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Abstract—The envisioned smart grid aims at improving the
interaction between the supply- and the demand-side of the
electricity network, creating unprecedented possibilities for op-
timizing the energy usage at different levels of the grid. In this
paper, we propose a distributed demand-side management (DSM)
method intended for smart grid users with load prediction capa-
bilities, who possibly employ dispatchable energy generation and
storage devices. These users participate in the day-ahead market
and are interested in deriving the bidding, production, and storage
strategies that jointly minimize their expected monetary expense.
The resulting day-ahead grid optimization is formulated as a
generalized Nash equilibrium problem (GNEP), which includes
global constraints that couple the users’ strategies. Building on the
theory of variational inequalities, we study the main properties of
the GNEP and devise a distributed, iterative algorithm converging
to the variational solutions of the GNEP. Additionally, users can
exploit the reduced uncertainty about their energy consumption
and renewable generation at the time of dispatch. We thus present
a complementary DSM procedure that allows them to perform
some unilateral adjustments on their generation and storage
strategies so as to reduce the impact of their real-time deviations
with respect to the amount of energy negotiated in the day-ahead.
Finally, numerical results in realistic scenarios are reported to
corroborate the proposed DSM technique.

Index Terms—Day-ahead/real-time demand-side management,
game theory, generalized Nash equilibrium problem, proximal de-
composition algorithm, smart grid, variational inequality.
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I. INTRODUCTION

T HE electricity distribution infrastructure is facing a
profound transformation with the development of the

smart grid concept, which improves the interaction between
the supply- and the demand-side of the network by means of
demand-side management (DSM) techniques. Indeed, taking
advantage of information and communication technologies,
DSM methods introduce advanced mechanisms for encour-
aging the demand-side to participate actively in the network
optimization process [1]. Furthermore, DSM, properly inte-
grated with distributed energy generation (DG) and distributed
storage (DS), is considered an increasingly essential element for
implementing the smart grid paradigm and balancing massive
energy production from renewable sources. These concepts
allow for an immense opportunity for optimizing the energy
grid and energy usage at different levels of the network.
The short-term electricity market1 consists mainly of a day-

ahead market, which produces financially binding schedules for
energy supply and demand before the operating day, and a real-
time market, used to balance day-ahead and real-time energy re-
quirements [2, Ch. 1.2]. In line with the time granularity of the
energy trading process, day-ahead and real-time DSM methods
are successfully employed in a complementary fashion in prac-
tical situations [3]. In particular, a day-ahead demand-side op-
timization allows energy users to efficiently manage their elec-
tricity consumption and provides the supply-side with an esti-
mation of the amount of energy to be delivered over the up-
coming day, so that the production can be planned accordingly
[4]. Nonetheless, when the consumption schedule is not cor-
rectly predicted by the users, the supply-side incurs additional
costs that are transferred to the demand-side in the form of
penalty charges [5], [6]. On the other hand, real-time DSM tech-
niques bring the grid optimization process to a finer time scale,
allowing to take into consideration possible contingencies in the
supply-side and reducing the uncertainties induced by the re-
newable energy sources and by the randomness of the users’
consumption (see, e.g., [7], [8]).
A common DSM procedure is energy consumption sched-

uling (ECS) [9]–[11], which modifies the demand profile by
shifting flexible energy consumption to off-peak hours. The
implementation of ECS techniques has been shown to be
successful in diminishing the peak-to-average ratio (PAR)
of the energy demand curve, from which both demand- and

1Medium- and long-term electricity trading between producers and retailers/
consumers, which take place through futures markets and bilateral contracts [2,
Ch. 1.2], are not the focus of the present paper.

1053-587X © 2014 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission.
See http://www.ieee.org/publications_standards/publications/rights/index.html for more information.



2398 IEEE TRANSACTIONS ON SIGNAL PROCESSING, VOL. 62, NO. 9, MAY 1, 2014

supply-side benefit in terms of reduced energy cost, emis-
sions, and overall power plants requirements [12]. However,
since the users’ inconvenience must be taken into account
(e.g., the rescheduling of activities results in lost services for
industrial customers [13]), ECS presents flexibility limitations
that can be overcome by incorporating dispatchable DG and DS
into the demand-side of the network. The combined day-ahead
optimization of dispatchable DG and DS has been studied in
[14], [15] assuming deterministic consumption profiles. How-
ever, this approach cannot accommodate potential real-time
deviations from the users’ expected energy consumption,
neither the randomness of their renewable sources.
Additionally, to achieve a realistic smart grid model, some

