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Abstract—We study the problem of linear filter optimization
with finite sample size, which has wide applications such as
beamformer design in wireless communications and portfolio
optimization in finance. Traditional methods in both fields are
not robust against the imprecise channel vector and the noise
covariance matrix (or the mean return and the covariance of
assets in finance) due to finite sample size. We consider estimation
errors both in the channel vector and the noise covariance matrix
(or the mean return and the covariance) simultaneously. We
resort to high-dimensional asymptotics to account for the fact that
the observation dimension is of the same order of magnitude as
the number of samples, and use the diagonal loading method (or
the shrinkage estimator) to improve the robustness. The channel
vector (or mean return) and the noise covariance matrix are es-
timated from the training data, and then corrected under several
widely-used criteria. In an asymptotic setting where the number
of samples is comparable to the observation dimension, we obtain
linear filters that are as good as the optimal filters with a shrinkage
structure and a perfect channel vector (or mean return) under
different criteria. Monte Carlo simulations show the advantage of
our linear filters in the finite sample size regime.

Index Terms—Diagonal loading, shrinkage, finite sample size,
imprecise channel vector, covariance matrix estimation, random
matrix theory.

I. INTRODUCTION

R OBUST adaptive beamforming is a classic and continu-
ously developing topic in array signal processing appli-

cations such as communications, sonar, and radar [1], [2]. In fi-
nancial systems, portfolio optimization has a rich history of the-
oretical research and practical applications [3] that dates back
to Markowitz’s work [4]. The problems of robust beamforming
and portfolio selection are regarded as linear filter optimization.
In these applications, the linear filters (i.e., the beamformer and
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the portfolio) are optimized to satisfy some criteria, e.g., max-
imum signal-to-noise ratio (SNR) in array signal processing and
the corresponding Sharpe ratio in financial applications, which
is the ratio of the mean and the standard deviation.
The filter design problem in wireless communications and fi-

nancial systems can be analyzed together since they share sim-
ilar signal models. In wireless communications, the received
signal is the transmitted signal multiplied by the channel vector
plus multi-dimensional noise. In financial systems, the asset re-
turn can bemodeled as themean asset return plus some volatility
component. The optimal filter is constructed with the channel
vector (or the mean return) and the noise covariance matrix (or
asset volatilities), and the specific form varies according to the
criteria. In the stationary case, i.e., when the channel vector and
the noise covariance in wireless communication (or the mean
and covariance of assets in finance) remains constant in the
training period and evaluation period, we can construct the filter
based on the in-sample observations and then apply it to the
out-of-sample signal.
However, the optimal filter cannot be obtained in practice

since the channel vector and the noise covariance matrix (or
the mean and covariance of assets) are unknown and have to be
estimated. The accuracy of their estimation directly affects the
performance of the filter. In wireless communications, if an in-
finite number of samples are available and the channel vector is
perfectly known, the traditional minimum variance (MV) beam-
former is optimal since it maximizes the signal-to-noise ratio
(SNR) at the output of the beamformer. But if the number of
samples available at the receiver is not sufficiently high, the
traditional MV beamformer based on sample matrix inversion
(SMI) is known to have a detrimental effect on the performance
since there is mismatch between the true correlation matrix of
observations and the sample correlation matrix. Moreover, the
traditional MV beamformer lacks robustness against even small
mismatches in the desired channel vector. In wireless commu-
nications, for instance, the imprecise knowledge of either the
sample correlation matrix or the desired channel vector leads
to the “signal cancellation effect”, sometimes making it even
worse than the traditional phased array [5]. In financial systems,
the Markowitz’s framework provides an efficient frontier as a
tradeoff between the mean return and risk of the portfolio. Tra-
ditionally, the sample means and covariances of the asset returns
are used to implement these portfolios based on the true mean
and covariance, but due to estimation error, these estimated port-
folios typically perform poorly.

