIT, formulated as a maximin
problem, to maximize the worst-case received signal-to-noise ratio
or minimize the worst-case error probability. Given different types
of imperfect CSIT in practice, a unified framework is lacking in
the literature to tackle various channel uncertainty. In this paper,
we address this open problem by considering several classes of
uncertainty sets that include most deterministic imperfect CSIT
as special cases. We show that, for general convex uncertainty
sets, the robust precoder, as the solution to the maximin problem,
can be efficiently computed by solving a single convex optimiza-
tion problem. Furthermore, when it comes to unitarily-invariant
convex uncertainty sets, we prove the optimality of a channel-di-
agonalizing structure and simplify the complex-matrix problem
to a real-vector power allocation problem, which is then analyt-
ically solved in a waterfilling manner. Finally, for uncertainty
sets defined by a generic matrix norm, called the Schatten norm,
we provide a fully closed-form solution to the robust precoding
design, based on which the robustness of beamforming and uni-
form-power transmission is investigated.

Index Terms—Convex uncertainty set, imperfect CSIT, max-
imin, MIMO, minimax, saddle point, Schatten norm, unitarily-in-
variant uncertainty set, worst-case robustness.
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I. INTRODUCTION

I T is well known that the performance of multi-input multi-
output (MIMO) communication systems depends, to a sub-

stantial extent, on the quality of the channel state information
(CSI) [1]. The full benefits of MIMO channels are achieved by
exploiting CSI at the transmitter (CSIT) and adopting proper
precoding techniques [2], [3]. With perfect CSIT, the optimal
MIMO precoding has been well studied under various criteria
[4]–[6] for either single-user or multi-user communications. In
practice, however, CSIT is seldom perfect but subject to some
uncertainty due to many practical issues, such as inaccurate
channel estimation, quantization of CSI, erroneous or outdated
feedback, and time delays or frequency offsets between the re-
ciprocal channels. Therefore, the imperfection of CSIT has to
be considered in MIMO precoding designs so that the commu-
nication system, on one hand, can fully utilize CSIT, and on the
other hand, is robust to various imperfect CSIT.
In the literature, imperfect CSI is modeled by either stochastic

or deterministic approaches. The stochastic model assumes that
the channel is a random quantity and its instantaneous value
is unknown but its statistics, such as the mean and/or the co-
variance, is known by the transmitter. In this case, the robust
design usually aims at optimizing either the long-term average
performance [7]–[10] or the outage performance [11]–[14]. On
the other hand, the deterministic model, which is more suit-
able to characterize instantaneous CSI with errors, assumes that
the actual channel lies in the neighborhood, often called the
uncertainty set or region, of a nominal channel known by the
transmitter. The size of this set represents the amount of un-
certainty on the channel, i.e., the larger the set is the more un-
certainty there is. In this case, a precoding design is said to
be robust if it can achieve the best performance in the worst
channel within the uncertainty set, or equivalently can guar-
antee a performance level for any channel in the uncertainty set.
Such robust precoding designs can be achieved by optimizing
the worst-case performance [15], often leading to a maximin or
minimax problem [16]–[32]. Note that, worst-case robustness is
related to statistical robustness in some situation. For example,
many outage based robust designs are often transformed into de-
terministic formulations by defining an uncertainty set that has
a certain probability [11], [12], [14].
The focus of this paper is on worst-case robust precoding de-

signs based on deterministic imperfect CSIT. As an important
branch of robust designs [15], the philosophy of worst-case
robustness has been widely used in signal processing [16]–[19]
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and communications [20]–[32]. In terms of MIMO com-
munications, [20] studied the compound capacity [33] of a
MIMO channel for an isotropically unconstrained uncertainty
set, which was recently generalized to a class of norm-based
uncertainty sets [21]. The worst-case robust minimum mean
square error (MMSE) precoder was proposed in [22]. In [23]
and [24], the authors tried to maximize the worst-case received
signal-to-noise ratio (SNR) but only focused on a simplified
power allocation problem by fixing the transmit directions.
Interestingly, it was recently found in [25] and [26] that the
transmit directions imposed in [23], [24] are optimal in some
situations, which leads to fully analytical robust precoders
along with some interesting insights. The worst-case robust
precoding was also studied for MIMO multiaccess channels
[27], broadcasting channels [28], multi-cell systems [30], [31],
and cognitive radio systems [29], [32].
As a consequence of many practical factors that may cause

imperfect CSIT, there are various channel uncertainty models
commonly used in the literature. For example, the channel error
induced by quantizing CSI is generally regarded to fall into a
polyhedron [23]. As the most frequently used imperfect CSI
model [16]–[29], the channel error is often covered by a sphere
or ellipsoid uncertainty set that is usually defined by a matrix or
vector norm, such as the Frobenius norm [22]–[25], [27]–[29]
or the spectral norm [17], [21], [26], where the shape of the un-
certainty set or the coverage of possible imperfection is deter-
mined by which norm is used. An uncertainty set can also be
defined by other means, for example the Kullback-Leibler diver-
gence [19]. Despite different types of imperfect CSIT that may
be encountered in practice, most existing works on worst-case
robust designs focused only on one or a few particular uncer-
tainty sets, mainly based on the Frobenius and spectral norms
due to their amenability. So far there lacks a unified framework
on worst-case robust MIMO precoding that is applicable to var-
ious channel uncertainty. The major goal of this paper is to ad-
dress this open problem.
To be more exact, in this paper we consider a worst-case