global requirements, e.g., lower and upper bounds on the ag-
gregate load at specific time intervals [16], must be imposed to
comply with the physical constraints of both the supply and the
power grid. Besides, the energy price curve, derived by com-
bining the production offers of the individual energy generators
in the supply-side of the network, is only valid within a certain
range. These limits can be also established so as to force the de-
sired shaping of the aggregate load, e.g., in order to reduce the
PAR. By all means, such global constraints result in a coupling
between the strategies of the users that has not been addressed
in the literature yet.
The main contribution of this paper is to fill the gap in consid-

ering the above global grid requirements and to propose a novel
DSM method that consists in a day-ahead optimization in the
presence of coupling constraints among smart grid users, fol-
lowed by a real-time optimization. More specifically, the DSM
is carried out through (see Fig. 2): i) a day-ahead bidding process
where demand-side users with DG, DS, and additional load pre-
diction capabilities minimize their expected monetary expense
in a competitive market environment; ii) successive real-time
adjustments of the generation and storage strategies that exploit
the reduced uncertainty about the users’ energy consumption at
the time of dispatch.
During the day-ahead bidding process, the subscribers’

consumption and renewable generation are still uncertain:
these quantities are thus modeled as random variables. Based
on the corresponding probability distributions, the users indi-
vidually calculate their bidding, dispatchable production, and
storage strategies in a distributed fashion with the objective
of minimizing their expected monetary expense. Given the
selfish nature of the users and the global requirements on
their aggregate load, we formulate the bidding process as a
generalized Nash equilibrium problem (GNEP) [17].2 Building
on the variational inequality (VI) framework [17], [19], [20],
we analyze the existence of variational solutions of the GNEP.
However, the coupling constraints prevent the application of
well-known game theoretical decomposition methods, making
the design of distributed algorithms a difficult task. In order
to deal with the coupling in a distributed way, we propose a
pricing-based, iterative scheme that converges to the variational
solutions under some technical conditions. Indeed, this paper
is the first attempt towards the solution of such a problem in
the smart grid literature. Interestingly, we also show that the
proposed framework can be easily adapted to incorporate ECS
to the optimization of the bidding strategies.

2A cooperative method applied to the same framework and that neglects the
coupling constraints has been addressed in [18].

Fig. 1. Connection scheme between the smart grid and one active user con-
sisting of: home appliances (HA), renewable energy source (RES), dispatchable
distributed generation (DG) and distributed storage (DS).

Once the day-ahead bidding process has taken place, and as
the dispatch time approaches, users gain a better knowledge
about their energy needs and renewable generation. Based on
this coming information, we also devise a real-time method for
repeatedly recalculating the production and storage strategies
throughout the day period to alleviate the impact of real-time
deviations with respect to their day-ahead bid loads.
The problem of deriving the optimal bidding strategies of en-

ergy generators and retailers in the sequence of different trading
markets has been addressed in a number of works in the power
systems literature (a good summary is given in [21]). In such
context, the involved agents determine the most profitable com-
bination of buying/selling offers, while dealing with the un-
certainty associated with the forecast energy prices [16]. The
present paper tackles a substantially different problem: under
the smart grid paradigm, energy prices directly depend on the
demand-side users’ strategies and, therefore, our stochastic for-
mulation rather refers to the uncertainty induced by the end
users’ energy consumption and renewable generation.
The rest of the paper is structured as follows. Sections II

and III introduce the overall smart grid framework and the
proposed DSM method. Section IV describes the day-ahead
DSM approach with coupled strategies of the users. Section V
presents a real-time procedure to adjust the users’ production
and storage strategies. Section VI illustrates the proposed
methods and algorithms through experimental evaluations and
comparisons with ECS approaches. Finally, we provide some
conclusions in Section VII.
Notation: The following notation is used throughout the

paper. Lowercase and uppercase boldface denote vectors and
matrices, respectively. The operator ( ) for vectors is de-
fined componentwise, while for matrices it refers to the positive
(semi) definiteness property. The matrix is the -dimensional
identity matrix, while is the zero vector. By we denote
the vertical concatenation of the scalar or vector arguments
and , represents the vertical concatenation of scalar
or vector arguments ordered according to the index , and

indicates the set of elements with indices .
The operator results in a diagonal matrix with elements
given by the the vector argument or in a block-diagonal of the
matrix arguments, whereas denotes the Kronecker product.
Lastly, the operator extracts the positive part
of the scalar argument.
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Fig. 2. Schematic representation of the proposed DSM method, consisting of day-ahead bidding process and real-time adjustments.