A. Literature Review

In array signal processing, one of the most popular solutions
to compensate this error consists in expressing the covariance
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matrix as a linear combination of the sample covariance ma-
trix and the identity matrix, which is referred to as the diagonal
loading method [6], [7]. It has been shown that the diagonal
loading method can improve the robustness against mismatches
caused by the imprecise channel vector and the noise covariance
matrix [8], [9]. In financial systems, the corresponding method
is regarded as the shrinkage estimator [10].
There are some limitations in the literature work employing

diagonal loading or shrinkage in both fields of wireless com-
munications and finance. Most of them focus only on one as-
pect of the estimation, either the channel vector (mean returns)
or the noise covariance matrix. For example, the robust MV
beamformers proposed in [5] and [11] incorporated uncertainty
constraints on the channel vector but did not consider the fi-
nite sample size effect on the covariance matrix. The presence
of random steering vector was considered in [12] and a gen-
eralized loading method was applied. In other papers such as
[9], the main focus was to deal with the finite sample size ef-
fect, and a perfect channel vector was assumed. Both types of
mismatches were considered and handled in [13] in a determin-
istic way, i.e., the worst-case design. However, the performance
could be affected by improper uncertainty set modeling and the
choice of some parameters. In financial applications, the min-
imum variance portfolio was considered in [14] instead of the
general mean-variance portfolio, where the mean return was not
formulated. It was proposed in [15] to estimate the covariance
matrix in the criterion of the quadratic loss with respect to the
true covariance matrix, and it was proposed in [16] to estimate
the inverse of the covariance matrix directly in the criteria of
quadratic loss and Stein’s loss, but thesemethods are suboptimal
compared to the method of directly estimating the portfolio ac-
cording to the criterion of Sharpe ratio, which is the ultimate ob-
jective. Moreover, constraints on portfolio norms are included
in [17] in addition to the Markowitz’s framework, however, the
threshold cannot be determined properly before we have the
out-of-sample data and its improper choice would lead to bad
performance of the portfolio.

B. Methodology and Contributions

In this paper, we develop a unified method to estimate the op-
timal linear filter for both multiantenna array signals and finan-
cial assets that provide significant improvements with respect to
other methods published in the literature. We handle both esti-
mation error in the channel vector and the noise covariance (or
the mean and covariance of assets in finance) simultaneously.
In wireless communications, we assume the transmitted signal
is known to the receiver; in practice, it could be a training se-
quence or information data estimated through a feedback loop.
The channel vector and the noise covariance matrix are esti-
mated with the transmitted signal and the observations, and then
corrected with diagonal loading. In financial applications, we di-
rectly define the portfolio in terms of the sample mean and co-
variance, and then form the covariance matrix estimator which
is a linear combination of the sample covariance and the identity
matrix. We select the diagonal loading factor (or equivalently,
the shrinkage factor) based on random matrix theory: to reflect
the fact that the sample size is comparable to the dimension
of the observations, we employ high-dimensional asymptotics
where both of them go to infinity. We derive the convergence

of the two types of coupled errors and then correct them in the
asymptotic regime. With the observable estimators of the cri-
teria quantities, we can estimate the optimal factors and finally
obtain the linear filters.
Our main contributions can be summarized as follows: We

handle robustness issues with respect to both the channel vector
and the noise covariance matrix (or the mean and covariance of
assets in finance) together. In an asymptotic setting where the
number of samples is comparable to the observation dimension,
we obtain linear filters that are as good as the optimal shrinkage
filters under different criteria.

C. Organization of the Paper

The rest of the paper is organized as follows. Section II is
devoted to the signal models in wireless communications and
finance as well as the estimation of the linear filter. Important
theoretical results on the asymptotic equivalents and consistent
estimators of the criteria quantities for the linear filter are pro-
vided in Section III. In Section IV, numerical results in wire-
less communications and financial systems are presented, where
both synthetic data and the real market data are tested. Section V
concludes the paper and all technical details and derivations are
relegated to the appendices.

D. Notation

In this paper, denote scalars, vectors, and matrices,
respectively. The superscripts and denote, respec-
tively, the transpose and the conjugate transpose. The trace of
is denoted by and the mathematical expectation operator
is denoted by . and denote the real and complex fields
of dimension specified by superscripts. is the Euclidean
norm of a vector ; for a matrix
denotes the spectral norm; denotes the
Frobenius norm; and denotes the
trace norm. Given two quantities and denotes they are
asymptotic equivalents, i.e., almost surely. Finally,
, and denote a certain random scalar quantity, its asymp-

totic equivalent, and its consistent estimator, respectively.