robust MIMO precoding design, formulated as a maximin
problem, to maximize the worst-case received SNR or to
minimize the worst-case pairwise error probability (PEP) if a
space-time block code (STBC) [34], [35] is used. In contrast
with the existing works [16]–[22], [24]–[29] that are based on
particular channel uncertainty sets, we try to take into account
various channel uncertainty within a unified framework by con-
sidering several general classes of uncertainty sets that differ
in generality and tractability. We provide robust precoding de-
signs for arbitrary convex uncertainty sets, unitarily-invariant
convex uncertainty sets, and the uncertainty sets defined by a
generic matrix norm termed the Schatten norm. These general
uncertainty sets contain all aforementioned deterministic im-
perfect CSIT models as special cases. Therefore, the previous
works, e.g., [23]–[26], are included as special cases in this
unified framework. We show that the formulated worst-case
robust MIMO precoding design with the general uncertainty
sets can be elegantly handled through convex optimization
[36]. The main contributions of this paper are as follows.
We start from the most general case where the uncertainty set

is a nonempty compact convex set, which covers all existing un-

certainty sets, e.g., [16]–[22], [24]–[29], and may also be used
to model more complicated deterministic imperfect CSIT. Note
that [23] also considered a convex uncertainty set but only fo-
cused on a simplified power allocation problem by imposing
some fixed transmit directions without knowing whether they
are optimal or not. So far the optimal worst-case robust MIMO
precoder for a general convex uncertainty set has still been un-
known. In this paper, we solve this open problem by relating
the formulated maximin problem to a minimax problem from
the dual perspective, and showing that the robust precoder can
be efficiently found by solving a single convex optimization
problem. As a byproduct, the worst channel for the robust pre-
coder can also be obtained simultaneously. Furthermore, we
provide a practical reformulation of the convex problem that
can be efficiently handled by general optimization methods as
well as software packages.
Then, we consider the case where the convex uncertainty

set is unitarily-invariant, which contains many uncertainty sets
based on matrix norms, e.g., [16]–[18], [20]–[29]. It is shown
that the robust precoder results in a favorable channel-diagonal-
izing structure, and thus the precoding design can be simplified
to a power allocation problem without any loss of optimality.
Note that such a desirable structure was only found to be optimal
for the uncertainty sets based on some specific matrix norms
in [25] and [26]. We further show that, given a particular form
of the unitarily-invariant convex set, both the robust precoder
and the worst channel can be simultaneously diagonalized, thus
fully reducing the complex-matrix robust precoder design to a
real-vector convex problem. Moreover, we show that the solu-
tion of such a real-vector problem can be analytically obtained
via a convenient waterfilling fashion.
Finally, we consider uncertainty sets defined by the Schatten

norm [37], which is a special case of unitarily-invariant convex
sets, but still general enough to contain most frequently used
uncertainty sets based on, e.g., the Frobenius norm [22]–[25],
[27]–[29] or the spectral norm [17], [21], [26]. As a generic
norm, the Schatten norm includes not only the Frobenius and
spectral norms, but also other common matrix norms such as
the nuclear norm [38]. In this case, we provide fully closed-form
solutions to the robust precoder, based on which we also investi-
gate the robustness of beamforming and equal power transmis-
sions.
The paper is organized as follows. Section II introduces the

systemmodel, problem formulation, and various channel uncer-
tainty models. Section III focuses on how to achieve the optimal
robust precoder for general convex uncertainty sets in an effi-
cient way. Section IV considers unitarily-invariant convex un-
certainty sets and shows the optimality of the eigenmode trans-
mission, while Section V focuses on uncertainty sets defined by
the Schatten norm. Numerical results are provided in Section VI
and Section VII concludes the paper.
Notation: Uppercase and lowercase boldface denotematrices

and vectors, respectively. , , and denote the sets of real
numbers, complex numbers, and positive semidefinite matrices,
respectively. and represent the identity matrix and the vector
of ones, respectively. denotes the ( th, th) element of a
matrix , and denotes the th column of the identity matrix.
By or , we mean that is a positive semidefi-
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nite or definite matrix, respectively. The operators and are
defined componentwise for vectors and matrices. The operators

, , and denote the Hermitian, inverse, and trace
operations, respectively. and represent the vectors
of singular values and eigenvalues of a matrix , respectively.
The maximum eigenvalue of a Hermitian matrix is denoted by

. denotes a general matrix norm as well as the Eu-
clidean norm of a vector. , , and denote the nu-
clear, Frobenius, and spectral norms of a matrix, respectively.

and denote the real and image parts of a complex

value, respectively. We define .

II. PROBLEM STATEMENT

A. System Model

Consider a narrowband point-to-point MIMO communica-
tion system equipped with transmit and receive antennas.
Mathematically, the baseband, symbol-sampled system can be
represented by a linear model

(1)

where and are the transmitted and re-
ceived signals, respectively, is the channel ma-
trix, and is a circularly symmetric complex Gaussian
noise vector with zero mean and covariance matrix , i.e.,

. The transmit strategy or precoding is de-
termined by the transmit covariance matrix .
Indeed, via decomposing , the transmitted symbol
vector , with , can be linearly precoded by , re-
sulting in . In practice, the transmitter should satisfy the
power constraint where

(2)

and is the budget on the total transmit power.
Under the assumption of perfect CSIT, i.e., the channel
is perfectly known at the transmitter, the optimal MIMO

precoding has been well studied for various criteria [4], [5].
However, due to many practical issues, CSIT is seldom perfect,
which thus calls for robust precoding designs that can utilize
CSIT and at the same time combat against its imperfection. To
model imperfect CSIT, we consider a compound channel model
[33] assuming that belongs to a known set , often called
an uncertainty set, of possible values but otherwise unknown.
In the literature, this imperfect channel model has been widely
used in robust designs, and the philosophy behind these robust
designs is the so-called worst-case robustness [15], which is
achieved by optimizing the system performance for the worst
channel in [16]–[29].
Specifically, we denote the system performance measure by

a utility or payoff function . Then, the worst-case ro-
bust transmit strategy is given by the solution to the following
maximin problem:

(3)

which, namely, offers the best performance for the worst
channel within . As a counterpart of the maximin problem,
we also introduce the following minimax problem:

(4)

which is, namely, to find the worst channel for the best one of all
possible transmit strategies.Wewill show later that themaximin
problem (3) and the minimax problem (4) are closely related.
In this paper, we assume perfect CSI at the receiver (CSIR)

and adopt the following payoff or utility function:

(5)

which is proportional to the received SNR. It can be verified (see
Section II in [25]) that maximizing corresponds to: 1)
maximizing the received SNR; 2) minimizing the pairwise error
probability (PEP) if a space-time block code (STBC) [34], [35]
is used at the transmitter; 3) maximizing a low-SNR approx-
imation of the mutual information; 4) minimizing a low-SNR
approximation of the MSE if a linear MMSE equalizer is used
at the receiver.