II. SMART GRID MODEL

The modern power grid is a complex network that can be
conveniently divided into [8], [22]: i) supply-side (energy pro-
ducers and providers); ii) central unit (regulation authority that
coordinates the proposed demand-side bidding process); iii)
demand-side (end users). In this paper, we focus our attention
on the demand-side of the smart grid, which is introduced in
Section II-A and further refined in Sections II-B and III-A,
whereas the supply-side and the central unit are modeled as
simply as possible.

A. Demand-Side Model

Demand-side users, whose associated set is denoted by ,
are characterized in the first place by the individual per-slot net
energy consumption indicating the energy needed by user

to supply his appliances at time-slot in the time period
of analysis, which corresponds to a day. This term also accounts
for eventual non-dispatchable (renewable) energy resources that
the user may have.3 In order to tackle with the uncertainties
related to the future load demands and to the renewable sources,

is modeled as a random variable with pdf and
cdf .
Our model distinguishes between passive and active users.

Passive users are basically energy consumers and resemble tra-
ditional demand-side users, whereas active users indicate those
consumers participating in the demand-side bidding process,
i.e., reacting to changes in the cost per unit of energy by mod-
ifying their day-ahead bidding strategies. For convenience, we
group the passive users into the set and the active
users into the set . We suppose that each active user
can derive his individual load and renewable production sta-
tistics from his energy consumption history and data measure-
ments, i.e., we suppose that and are known.
Furthermore, in order to participate in the optimization process,
active users are connected not only to the power distribution
grid, but also to a communication infrastructure that enables

3Non-dispatchable sources, having only fixed costs, imply no strategy re-
garding energy production, unlike dispatchable generators (see Section II-B).

bidirectional communication between their smart meter and the
central unit [1] (see Fig. 1). Lastly, we conveniently divide the
day period into time-slots.

B. Energy Generation and Storage Model

Let us use to denote the subset of users possessing dis-
patchable DG (e.g., internal combustion engines, gas turbines,
or fuel cells). For users , represents the per-slot
energy production profile at time-slot . Introducing the energy
production scheduling vector , we have that

, where is the strategy set for dispatchable energy
producer (see Section VI). Moreover, the production cost
function gives the variable production costs (e.g.,
the fuel costs) incurred by user for generating the amount
of energy at time-slot , with .
Likewise, we use to denote the subset of users owning

DS devices. Users are characterized by the per-slot en-
ergy storage profile at time-slot : we have
when the storage device is to be charged, when the
storage device is to be discharged, and when the
device is inactive. Introducing the energy storage scheduling
vector , it holds that , being the
strategy set for energy storer (see Section VI).4

Let us now introduce the individual per-slot energy load

(1)

which gives the real-time energy flow between user and
the grid at time-slot , with when user purchases
energy from the grid and when user sells energy to
the grid, as shown schematically in Fig. 1.

III. DSM MODEL

We are now ready to introduce the proposed demand-side op-
timization model along with the DSM approach by which active
users determine their bidding, production, and storage strategies

4Energy storage bears implicit costs related to the intrinsic inefficiency of the
storage device, e.g., eventual leakage (see Section VI) or non-ideal charging/dis-
charging efficiencies (cf. [14]), rather than direct variable costs as dispatchable
generation.
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at two different time granularities (see Fig. 2). The procedure de-
scribed in the following is consistent with the actual functioning
of electricity markets (see, e.g., [2, Ch. 1] for more details) al-
lowing multi-round auctions [23].

A. Energy Load Bidding Model

Let us denote by the per-slot bid net energy consump-
tion, i.e., the day-ahead amount of energy (to be optimized) that
user commits to consume at time-slot . The corre-
sponding bidding strategy vector is , and the
bidding strategy set can be expressed as

(2)
with and denoting the minimum and max-
imum per-slot bidding consumption, respectively.
Let us define the per-slot bid energy load of user as

(3)

and the strategy vector as , with

(4)

Taking into account the bidding strategy set in (2), and the
sets and introduced in Section II-B, the overall strategy
set for a generic user is given by

(5)

with if and if .

B. Energy Cost and Pricing Model

This section introduces the cost model regulating the energy
prices. Typically, during the day-ahead market, the different en-
ergy generators in the supply-side (each of them characterized
by a specific price curve) submit their production offers; like-
wise, consumers and retailers submit their consumption bids.
This process determines the energy prices and the traded quan-
tities [2, Ch. 1.2]. Since in the present paper we are particu-
larly interested in the demand-side of the network, we can ab-
stract this procedure by considering a single price curve re-
sulting from aggregating the individual curves of each gener-
ator in the supply-side; this is a well-established procedure in
the smart grid literature (cf. [7], [10], [21]).
With this objective in mind, let be the function indi-

cating the cost per unit of energy at time-slot . Within the day-
ahead bidding process, demand-side users induce the per-slot
aggregate bid energy load and thus determine the price
per unit of energy , which remains fixed during the
day period. In this paper, we adopt a linear cost function per
unit of energy:

(6)

The overall variable costs to supply the amount are then
given by , which corresponds to the
quadratic grid cost function widely used in the smart grid litera-
ture (e.g., in [7], [10]). In general, the grid coefficients
are different at each time-slot , since the energy production
varies along the day period according to the aggregate energy
demand and to the availability of intermittent energy sources.