II. PROBLEM FORMULATION

A. Signal Model

We consider the following discrete-time linear model. Let
, denote a collection of received

signal. At snapshot , it can be expressed as

(1)

Here is the input signal, is the channel, and
is the random noise which is assumed to be tem-

porally independent and identical distributed (i.i.d.) with mean
zero and a covariance matrix . Without loss of generality, we
can assume . From a statistical perspective,
is a random process with mean and covariance .
The above signal model can be applied to both fields of wire-

less communication and finance. In wireless communication,
the model in (1) is complex-valued: represents the trans-
mitted signal, is the channel vector, and is the received
signal. (We do not assume that the channel vector is perfectly
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known, which is different from [5] and [9]. Instead, we estimate
it from the observations and the training signal.) On the other
hand, in financial applications, the model in (1) is real-valued:

does not play any role and can be regarded as is
the vector of asset returns, is the mean return, and is the
risky component. Usually the mean return is unknown and
has to be estimated from the asset returns . We consider
a general complex-valued case since the model and the theory
can be applied to both real and complex cases. If the samples
are real-valued, the same results hold.
We then process the received signal through a linear

filter and the output is

(2)

In wireless communications, is the beamformer and the pro-
cessed signal is the estimate of the transmitted signal .
In financial applications, components of represent the money
invested in respective assets, and is the portfolio return.
We will focus on the problem of designing based on dif-

ferent criteria through first- and second-order statistics. In the
following subsection, we introduce several widely-used criteria
in wireless communications and finance.

B. Design Criteria

1) Criteria in Wireless Communications: In wireless com-
munications, the minimum variance (MV) beamformer obtains
a linear filter which is the optimal solution of the following
problem [2]:

(3)

where is the correlation matrix of the
observations. In (3), the correlation matrix of the observations
can also be replaced with the noise covariance matrix [18]
due to the identity , and the formulation is
equivalent to the original one. In the following, we mainly focus
on the noise covariance matrix , and the objective of (3) be-
comes

(4)

which is the variance of the signal at the output of the beam-
former. Moreover, the minimum mean-square error (MMSE)
receiver is also widely considered in wireless communications
[19], which has the following objective:

(5)

Both the minimum variance beamformer and the linear MMSE
receiver optimize the signal-to-noise ratio (SNR), i.e.,

(6)

Loosely speaking, criteria (3)–(6) are equivalent, since the
optimal solutions are scaled versions of each other. The optimal
solutions can be written in the following unified form:

.
(7)

The linear filters in (7) are referred to as clairvoyant, since they
are constructed using and , which are unknown in practice.
2) Criteria in Finance: In financial systems, the returns of
financial assets in terms of the mean return and covariance

is modeled as the following vector stochastic process [20]

(8)

where is the mean return and corresponding to the
general model in (1). The design criteria of optimal portfolio is
discussed in what follows1.
If a very conservative investor wants to invest a portfolio with

the least amount of risk, and does not care about the return,
then the design results in the global minimum variance portfolio
(GMVP) problem [3] (note that it is the same as in (3)):

(9)

The GMVP problem in (9) disregards the return. A general
mean-variance portfolio optimization problem that incorporates
the return constraint in (9) is [10]

(10)

where is the expected return threshold and different values of
generate portfolios on the efficient frontier 2. Moreover, the

Sharpe ratio (SR) is also a popular criterion to measure the ratio
between the mean and the standard deviation [21] (disregarding
the risk free asset 3):

(11)

which is the square root of the SNR in (6) for real-valued ,
and .
The unified form of optimal portfolio for criteria (9)–(11) is

as follows:

(12)

1In the formulations (9)–(11), we allow for short selling, i.e., the portfolio
weight can be negative.
2The efficient frontier is the curve denoting the highest return for each given

risk.
3When we disregard the risk-free asset, the Sharpe ratio coincides with the

original definition of the information ratio that is simply the mean over the stan-
dard deviation of a series of measurements.
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Fig. 1. Pilot signal and information data in wireless communications.

Fig. 2. The rolling-window procedure: In the th window, the first obser-
vations are used as the training samples and the following observations are
used for evaluation. The window shifts until the end of the data set.

with

(13)
where and .
Similarly, the portfolios in (12) are referred to as clairvoyant,
since they are constructed using and , which are unknown
in practice.