B. Channel Uncertainty Models

In the literature [16]–[29], the uncertainty set is often mod-
eled as a neighborhood of a nominal channel known by the
transmitter, where the nominal channel could be an estimate
or feedback of the actual channel . By defining the channel
error as the difference between the nominal channel and the
actual channel as , the uncertainty can be
equally described by for some set . Correspondingly,
we can rewrite the utility function in (5) based on as

(6)

and thus the maximin and minimax problems (3) and (4) based
on can be expressed as

(7)

and

(8)

based on , respectively.
The channel uncertainty set provides a convenient way to

characterize different types of imperfect CSIT that are caused
by different reasons in practice. However, most existing works
on worst-case robust MIMO precoding designs, e.g., [16]–[22],
[24]–[29], considered only one or several particular choices
of the uncertainty set , mostly focusing on the uncertainty
sets based on the Frobenius and spectral norms due to their
tractability. So far a unified framework that is applicable to
various channel uncertainty sets is still absent. The major goal
of this paper is to address this open problem. To be more exact,
we consider various kinds of channel uncertainty sets that
differ in terms of generality and tractability. Specifically, the
uncertainty set could be given in any one of the following
forms:
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1) General Convex Sets: In the most general case, we
assume that is a nonempty compact convex set, which covers
all common uncertainty models as special cases [16]–[19],
[21]–[29]. For example, if results from uniformly quantizing
the elements of with a step , the uncertainty set can be
defined as [23]

(9)
If the maximin and minimax problems (7) and (8) with a gen-
eral convex uncertainty set can be solved, so can the special
cases. Note that, although [23] also considered a general convex
uncertainty set, the authors only focused on a power allocation
problem, simplified from (7) by imposing a possibly suboptimal
structure on . In contrast, we are interested in finding globally
optimal robust MIMO precoder in an efficient way. As shown
in Section III, this goal can be accomplished by solving a single
convex problem.
2) Unitarily-Invariant Convex Sets: In this case, we assume

that the uncertainty set , in addition to being convex, is uni-
tarily-invariant, i.e., implies for arbi-
trary unitary matrices and , which is still general enough
to include most frequently used uncertainty models [16]–[18],
[21]–[29]. It is shown in Section IV that the unitarily-invariant
condition leads to a favorable channel-diagonalizing structure.
We then specify a concrete form of the general unitarily-in-
variant set as

(10)

where each is a symmetric1 and componentwise nonde-
creasing function and is convex in . Note that
contains a number of uncertainty sets defined by matrix norms.
We show in Section IV that, for , searching the complex-
matrix robust precoder can be simplified to solving a real-vector
convex problem. We further show that such a convex problem
can be solved in a waterfilling fashion.
3) Uncertainty Sets Based on Matrix Norms: In the litera-

ture, the most common way to model the uncertainty of a matrix
channel is to use some matrix norm [16]–[18], [21]–[29]. In this
paper, we are particularly interested in a generic norm, called the
Schatten norm, introduced in Section V. Several well-known
examples of the Schatten norm are the nuclear norm (also
known as the trace norm), the Frobenius norm , and the
spectral norm (also known as the 2-norm), based on which
we define

(11)

(12)

(13)

Note that a similar maximin robust design was studied in
[23]–[25] for and in [26] for . However, they are just
special cases of the uncertainty set defined by the Schatten
norm, which is in turn a subset of in (10). In this case, we

1A function is symmetric if for any permutation matrix
.

analytically characterize the optimal robust precoder along
with some interesting insights.

III. ROBUST PRECODER FOR GENERAL CONVEX UNCERTAINTY
SETS

We start from the most general case where the uncertainty set
is a nonempty compact convex set, and show in this section

that the robust MIMO precoder, as the solution to the maximin
problem (7), can be efficiently found through convex optimiza-
tion.

A. Optimal Robust Precoder

Before solving the maximin problem (7), one natural ques-
tion is whether it admits a solution. Observe that is
concave (actually linear) in for a fixed and convex (and
quadratic) in for a fixed , while the two sets and are
both nonempty compact convex sets. Therefore, according to
[39, Corollary 37.6.2], there always exists a saddle point2 pro-
viding a solution to the maximin problem (7) (and also pro-
viding a solution to the minimax problem (8)). Knowing that
(7) (as well as (8)) is solvable, now we can focus on the key
question on how to find the optimal robust precoder efficiently.
The following result provides a positive answer to this question.
Theorem 1: Suppose that is a nonempty compact convex

set and is defined in (2). Consider the following convex
problem:

(14)

and let be the optimal Lagrange multiplier associated with
the constraint . Then, is the optimal
solution to the maximin problem (7).