Let denote the predicted per-slot aggregate energy
consumption associated with the passive users: then, the per-slot
aggregate bid energy load can be expressed as

(7)

which depends on the users’ strategies through in (3), and
is subject to the following global constraint.

Constraint 1 (on the per-slot aggregate bid energy load). The
per-slot aggregate bid energy load in (7) must satisfy

(8)

where (resp. ) denotes the
minimum (resp. the maximum) per-slot aggregate energy load
within which resembles the energy price curve
obtained by aggregating the production costs of the individual
energy generators in the supply-side. In particular, a real-time
aggregate demand lower than may imply additional
costs for the supply-side if this requires turning off some
base load power plant [16]. On the other hand, can
be interpreted as the upper bound on the per-slot aggregate
bid energy load that allows to satisfy the real-time aggregate
demand with a certain outage probability. Alternatively, these
boundaries can be chosen to guarantee a certain PAR of the
real-time aggregate load with high probability. We suppose
that the central unit can set , and predict

based on the available past statistics; an overview on
load forecasting techniques can be found in [24].

Each active user derives his bid energy load vector
during the day-ahead demand-side bidding

process. At a given time-slot , if the user attains to his day-
ahead bid , he simply pays ; otherwise, he
can possibly deviate from by purchasing/selling a dif-
ferent amount of energy , for which he pays/perceives

, while incurring in the following penalties:

(9)

(10)

where are the penalty parameters for exceeding
and for falling behind the negotiated load , respectively.
Given the bid energy loads , the cumulative mon-

etary expense incurred by user for exchanging the
energy loads with the grid (including the afore-
mentioned penalties for deviations and taking into account the
amount of produced energy ) can be expressed as5

(11)

5In light of the described penalty system, in (8) also prevents the
active users from intentionally decreasing the aggregate bid energy load to
the level below which the penalties given by are insufficient to compensate
for the additional generation costs of the upward real-time deviations.
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where is the aggregate bid energy load
vector of the other users, with

(12)

and where we have introduced the penalty function

(13)

The penalty parameters are established before the
day-ahead bidding process with the objective of discouraging
real-time deviations from the bid loads, either upwards or down-
wards. For instance, the central unit would choose
during hours of high expected consumption, and
during hours of low expected consumption.
The proposed pricing model does not explicitly deal with the

billing of passive users, as our DSM method is not thereby af-
fected. However, in order to encourage demand-side participa-
tion in the bidding process, passive users may be penalized with
respect to the active ones by applying an overprice to the pur-
chased energy; see Appendix I-A for more details.

C. Proposed DSM Approach

In our DSM procedure, the active users individually optimize
their bidding, production, and storage strategies at two different
time granularities, i.e., day-ahead and real-time, as illustrated in
Fig. 2. Before going into the detailed description, let us summa-
rize the temporal sequence of the proposed DSM method.

1) Day-Ahead Optimization (cf. Section IV). In the day-ahead
bidding process, the users’ goal is to minimize their individual
expected cumulative expense over the day period

(14)

where and , so that
and . The expected cumulative expense in (14)

is obtained in closed-form as given in Lemma 1, where we have
introduced the following notation:

(15)

(16)

(17)

, and .

Lemma 1 (Expected Cumulative Expense): Given the
per-slot bid energy loads , the expected cumulative expense

in (14) is given by

(18)

Proof: See Appendix I-B.

The grid coefficients and the penalty parameters

are fixed before the day-ahead bidding process
[8], [22] and broadcast to the demand-side users. Then, each
active user reacts to the prices provided by the
central unit through iteratively adjusting his per-slot bid energy
load vector . Here, his goal is to minimize his expected cu-
mulative expense, subject to both local and global requirements
given by and Constraint 1, respectively. This optimization
problem, however, is not convex and calls for a centralized opti-
mization, which would lead to non-scalable solution algorithms
and privacy issues (see [15] for details). For this reason, in this
paper we focus on more appealing distributed system designs,
as described in Section IV.