C. The Procedure for Designing

In the beamforming problem, the data are divided into two
parts: the training period and the evaluation period. We use a
deterministic and known signal (pilot) in the training period to
construct such a beamformer, and then apply this beamformer
to the observations that contain the random signal (data). This is
illustrated in Fig. 1 using the wireless communication example.
It is assumed that channel and noise are stationary, i.e., the pilot
and data share that same and . Since the optimal linear
filter depends only on and , we first use the pilot signal
in the training period to construct an estimator of , then apply
it to the observations that contain the information data.
In the portfolio optimization problem, the principle is dif-

ferent since there is no transmitted signal. But there are still
training period and evaluation period. We use the history of the
returns as the training period to construct the portfolio, and then
apply the portfolio in the evaluation period.
In practice, the above process can be implemented using a

rolling-window approach, so that the most recent observations
are used for mean return and the covariance estimation. The
rolling-window procedure is illustrated in Fig. 2. In the th
window, we use the first observations as the training sam-
ples to construct the linear filter, and then apply the linear filter
to the following observations and evaluate its performance.
The window moves forward until the evaluation period does

not overlap with the previous one, so that we obtain the th
window. The window shifts until the end of the data set (or the
frame). This procedure is also applicable to the wireless com-
munications scenario. In this case, if the SNR is reasonably good
to begin with, a decision-feedback scheme can be used to esti-
mate the updated training data in the next window based on the
observations in the current window.

D. Optimal Solution Estimation

We begin with the estimation of the channel vector and noise
covariance matrix (or the mean return and the covariance). In
some scenarios of wireless communications, the channel vector
is also referred to as the steering vector, which is deterministic
and can be known (possibly up to some unknown parameters,
such as the signal’s Direction of Arrival) based on the geometry
of array of antennas. Due to the fact that the mismatch in the
presumed channel vector leads to severe performance degrada-
tion of the beamformer, we consider the case that the channel
vector is estimated with the pilot signal.
First of all, we define the following matrix notations for com-

pactness: let
and , then (1) can be written in a matrix
form:

(14)

Without loss of generality, we can assume 4 . If it is
not the case, we can absorb that constant in .We next introduce
the structure of the estimated optimal linear filter. We focus on
all the three criteria (i.e., (4)–(6)) in wireless communications
and only the Sharpe ratio criteria (i.e., (11)) in finance systems,
since the minimum variance portfolio is already considered in
[14] and is a special case of our results. Moreover, regarding
the mean-variance portfolio, we do not give the explicit solution
here because it is too involved, but it can be easily obtained with
our theoretical results.
Traditionally, we estimate the channel vector or the mean re-

turn using 5

(15)

Recall that in the portfolio optimization problem, .
Then the estimator in (15) coincides with the sample mean of

.
The traditional way to estimate the covariance matrix is the

sample covariance matrix (SCM),

(16)

and the corresponding linear filter based on and
is in the same form as in (7), but replacing the unknown and
with and , respectively. To mitigate the estimation

4This assumption is automatically satisfied in portfolio optimization applica-
tions since .
5If is assumed to follow aGaussian distribution withmean and covariance

matrix , the MMSE estimator is . However,
in this paper, we focus on the case of a deterministic steering vector , and the
estimator in (15) is an unbiased estimator.
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error of the covariance matrix caused by the finite-sample-size
effect, we use the shrinkage estimator:

(17)

and the linear filter we propose is:

(18)

where is in the same form as in (7) and (12) replacing and
with and , respectively.
To calibrate and in (18), we use directly the VAR, MSE,

and SNR expressions in (4)–(6) and SR in (11) as the objectives:

(19)

(20)

(21)

(22)

For benchmark purposes, we will also consider the performance
of a beamformer that uses perfect knowledge of h, namely:

(23)

where is given in (17) and is in the same form as in (7)
and (12) while replacing with .
Ideally, if we knew the true and , we could directly se-

lect and to optimize (19)–(22) for each realization of the
observations and obtain the corresponding beamformer. How-
ever, the quantities in (19)–(22) cannot be evaluated since
and are unknown. We tackle this problem using random ma-
trix theory: we consider a practical scenario where the sample
size is comparable to the array dimension .Mathematically
speaking, this is formulated as the asymptotic regime where
and both go to infinity with certain ratio.We first derive deter-
ministic asymptotic equivalents of (19)–(22), and then provide
estimators which also approach the corresponding deterministic
quantities in the double limit. Since the consistent estimators of
(19)–(22) depend only on the observations , the transmitted
signal , and the parameters , we can maximize them
to obtain the optimal and hence the linear filter.
In the following we will provide the main results on the de-

terministic equivalents and consistent estimators of the criteria
in (19)–(22).

III. MAIN RESULTS

In this section we will discuss the calibration of and based
on random matrix theory. We first provide the following lemma
that gives a simplified form of the sample covariance matrix
in (16).