Proof: To show that is a solution to (8), we write the
partial Lagrangian of (14) as

(15)

with Lagrange multiplier . The dual function is given by

(16)

whose domain is . To
guarantee that is bounded from below, it follows that

. As a result, we have

(17)

(18)

so that the dual problem of (14) is

(19)

2A point is said to be a saddle point of the function
with respect to maximizing over and minimizing over if

, .
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Note that the constraint in (19) can be relaxed
to , since the optimal is always achieved with
equality. Now, comparing (19) with (7), one can find that they
are exactly the same with . Therefore, the optimal La-
grange multiplier is also the optimal solution to (7).
Given that is a matrix convex function of
in the positive semidefinite space [36],

is a convex constraint and (14) is indeed a convex
problem. Theorem 1 indicates that, for a general convex un-
certainty set, the optimal robust MIMO precoder can be effi-
ciently found by solving a single convex optimization problem,
i.e., (14), which consists of a differentiable objective function
and a compact convex feasible set, thus being solvable by the
common gradient-based numerical methods. Note that a similar
convex uncertainty set was also considered in [23], which, how-
ever, only addressed a simplified power allocation problem by
imposing suboptimal transmit directions, thus leading to a sub-
optimal robust precoder, whereas our solution is globally op-
timal. The performance gain of our globally optimal robust pre-
coder over the suboptimal one in [23] is shown in Section VI.
Observing that the robust precoder is given by the optimal

Lagrange multiplier of (14), one may be curious about what
is the physical meaning of the optimal solution of (14). This
question is answered by the following result, which establishes
a close relation between the maximin and minimax problems (7)
and (8).
Proposition 1: The minimax problem (8) is equivalent to the

convex problem (14).
Proof: See Appendix A.

From Proposition 1, one can see that the convex problem (14)
offers not only the solution to the maximin problem (7), but also
the solution to the minimax problem (8). Denote by and
the solutions to the maximin and minimax problems (7) and (8),
respectively. According to [40, Proposition 2.6.1], is
in fact a saddle point of over and . As we have
pointed out that the maximin (as well as minimax) problem is
solvable due to the existence of a saddle point of , now
Theorem 1 along with Proposition 1 has actually presented an
elegant way to compute such a saddle point, i.e., solving the
convex problem (14). Meanwhile, the saddle point also implies
that is the worst channel error for the robust precoder.

B. Practical Reformulation

So far we have theoretically shown that the optimal robust
precoder can be achieved by solving (14). However, it should
be pointed out that, although (14) is a convex problem, the con-
straint is given in the form of a ma-
trix convex function defined in [36] but not a linear ma-
trix inequality (LMI), which causes a difficulty in solving (14),
because most optimization methods as well as software pack-
ages are designed to deal with LMIs but not otherwise arbitrary
convex matrix inequalities. Hence, one may wonder: is there
any practical method to solve (14) and more importantly to ob-
tain the optimal Lagrange multiplier of (14) conveniently? We
provide a positive answer to this question by showing that one
can solve, instead of (14), the following equivalent but more
tractable problem.

Proposition 2: Let be the optimal solution to the
following convex problem:

(20)

and let

where , , and , be
the optimal Lagrange multiplier associated with the constraint

(21)

Then, is also the optimal solution to (14), and
is the optimal Lagrange multiplier associated with the con-

straint in (14).
Proof: The equivalence between (20) and (14) can be

easily established via the Schur complement. The difficulty
lies in how to relate the optimal Lagrange multipliers of (14)
and (20), which relies on exploring the general optimality
conditions of (14) and (20). The detailed proof is given in
Appendix B.
Proposition 2 combined with Theorem 1 provides a practical

and efficient way to find the optimal robust MIMO precoder:
one only needs to solve (20) and tailor its optimal Lagrangemul-
tiplier. Now that the constraint (21) is an LMI, as a very tractable
form in practice, (20) can be efficiently solved bymany software
packages, e.g., CVX [41] or YALMIP [42]. Such software pack-
ages contain numerical methods, e.g., primal-dual interior-point
methods [36], that can provide not only the optimal primal vari-
ables but also the optimal dual variables, i.e., Lagrange multi-
pliers. As a by-product, the worst channel error for the robust
precoder can also be obtained from the primal solution to (20).
Summarizing, for a general convex uncertainty set, the robust
precoder and the worst channel error can be simultaneously and
efficiently computed by solving a standard convex problem.

IV. ROBUST PRECODER FOR UNITARILY-INVARIANT CONVEX
UNCERTAINTY SETS

In this section, we consider the uncertainty set to be a uni-
tarily-invariant convex set, which contains most channel uncer-
tainty models used in practice [16]–[18], [20]–[28]. Since uni-
tarily-invariant convex sets are special cases of general convex
sets, the method proposed in the previous section to find the
robust precoder in the general convex case is still applicable in
special cases. However, wewill show that the unitarily-invariant
condition leads to a favorable channel-diagonalizing structure
of both the robust precoder and worst channel error, and even-
tually simplifies searching the robust precoder to a waterfilling
procedure.

A. General Unitarily-Invariant Sets

The unitary-invariance means that
for any unitary matrices and , i.e.,
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the set is invariant with respect to rotations on the left and
the right. Combining the convexity and unitary-invariance of
, we first show in the following that the optimal transmit di-
rections, i.e., the eigenvectors of the optimal transmit covari-
ance matrix, are just the right singular vectors of the nominal
channel, thus leading to an eigenmode transmission. In this case,
the matrix maximin problem (7) can be simplified into a vector
power allocation problemwithout loss of any optimality. Before
stating our result, let us introduce some notations. We denote
the eigenvalue decomposition (EVD) of by

with eigenvalues , and the singular-value decom-
position (SVD) of by .
Theorem 2: Suppose that is a nonempty compact unitarily-

invariant convex set and is defined in (2). Then, there exists
a solution to the maximin problem (7) such that
and is the solution to the following maximin problem:

(22)

where and is the th column of
the identity matrix.

Proof: The proof is based on showing that by using
, the objective of (7) reaches an upper bound and the

power constraint is still satisfied. The detailed proof is given in
Appendix C.
It follows from Theorem 2 that the unitary-invariance of the

uncertainty set is a sufficient condition guaranteeing the opti-
mality of the eigenmode transmission. Among existing works,
[23] and [24] imposed the same transmit directions but without
knowing whether or when they were optimal, whereas [25] and
[26] proved the optimality of the similar channel-diagonalizing
structure but only for the uncertainty sets defined by the Frobe-
nius and spectral norms3 (as special cases of the current pro-
posed framework), i.e., in (12) and in (13), respectively.
Therefore, our result indicates for the first time that the eigen-
mode transmission is optimal in terms of worst-case robustness
for a general class of uncertainty sets, i.e., unitarily-invariant
convex sets.
To find the optimal power allocation, one still needs to solve

a maximin problem. Interestingly, similar to the case of general
convex uncertainty sets, it was shown in [23] that the solution
to the maximin problem (22) can also be obtained by solving a
single convex problem as follows:

(23)

where the robust power allocation is given by the op-
timal Lagrange multipliers associated with the constraints

, (see [23,
Proposition 1]).

3Note that the method used in [25] and [26] was based on analytically solving
the inner minimization of the maximin problem, which, however, cannot be
applied to a general uncertainty set.

So far, we have considered general unitarily-invariant convex
uncertainty sets that reduce the maximin problem (7) to the
power allocation problem (22) as a result of the diagonalizing
structure of the precoder . One natural question is whether the
channel error can also be diagonalized so that the problem
(22) or (23) is further simplified to a real-vector problemwithout
involving complex matrices. To answer this question, we ex-
amine a particular form of the unitarily-invariant convex uncer-
tainty set based on the singular values of , in the next section.

B. Unitarily-Invariant Sets Based on Singular Values

In this section, we consider the uncertainty set defined in
(10), as a specific form of the unitarily-invariant convex set.
Basically, is the intersection of the sublevels of ,
, where each is a symmetric and componentwise non-

decreasing function and is convex in . Note that
the uncertainty set is still general enough to include many
channel uncertainty models [16]–[18], [21]–[28]. More impor-
tantly, in this case, we show that both the robust precoder
and the channel error admit channel-diagonalizing structures,
which simplifies searching the complex-matrix robust precoder
to solving a real-vector problem.
Denote the SVD of by with singular

values , where for , and the

SVD of by with singular values
, where for . Then, we have the

following result.
Theorem 3: Suppose that defined in (10) and is

defined in (2). Let and
. Then, the following statements hold.

1) There exists a solution to the maximin problem (7)
such that and is the solution to the following
maximin problem:

(24)

2) There exists a solution to theminimax problem (8) such
that , , and is the solution to the
following minimax problem:

(25)

Proof: See Appendix D.
Theorem 3 reveals that, for , both the robust transmit

covariance matrix and the worst channel error align with the
nominal channel, resulting in a fully channel-diagonalizing
structure. In this case, the complex-matrix maximin and min-
imax problems (7) and (8) can be simplified respectively
into the real-vector maximin and minimax problems (24) and
(25) without loss of any optimality. Consequently, searching
the complex-matrix robust precoder (or worst channel error)
reduces to searching its eigenvalues (or singular values),
which significantly decreases the computational complexity.
Moreover, similar to Theorem 1, the simplified real-vector
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maximin and minimax problems (24) and (25) are linked by
the following convex problem:

(26)

which is equivalent to the minimax problem (25) and whose
the optimal Lagrange multipliers associated with
the constraints , , provide the op-
timal solution to the maximin problem (24). Therefore, the ro-
bust precoder as well as the worst channel error can be obtained
by solving (26) eventually.
The unitarily-invariant convex set covers many channel

uncertainty models as special cases, of which two commonly
used ones are in (12) and in (13), defined by the Frobe-
nius norm [22]–[25], [27], [28] and the spectral norm [17], [21],
[26], respectively. Note that these are just two special cases of
uncertainty sets defined by the Schatten norm (see Section V).
Yet, before going into particular examples of , we will inves-
tigate further the optimization problem (26) and show that its
solution can be obtained via a waterfilling procedure.

C. Waterfilling Solution for Sets Based on Singular Values

Given the set defined in Theorem 3, it is not difficult to
see that a solution to the following problem is also a solution to
(26):

(27)

Assume without loss of generality (w.l.o.g.) that
. We are particularly interested in characterizing the solution

of (27) or equivalently (26) in the following two situations: 1) a
coupled constraint set

(28)

where is a symmetric, strictly increasing, differ-
entiable, and convex function; and 2) a decoupled constraint set

(29)

where is an invertible strictly increasing function. In
the former case, one can imagine as a bottle of water, where
the bottle is , the water is , and the water volume is . In the
latter case, can be regarded as bottles of water, where each
bottle is designated to hold the water .
Let us first focus on the coupled case. Intuitively, to minimize

, should first compensate the difference ,
then and together compensate the difference and
so on. As shown in Fig. 1(a), the whole process is like pouring
the bottle of water into the container , where
the water level is given by . This waterfilling
procedure is rigorously characterized in Appendix E, based on
which we can provide a closed-form solution to (26). To this
end, we define and define for

(30)

Fig. 1. Solving (27) through a waterfilling procedure. (a) Coupled constraint
set . (b) Decoupled constraint set .

Easily observe that and , and that
so .
Theorem 4: Suppose that defined in (28) and
.

1) The optimal solution to (26) is given by
and

(31)

where is an integer such that

(32)

and is the root of the equation
.

2) The optimal power allocation (or Lagrange multipliers
associated with the constraints , , in

(26)) is given by

(33)

where , .
Proof: See Appendix E.