Lemma 1: The sample covariance matrix in (16) can be
written as

(24)

where .
Proof: We substitute in (15) into the expression in (16),

and obtain

(25)

where . Note that , then

(26)

Note that due to , hence the first term on the
right hand side of (26) becomes zero. Additionally,
yields the result in (24).
Similarly, the shrinkage estimator in (17) which is a linear

combination of the sample covariance matrix and the identity
matrix can be written as .
With the simplified notations, we provide the technical

hypotheses and some further definitions in the following sub-
section.

A. Assumptions and Further Definitions

The following set of assumptions will be maintained
throughout the paper.
(A1) Let the spectral norm of and the Euclidean norm of
be bounded uniformly in .
(A2) Let be an matrix whose elements are i.i.d.

standardized Gaussian random variables. Then the noise matrix
can be written as .
We consider the limiting regime defined by both and

growing large without bound at the same rate, i.e.,
such that , with .
In the rest of the paper, we normalize to 1 to simplify the

notations. The reason is that in the expressions (19)–(22), SNR,
VAR, and SR are invariant under the scaling of . There-
fore, we can normalize to 1 under these criteria and the per-
formance of the proposed beamformer is the same. Regarding
MSE, we can write

(27)

In the main theorems we will provide, we can absorb into ,
and then implies .
Before proceeding to the main theorems in this paper, we

introduce some further definitions: we define as the
unique positive solutions to the following system of equations
[16], [14]:

(28)

and also

(29)
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which are essential quantities for the asymptotic equivalents and
estimators of the constitutive quantities in (19)–(22).
We next decompose the quantities in (19)–(22) into some sim-

pler elementary parts that allow us to simplify the analysis. Let
, and recall that , so that these

components can be written as

(30)

(31)

(32)

(33)

(34)

(35)

With (30)–(35), the VAR, MSE, SNR and SR in (19)–(22) can
be written as follows:

(36)

(37)

(38)

(39)

B. Asymptotic Equivalents of the Quantities in (36)–(39)

The following theorem establishes the asymptotic behavior of
quantities in (30)–(35), which are essential for the convergence
of VAR, MSE, SNR and SR in (36)–(39).
Theorem 1: Define the following deterministic quantities,

(40)

(41)

(42)

(43)

(44)

(45)

Under Assumptions (A1)–(A2), we have ,
i.e., the random quantities in (30)–(35) behave as the determin-
istic quantities (40)–(45) in the double limit.

Proof: See the Appendix.
The convergence results of and coincide with the results

in [9] and [14]. Theorem 1 enables us to analyze the asymp-
totic criteria in (36)–(39) because it is enough to analyze their
asymptotic equivalents, which are easier to characterize because
of their deterministic nature. We will next show that, Theorem
1 helps to derive the estimators of the quantities in (36)–(39).

Since the estimated criteria will depend on the sample observa-
tions, the training sequence and the shrinkage parameters, we
will be able to estimate the shrinkage parameters to optimize
the asymptotic criteria. The next subsection will provide the es-
timators of (36)–(39).

C. Consistent Estimators of the Quantities in (36)–(39)

In order to calibrate the shrinkage parameters, we have to ob-
tain observable estimators of the criteria quantities in (36)–(39).
We begin with the following lemma which provides a consistent
estimator of .
Lemma 2: ([14]) Under Assumptions (A1)–(A2), a consistent

estimator of , denoted by , is given by the solution to

(46)

Note that in [14] and [16], the above result holds for a gen-
eral positive semidefinite with bounded spectral norm. How-
ever in our case, it can be simplified further with the partic-
ular structure of . Recall that , so that
is a projection matrix with an eigenvalue 1 with multiplicity

and an eigenvalue 0 with multiplicity 1. Therefore, let-
ting , we can show from
Lemma 2 that

(47)

Actually, can be simplified as

(48)

because the contribution of will vanish in the limit.
Now we discuss the consistent estimators of criteria in

(36)–(39). We use the original expressions in (19)–(22) instead
of the expressions in (36)–(39), since we do not need to estimate

separately.
We first estimate SNR in (19), the other estimators can be ob-

tained with the constituents of the estimator of SNR.We propose
to estimate the numerator and denominator of (19) separately.
We first deal with the numerator, which is easier because only
cannot be observed. Let us first consider the asymptotic be-

havior of the quantity . Note that

(49)

Moreover, is a consistent estimator of , since they have the
same asymptotic equivalent according to Theorem 1 (42) and
Lemma 2 (46). Additionally, as stated in Theorem 1
(41), therefore we conclude that

(50)

and the observable quantity on the right hand side of (50) is a
consistent estimator of the quantity in the numerator of (19).
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Let us now consider an estimator of the denominator of (19).
We first consider the following conventional (plug-in) estimator
which replaces the unknown with , i.e.,

(51)

Similarly, we can decompose into the following com-
ponents:

(52)

where

(53)

(54)

(55)

Regarding the components in (53)–(55), we have the following
convergence results.
Theorem 2: Under Assumptions (A1)–(A2), the following

convergence results hold true:

(56)

where .