The integer is the number of active eigenmodes and can be
easily determined from (32). Since is an increasing func-
tion, is monotonically increasing in , meaning that
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the optimal water level can be efficiently found via the bi-
section method over . In some situations may be
obtained in a closed form (e.g., [25]). The assumption
is to avoid a trivial solution, since if the uncertainty is too large,
i.e., , the best worst-case performance is zero. Note
that similar waterfilling procedures were also investigated in
[23] and [24] but only for the uncertainty set defined by the
Frobenius norm, i.e., in (12). It is interesting to see from
(33) that the robust power allocation is actually proportional to
the partial derivative of the constraint function of each active
eigenmode at the worst channel error, which is discovered for
the first time.
Now we consider the decoupled case. Due to the mono-

tonicity and invertibility of , the decoupled constraint
can be rewritten as , which determines

the amount of water in the bottle . As shown in Fig. 1(b),
the procedure of solving (27) is like pouring the water in each
bottle into each container independently. Therefore, we
obtain the following result.
Theorem 5: Suppose that defined in (29).
1) The optimal solution to (26) is given by

and

(34)

2) The optimal power allocation (or Lagrange multipliers
associated with the constraints , , in

(26)) is given by

otherwise.
(35)

Proof: The first part is straightforward. The second part
can be obtained by exploring the complimentary condition as
shown in Appendix E.
Theorem 5 indicates that, in the decoupled case, the robust

precoding turns out to be beamforming, one of the simplest
transmit strategies using all power on one eigenmode. Because
of its simplicity, beamforming is often regarded as a non-robust
transmit strategy. However, our result reveals that beamforming
is actually robust in some situations (see a further discussion in
Section V).

V. ROBUST PRECODER FOR UNCERTAINTY SETS BASED ON
MATRIX NORMS

It is very convenient to define the uncertainty set as a sublevel
of a norm function, which is always a convex set due to the
convexity of an arbitrary norm. Indeed, most existing works on
worst-case robust designs, e.g., [16]–[18], [21]–[28], adopted
some norm-based uncertainty set. In this section, instead of one
particular norm, we consider a generic matrix norm, called the
Schatten norm, that covers a range of common matrix norms as
special cases.
Definition 1. ([37, Proposition 9.2.3]): Let with

, and let . Then, the -Schatten norm
is defined as

.
(36)

Based on the -Schatten norm , we define the uncer-
tainty set

(37)

where, to avoid a trivial solution, we assume that .
From the definition, it is easy to see that for

, and therefore inherits all favorable properties of
obtained in Section IV. The different -Schatten norms are

related through

(38)

where and , and therefore we have

(39)

Some well-known examples of the Schatten norm include:
1) The Nuclear Norm (Also Known as the Trace Norm):

(40)
based on which we have defined the uncertainty set in
(11). The nuclear norm can be regarded as a convex approxima-
tion of the rank of a matrix, and has been widely used in rank
minimization for sparse signal processing [38]. Hence, ap-
proximately describes the uncertainty on the rank of the channel
error matrix . Note that is the smallest one of all .
2) The Frobenius Norm:

(41)

based on which we have defined the uncertainty set
in (12). As the most frequently adopted model in the literature
[22]–[25], [27], [28], represents the uncertainty on the total
“power” of all elements of .Meanwhile, from the probabilistic
point of view, is in fact a closed-form ex-
pression of the Kullback-Leibler divergence between the actual
and nominal channel models with Gaussian noise [19].
3) The Spectral Norm (Also Known as the 2-Norm):

(42)

based on which we have defined the uncertainty set
in (13). Intuitively, models the maximum uncertainty on each
eigenmode of the channel [17], [21], [26]. Indeed, we know
from (39) that, given the same error radius , for

. Hence, is the most conservative one among all
, modeling the largest channel error.
Since is a subset of , from Theorem 3, finding the com-

plex-matrix robust precoder reduces to solving the real-vector
maximin problem (7), which is in turn equivalent to solving the
convex problem (26). Using the uncertainty set , the con-

straint set in (26) is equal to with

(43)
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where for . Observe that can
be divided into two categories: 1) the coupled constraint sets

for ; and 2) the decoupled constraint set .
They correspond exactly to the coupled and decoupled cases in
Section IV-C, meaning that we can obtain a closed-form solu-
tion in a waterfilling fashion as in Section IV-C.
Theorem 6: Suppose that defined in (37) and

for .
1) Let for and for ,
where is an integer such that
with defined in (30), and is the root of

. Then, the optimal power allocation for
is given by

(44)

for and for .
2) Let , . Then, the optimal power allocation for

is given by and for .
Proof: Theorem 6 is the result of applying Theorems 4 and

5 to and .
From Theorem 6, we can obtain some interesting insights on

worst-case robust MIMO precoding. The following two corol-
laries concern the optimality of beamforming that transmits data
only over one eigenmode, and the optimality of the equal power
allocation.
Corollary 1: Suppose that . The robust maximin

MIMO precoding is beamforming over the largest eigenmode if
either: 1) ; or 2) and .
Corollary 2: Suppose that . The robust maximin

MIMO precoding allocates power equally on the active eigen-
modes if either: 1) ; or 2) and

.
Beamforming is often regarded to be sensitive to imperfect

CSIT [4], [5] because of its simplicity. However, our results
(and also [26]) reveal that beamforming is actually a robust solu-
tion if either the uncertainty set is , or , i.e.,
the uncertainty is small or the channel is nearly rank-one. As the
most conservative one of defines the maximum uncer-
tainty on each eigenmode independently, so the robust transmit
strategy shall, intuitively, put all power on the strongest eigen-
mode. Furthermore, one can imagine that, when the channel
uncertainty or the size of the channel matrix becomes smaller,
the gap between and other uncertainty sets shall become
smaller as well. Therefore, we can reasonably infer that beam-
forming, although might not be optimally robust, is a nearly
robust transmit strategy when the channel uncertainty or the
channel dimension is small, independently of the shape of the
uncertainty set.
The uncertainty set represents another extreme case

of , as it is the smallest one and thus the least conservative
one of . Since approximately models the uncertainty on
the rank of the channel error, the robust transmit strategy may
not distinguish between the uncertainty on each eigenmode but
treats all active eigenmodes equally, thus leading to an equal
power allocation over the active eigenmodes. The number of
active eigenmodes , however, is determined by the total un-
certainty, and especially as for

Fig. 2. Average worst-case received SNRs of four precoding strategies versus
SNR at , 1.5, and 2.2 for and .