Proof: See the Appendix.
Theorem 2 shows that is a consistent estimator of

the denominator of (19) since they have the same asymptotic
equivalent. Similarly, we can derive the estimators of (20)–(22):

(57)

(58)

(59)

(60)

where is given in (51) and is defined in Theorem 2.
Having derived consistent estimators of the quantities in

(57)–(60), one can use exhaustive search to find the optimal .

IV. SIMULATION RESULTS

In this section we will numerically study the convergence
of criteria quantities and the nonasymptotic performance of the
proposed beamformers.

A. Convergence

First we investigate the performance of the estimators derived
from the main Theorem 2. We compare the original SNR, MSE,
and VAR expressions in (19)–(21) and the proposed estimators
in (57)–(59) in the nonasymptotic regime. Moreover, we use the

plug-in SNR, MSE, and VAR as benchmarks to illustrate the
estimation performance of traditional approaches. The plug-in
expressions are given by replacing and in (19)–(21) with

and , respectively. Since the SR expression in (22) is
the square root of the SNR expression in (19), it is enough to
analyze the estimation of SNR expression in (19).
In this set of experiments, we use synthetic data generated

according to (A2). We let the entries of be complex Gaussian
distributed with mean zero and variance one, and assume that
has norm . The covariance matrix of noise vector is gen-
erated as , which is the covariance matrix
of a Gaussian AR process. We consider the diagonal loading
beamformer in (18), whose SNR, MSE, and VAR are given in
(19)–(21). We fix , and let the range of be

, here the scalar is used to make
the sample covariance matrix and the shrinkage target
of similar scale. We fix the observation dimension , and
show the performance of the estimators with number of samples

and , respectively. We plot the true SNR, MSE,
and VAR in (19)–(21), the estimated SNR, MSE, and VAR in
(57)–(59), and the plug-in SNR, MSE, and VAR as functions
of . Each experiment is repeated 100 times and the averaged
quantities are plotted.
It can be seen in Fig. 3(a)–(c) that the traditional plug-in SNR,

MSE, and VAR estimates not only deviate significantly from the
true values, but always overestimate the performance.
The optimal for the plug-in criteria is 0, which leads to the

traditional sample covariance matrix. The proposed estimators
of SNR, MSE, and VAR as functions of are pretty close to
the true ones when . When the number of
samples is smaller, i.e., , the proposed estimators de-
viate from the the true criteria quantities, especially for MSE
and VAR. However, the optimal of the estimated criteria does
not deviate too much from the optimal of the true criteria.
Moreover, it can be seen that the performance of the diagonal
loading beamformer is very sensitive to the choice of , espe-
cially when is smaller than the optimal one, the SNR and VAR
performance degrade seriously. Hence, it is important to chose
a proper diagonal loading factor instead of using the sample
covariance matrix which corresponds to .

B. Simulation in Beamforming

We focus on the beamforming problem in wireless commu-
nications with finite sample size settings. In this set of experi-
ments, we let the channel vector have complex Gaussian dis-
tributed entries with zero mean and variance one, which is un-
known to the receiver and estimated from the receiving signal
and the training signal. is the same as in the previous subsec-
tion, but the entries of are divided by the transmitting SNR,
i.e., , where the transmitting SNR is

. The proposed RMT estimators have diagonal factors that
optimize (57)–(59), and are compared with the following esti-
mators:
(Clairvoyant): It is the upper bound for all types of beam-

formers, refer to (7).
(Diagonal loading with known and ): It is the upper

bound for all beamformers with a diagonal loading structure,
which is given in (23). The true covariance matrix is known
and a perfect channel vector is assumed, but the covariance
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Fig. 3. True SNR, MSE, VAR and their estimators versus normalized
and 30.

matrix estimator is restricted to be a linear combination of the
sample covariance matrix and the identity matrix.