. For with , the equal power allo-
cation is generally not robust unless the channel gains of the
active eigenmodes are all equal.

VI. NUMERICAL RESULTS

In this section, we demonstrate the effect of the robust MIMO
precoding through several numerical examples. According to
the philosophy of worst-case robustness, different precoding
strategies are compared via their average worst-case perfor-
mance, where the worst channel error for any given (either
non-robust or robust) precoder can be obtained by solving the
inner minimization of (7) for a fixed (note that the robust
strategy and its worst channel error can be simultaneously
obtained by solving (20)). Moreover, to take into account dif-
ferent channels, the worst-case performance is averaged over
the nominal channel , whose elements are randomly gen-
erated according to zero-mean, unit-variance, i.i.d. Gaussian
distributions.
We first consider the uncertainty set defined in (9), which

models the channel uncertainty caused by uniformly quantizing
the elements of the actual channel with a step . The ro-
bust precoding, given by the solution of the maximin problem
(7), is compared with the beamforming strategy that transmits
only over the maximum eigenmode of , the uniform-power
strategy that allocates the transmit power equally over all eigen-
modes of , and the semi-robust strategy in [23] that provided a
robust power allocation but with fixed (suboptimal) transmit di-
rections. Fig. 2 shows the average worst-case received SNRs of
the four strategies versus SNR for different quantization steps,
and Fig. 3 displays the relation between the average worst-case
received SNR and the quantization step. It can be clearly seen
that the robust strategy always outperforms the non-robust or
semi-robust strategies in terms of worst-case performance, and
that the gain becomes larger as the uncertainty increases.
On the other hand, one can also observe from Figs. 2 and

3 that the performance of beamforming, although it is not a ro-
bust strategy for , is quite close to that of the robust precoding
for small uncertainty. This example verifies our conclusion (in
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Fig. 3. Average worst-case received SNRs of four precoding strategies versus
quantization step at for and .

Section V and also [26]) that beamforming should be nearly ro-
bust when the channel uncertainty or the channel dimension is
small, but independent of the shape of the uncertainty set. How-
ever, as the uncertainty increases, the performance of beam-
forming becomes worse and worse, and eventually is exceeded
by that of the uniform-power strategy.
We then consider the unitarily-invariant uncertainty set

defined in (37) by the Schatten norm, where deter-
mines the shape of , while the size of the uncertainty set is
given by the error radius . Considering that is the
smallest one among all Schatten norms, we set a common error
radius for all such that with , so they
can be reasonably compared. As shown in Section V, given the
same error radius, the larger the parameter is, the bigger and
thus the more conservative the uncertainty set is.
Fig. 4 shows the average worst-case received SNRs, achieved

by the robust precoding strategies for different , versus SNR,
while Fig. 5 displays the relation between the average worst-
case received SNR and the uncertainty set size . From these two
figures, one can observe a tradeoff between the conservativeness
of the uncertainty model and the system performance, i.e., the
more conservative the uncertainty model is, the lower the per-
formance is. Among all with , is the most
conservative set, thus resulting in the lowest worst-case received
SNR, whereas is the least conservative one, thus leading
to the highest performance. In practice, the choice of an un-
certainty set depends on the prediction of channel errors--large
errors correspond to more conservative uncertainty sets, while
small errors correspond to less conservative sets.
In Figs. 6 and 7, we plot the average worst-case symbol error

rates (SERs), achieved by the robust precoding strategies for
different , versus SNR and the uncertainty set size , respec-
tively, where we have used an 1/2-rate complex OSTBC [43]
and anML decoder at the receiver. Being consistent with Figs. 4
and 5, the trade off between conservativeness and performance
can also be observed in Figs. 6 and 7.

Fig. 4. Average worst-case received SNRs of robust precoding strategies
versus SNR at for different and .

Fig. 5. Average worst-case received SNRs of robust precoding strate-
gies versus uncertainty set size at for different and

.

VII. CONCLUSION

We have considered a robust MIMO precoding design,
formulated as a maximin problem, to maximize the worst-case
received SNR or minimize the worst-case PEP for an STBC
with imperfect CSIT. Various kinds of channel uncertainty
models have been taken into account. Specifically, we have
considered three classes of general uncertainty models, in-
cluding convex uncertainty sets, unitarily-invariant convex
sets, and uncertainty sets defined by the Schatten norm, respec-
tively, which cover most commonly used uncertainty models
as special cases. We have related the formulated maximin
problem with a minimax problem from the dual perspective,
and shown that the robust MIMO precoder can be efficiently
computed by solving a convex optimization problem, or given
in an analytical form accompanied by a favorable channel-di-
agonalizing structure. Based on these results, we have obtained
the globally optimal robust MIMO precoder along with the
worst channel error, and also investigated the robustness of
some common transmit strategies such as beamforming and
equal power transmissions.
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Fig. 6. Average worst-case SERs of robust precoding strategies versus SNR at
and 0.6 for different and with QPSK and 1/2-rate

OSTBC.

Fig. 7. Average worst-case SERs of robust precoding strategies versus uncer-
tainty set size at for different and with
QPSK and 1/2-rate OSTBC.

APPENDIX

A. Proof of Proposition 1

Lemma 1. ([37, Fact 8.18.18]): Let and be two
positive semidefinite matrices, with eigenvalues

and , respectively. Then,
.

Let , and denote the EVD of
by with eigenvalues and the

EVD of by with eigenvalues
. It follows from Lemma 1 that ,

where the upper bound is achieved if . Therefore, the
inner maximization of the minimax problem (8) can be simpli-
fied to a linear program

(45)

whose solution is to put all power on the largest , i.e.,
and for . Thus, given any , the inner maximum
value is , and the minimax problem (8)
can then be expressed as

(46)

Note that (46) is equivalent to

(47)

which is exactly (14). The proof of Proposition 1 is thus com-
pleted.