(LSMI beamformer): Loaded Sample Matrix Inversion
beamformer. The loading factor of the noise covariance matrix
is chosen to be which has been empirically shown to be a
suitable value, and the shrinkage target is . The channel vector
is estimated from the receiving signal and the training signal.
LSMI beamformer is also a benchmark in [5]:

(Traditional SMI): It is the traditional sample covariance ma-
trix inversion method, and the estimated channel vector is used.
In the proposed RMT method, we replace with

in (57)–(60) to simplify the search process.
Since the corrected noise covariance matrix is a linear combi-
nation of and with weights and , respectively, it
is better to make and in similar scale (which could
differ substantially due to different transmitting SNR).
We evaluate SNR, MSE, and VAR. Each experiment is con-

ducted 200 times and the average criteria are compared.
We first plot the output SNR, MSE, and VAR versus the

number of training samples in Fig. 4(a)–(c), respectively. It
can be seen in Fig. 4(a) that the output SNR of the clairvoyant
method is nearly constant (and the oscillation comes from
different realizations of the channel), since this method does
not depend on the samples. The performance of our proposed
beamformer is very close to that of diagonal loading with
known and , even when the sample size is small. Further-
more, the proposed method dominates the LSMI beamformer
and the traditional SMI method. When becomes larger, the
performance of the SMI method improves but the performance
of LSMI does not change much, since it exploits a fixed and
large diagonal loading factor. Similar conclusions can be drawn
for Fig. 4(b) and (c), but we emphasize that under MSE cri-
teria, the advantage of the proposed beamformer is even more
obvious with respect to the LSMI and the SMI methods when
is smaller than .
We finally plot the output SNR, MSE, and VAR versus the

transmitting SNR in Fig. 5(a)–(c), respectively. It can be seen
in Fig. 5(a) that the output SNR of the clairvoyant increases lin-
early with respect to the transmitting SNR. The performance
of our proposed beamformer is very close to that of diagonal
loading with known and under all transmitting SNRs.
When transmitting SNR is low, the difference between our pro-
posed beamformer and diagonal loading with known and
is larger because of the error in estimating the channel vector.
Moreover, in this scenario, our proposed method outperforms
LSMI by approximately 2 dB and SMI by nearly 3 dB. Similar
conclusions can be drawn for Fig. 4(b) and (c).

C. Simulation in Portfolio Optimization

In this section, we use real market data to evaluate the pro-
posed portfolio. We consider the stocks conforming the Hang
Seng Index. The data we use are Hang Seng Index of 45 stocks
of Yahoo Finance daily close prices in the period from Jan. 1,
2008 to July 31, 2011 (i.e., 720 days), and the log returns are
calculated. We disregard the first 200 days since the returns are
very unstable. We use a rolling window procedure to evaluate
the out-of-sample performance of the portfolios as follows: At
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Fig. 4. SNR, MSE and VAR in the beamforming problem of wireless commu-
nications: transmitting SNR is 0 dB, varies from 5 to 100.

a particular day ( can be considered as a window index), we
use the previous days (i.e., to ) as the training pe-
riod to construct the estimated portfolio . In the following 10
days, which is the test period, we use this portfolio and obtain

Fig. 5. SNR, MSE and VAR in the beamforming problem of wireless commu-
nications: transmitting SNR varies from to 10 dB, .

its return. Then this window shifts until the end of the data. With
this series of returns, we can compute the mean and the standard
deviation, and the ratio is exactly the Sharpe ratio.
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Fig. 6. Sharpe Ratio of RMT, LW, SCM, and a uniform portfolio:
varies from 75 to 95.

Fig. 7. Sharpe Ratio of sparse RMT, LW, SCM, and a uniform portfolio:
varies from 75 to 95.

The proposed RMT estimator has shrinkage factors that opti-
mize (60), and is compared with the following estimators: (LW):
The estimator of the sample covariance matrix of asset returns
proposed in [15] is used to construct the portfolio.
(SCM): The covariances of the asset returns are estimated

with the sample covariance matrix of the data in the training
period. Then the portfolio is constructed based on the sample
mean and the sample covariance matrix.
(Uniform): The naive portfolio that assigns the same weight

to each asset. Note that it is shown that the uniform portfolio has
good performance and it is not easy to beat [22].
We plot the Sharpe ratio versus the number of training sam-

ples (or the window length) in Figs. 6 and 7.
It can be seen Fig. 6 that the proposed RMT portfolio is sen-

sitive to the choice of the window length: When varies from
75 to 81, the proposed RMT portfolio outperforms the other
methods, but when is larger than 81, the performance of the
RMT portfolio is worse and unstable. This is mainly because
when the training window length is too long, our assumptions
are violated: the mean return and the covariance cannot be sta-
tionary in a long period. Therefore, we can divide data in Fig. 6
into the stationary part and the nonstationary part, according to
stationarity of the mean return and the covariance in the training
period. From this point of view, the proposed RMT portfolio
performs well if the training period is stationary.
Moreover, we can improve the proposed RMT portfolio so