B. Proof of Proposition 2

Using the Schur complement, it is easy to see that (20) and
(14) are equivalent and thus share the same optimal solution
or primal variables . The question is how to relate the
optimal Lagrange multipliers or dual variables of (20) and
of (14). To this end, we investigate the optimality conditions

of (20) and (14), respectively.
According to [40, Proposition 6.2.5], the optimal primal and

dual variables of (14) by and satisfy the following
necessary and sufficient optimality conditions:

(48)

(49)

(50)

where is the Lagrangian in (15) over the domain
defined in (17). On the other hand, the Lagrangian of (20) is
given by

(51)

with dual variable . Thus, the dual feasible set is
. Similarly, the optimal primal and dual vari-

ables of (20) are characterized by the following conditions:

(52)

(53)

(54)

Note that, for Hermitian matrices , if
and only if . Thus, (54) is equivalent to

(55)
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which implies and
. Hence, (53) reduces to

(56)

Moreover, from (55), we obtain and
, which implies

or equivalently

(57)

Clearly, if satisfies the conditions (52)–(54), then
with satisfies the conditions (48)–(50).

Therefore, the optimal Lagrange multiplier of (14) is given by
.

C. Proof of Theorem 2

By defining and and using
the unitarily-invariant property of both and , the maximin
problem (7) can be equivalently expressed as

(58)

We then use the following tool to show that one optimal is a
diagonal matrix.
Lemma 2 ([17]): Let be a diagonal matrix with

the diagonal elements being 1, and denote the set of all
such matrices. Let be an arbitrary matrix

and be a diagonal matrix such that .
Then, .
Assume for the moment, and define

as in Lemma 2 and where
is also defined as in Lemma 2.

Using the properties that is a diagonal matrix, , and
, and defining , we have

(59)

where follows from the unitary invariance of . Recalling
that is a concave function, it follows from Lemma 2 that

(60)

where is a diagonal matrix such that .
This means that, given any feasible , we can always achieve
a larger (or at least equal) objective value by using , which
is feasible too. Therefore, in the solution set there must exist
a diagonal structure, which can always be achieved by setting

, leading to . It is then straightforward
to rewrite (58) into (22). For the proof is similar.

D. Proof of Theorem 3

We first show that is a solution to the max-
imin problem (7). It follows from Theorem 2 that
and (7) is equivalent to

(61)

Assuming , we can then express with
and , and and
with diagonal matrices . Since4

(62)

we have , meaning that if then
. Meanwhile, we have

(63)

Consequently, to minimize , we can set and focus
on minimizing .
Since and are both convex in , by using

Lemma 2 and following the same reasoning as in Appendix C,
one can obtain

(64)

where is a diagonal matrix such that .
The equalities in (64) hold when is a diagonal matrix, which
can always be achieved by setting and ,
resulting in . Therefore, the maximin problem
(61) reduces to

(65)
which is exactly the maximin problem (24). This equivalence
can be similarly proved for .
Next, we show that is a solution to the

minimax problem (8). Consider the convex problem (20), which
is equivalent to (8). Assuming , we can then express the
LMI in (20) As

(66)

4We assume w.l.o.g. that the elements of , , , and
are in the same order, and thus the elements of share an arbitrary

order as those of .
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Thus, if satisfies the LMI, so does . Moreover, we
know that . Therefore, if is feasible
for (20), so is , implying that (20) can be simplified to

(67)

Let be a diagonal matrix defined in Lemma 2. If
satisfies the LMI, then we have

(68)

meaning that also satisfies the LMI. Since the feasible
set defined by an LMI is a convex set, the convex combination

is still in this set and thus satisfies
the LMI. Moreover, we know that .
Consequently, given any feasible is feasible
too and leads to the same objective value. In the solution set,
there must exists a diagonal structure of , which can always
achieved by setting and , resulting in

.
After proving that and , we can rewrite

(67) as

(69)

By proper row and column permutations, the LMI in (69) can
be expressed as

(70)

which, by using the Schur complement, are equivalent to
. Consequently, (69) is equivalent to

(71)

Since , (71) is
equivalent to the minimax problem (8). The proof is similar for

.

E. Proof of Theorem 4

To rigorously prove the first part of Theorem 4, we first
mathematically characterize the waterfilling solution of (27)
by showing the following two properties: 1) Assume that there
are eigenmodes active (i.e., ). Then, for

and for , i.e., the active eigenmodes correspond
to the largest singular values . 2) With active
eigenmodes, we have , i.e.,
the minimum of (27) is achieved at the water level . Both
properties can be proved via contradictions by investigating
w.l.o.g. the simple case of two eigenmodes for .
For property 1), assume that and . It follows

that , so the optimal value of
(27) is . However, by the monotonicity and continuity of ,
one can always find an such that

. Then, using and , the objective
value of (27) becomes , which causes a
contradiction to the optimal value . Therefore, if there is one
active eigenmode, it must be and .
For property 2), we assume that there are two active eigen-

modes but . Thus, the optimal value of (27) is
. Let such that . Again by the

monotonicity and continuity of , one can always find an
such that .
Then, using and , the objective
value of (27) becomes

, which causes a contradiction to the optimal
value . Similarly, the assumption of
also leads to a contradiction. Therefore, if there are two active
eigenmodes, it must be .
Suppose that there are active eigenmodes. From the above

two properties, the optimal solution of (27) is given by
for and for , where the optimal

water level satisfies , so the water volume
must satisfy (32). This completes the proof of the first part.
Now we prove the second part of Theorem 4. Note that the

optimal in (26) is given by for
. According to the complimentary condition of (26),

we have

(72)

implying that for . To find for , we write
the Lagrangian of (26)

(73)

from which we have the first-order KKT conditions for :

(74)

(75)

Then, one can easily obtain

(76)
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