that even in a longer training period it still outperforms the other
portfolios. It is shown in [23] that sparsity can stabilize the port-
folio, since the uncertainty to be estimated is decreased. Based

on that, we modify the proposed RMT method so that, after ob-
taining the optimal , we then set 0 to those weights whose
absolute values are less than 5 percent of the summed absolute
values of all the weights. This is a common post-processing step
in sparse methods 6. The improved RMT portfolio is referred
to as (Sparse RMT). It can be seen in Fig. 7 that Sparse RMT
portfolio outperforms all the other methods a lot when varies
from 75 to 90.

V. CONCLUSIONS AND DISCUSSION

In this paper, we have studied the problem of linear filter
optimization with finite sample size in wireless communica-
tions and finance. We have considered the degradation effects
caused by the estimation error in the channel vector and the
noise covariance matrix (or themean return and the asset covari-
ance matrix). We have used the diagonal loading method (or the
shrinkage estimator) to mitigate the degradation and estimated
the optimal loading (shrinkage) factor based on random matrix
theory. Under several widely-used criteria in wireless commu-
nications and finance, we have obtained linear filters that are as
good as the optimal filters with a shrinkage structure and a per-
fect channel vector (or mean return) under different criteria. We
have performed Monte Carlo simulations with both synthetic
data and real market data, and have shown the advantage of our
linear filters compared with some well-known linear filters in
wireless communications and finance.
There are other applications that can be included in the

proposed linear filter optimization framework, such as speech
recognition and radar signal processing. Speech recognition
performance degrades significantly in distant-talking environ-
ments [24], [25], and microphone array processing techniques
can improve the quality of the output signal and increase the
SNR. Moreover, in radar systems, both transmit and receive
beamforming are used to improve the system performance
[26], [27]. The proposed method on channel estimation and
noise covariance matrix estimation can be applied in these
applications, which are regarded as our potential directions of
future work.

APPENDIX

We first provide some useful notations and stochastic con-
vergence results, which are essential for the proof of the main
theorems. Here are some notations: We apply eigenvalue de-
composition to so that we obtain . Then we
absorb into and have . Due to the rotation in-
variant property of Gaussian distributed vectors, we also have
columns of are i.i.d. distributed with covariance matrix .
Therefore can be written in the following form:

(61)

In the sequel, will be a nonrandom matrix whose
trace norm is bounded uniformly in . The following lemma
will be instrumental in the proof of our results; see [28], [14] for
a proof. Note that in [28] and [14] the weighting matrix is

6Furthermore, sparsity in beamforming has been considered as a way to re-
duce the RF circuits.
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required to be diagonal. Hence, we can use and instead of
and , and the same results hold true.
Lemma 3: Assume that Assumptions (A1)–(A2) hold. Then,

for each the following results hold true almost surely:

(62)

(63)

(64)

where is expressed as in (24), and
are defined as in (28) and (29).

Moreover, we give the simplified expressions of
and . Recall that , we conclude that

. Letting , and noting

that implies , due to the particular form of
, we have in the form of . Additionally,

.
Now, we decompose into two independent parts, i.e.,

, then and can be written as:

(65)

It can be seen in (65) that and are independent. This
conclusion would be used in the proofs in the following.

A. Proof of Theorem 1

First of all, we provide the derivations of and . Noting
that is bounded in can be easily obtained from (62)
in Lemma 3 by letting . Moreover,

(66)

along with (63) in Lemma 3 where , we obtain .
Then we provide the derivation of and the derivation of

follows the same way. Note that

(67)

Moreover, recall that is a random Gaussian vector with zero
mean and Covariance matrix , then we can conclude that for
any deterministic matrix whose trace norm is bounded uni-
formly in . Additionally,
and are independent. From (62) in Lemma 3, we can conclude
that

(68)

and the right hand side of (68) is exactly .
Moreover, the derivations of and are similar and we use
to illustrate. Noting that

(69)

along with the zero mean of , we have converges to 0
since .

B. Proof of Theorem 2

We first provide the convergence results of in Theorem
2. Noting that

(70)

we can easily obtain with (64) in Lemma 3 where
.

Regarding the convergence results of and , recall
that and , along
with (64) in Lemma 3, we finally get and .
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