2) Real-Time Optimization (cf. Section V). Once the day-
ahead bidding process finalizes, the prices per unit of energy

remain fixed. However, as the dispatch time-slot
approaches, active users have more reliable information about
their energy needs. Hence, they can exploit this coming infor-
mation to adjust their production and storage strategies and
in real-time. In doing so, they aim at reducing the deviation

of the real-time strategy with respect to the bid energy load, i.e.,
, so as to minimize their expected expense for

the rest of the day period.
After performing the day-ahead and the real-time optimiza-

tion, the active users are finally billed according to (11).

IV. DAY-AHEAD DSM FOR EXPECTED COST MINIMIZATION

In this section, we formulate the day-ahead bidding system in-
troduced in Section III as a generalized Nash equilibria problem
(GNEP). To this end, we first introduce some preliminary def-
initions. Let us rewrite Constraint 1 in the form of shared con-
straints , where

with and

(19)

Note that is convex in . The
strategy set of user can be then expressed as (cf. (5))

(20)

whereas the joint strategy set is given by

(21)
We formulate the system design as the GNEP G ,

with given in (21), , and
defined in (18). Here, each user is a player who aims at min-
imizing his expected cumulative expense subject to both indi-
vidual and global constraints (cf. (20)):

(22)
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The GNEP G is the problem of finding

a feasible strategy profile such that
, , for all players

[25]. The solution of the GNEP is called (generalized)
Nash equilibrium. We refer to [17, Sec. 4.3] for a detailed
overview on GNEPs.

A. Variational Solutions

GNEPs with shared constraints such as (22) are difficult prob-
lems to solve. They can be formulated as quasi-variational in-
equality (QVI) problems [19]; however, in spite of some inter-
esting and promising recent advancements (see, e.g., [26], [27]),
no efficient numerical methods based on the QVI reformulation
have been developed yet. Nevertheless, for this type of GNEPs,
some VI techniques can still be employed [17].

Definition 1 ([19, Def. 1.1.1]): Given the vector-valued func-
tion with defined in (21), the VI problem

consists in finding a point such that

(23)

Indeed a solution of the GNEP can be computed by solving
a suitably defined VI problem, as stated in the next lemma,
whose proof is based on standard techniques [17], [28], [29];
see Appendix II-A for more details.

Lemma 2: Given the GNEPG , suppose that the
following conditions are satisfied: for all ,
(a) The strategy sets and are closed and convex;
(b) The production cost function is convex, ;
(c) and in (2) are chosen such that the

pdf of the per-slot net energy consumption satisfies

(24)

.

Let . Then, every solution of the
is a solution of the GNEP.

Remark 1 (On Lemma 2): (a) Given in (2), the close-
ness and convexity of and ensure the same properties
for the strategy set in (5). For instance, the dispatchable
production and storage models adopted in [14] and evoked in
Section VI enjoy such properties. (b) The convexity of
simply implies that the production cost function does not tend
to saturate as increases [14, Remark 1.1]. (c) When the
distribution of is unimodal, condition (24) limits the dis-
placement of around the mode of in order to ensure
the convexity of the objective function . On the con-
trary, when the distribution of is multimodal,
and must be carefully selected to guarantee the con-
vexity of . A heuristic procedure to deal with such
cases is presented in Appendix II-B. These considerations also
apply to condition (27) given in Theorem 1(a.2).

Note that, when passing from the GNEP (22) to the associated
VI, not all the GNEP’s solutions are preserved: Lemma 2 in fact
does not state that any solution of the GNEP is also a solution of
the VI (see [30] for further details and examples). The solutions
of the GNEP that are also solutions of the are termed

as variational solutions [17], [30] and enjoy some remarkable
properties that make them particularly appealing in many appli-
cations. Among all, they can be interpreted as the solutions of a
Nash equilibrium problem (NEP) with pricing, as detailed next.
Consider the following augmented NEP with players,

in which the “new” -th player (at the same level of the
other players) controls the price variable :

(25)

We can interpret as the overprices applied to force the users
to satisfy the shared constraints . Indeed, when ,
the optimal price will be (there is no need to punish the
users if the constraints are already satisfied).
We can now establish the connection between the

and the augmented NEP (25) [17, Lem. 4.4].

Lemma 3: Under the setting of Lemma 2, is a Nash
equilibrium of the NEP (25) if and only if is a solution of
the , i.e., a variational solution of the GNEP G

, and is the multiplier associated with the shared con-
straints in .

Based on Lemma 3, we are now able to analyze and compute
the variational solutions of the GNEP (22) as solutions of the
NEP (25), building on recent results in [31]. The following is a
standard existence result of variational solutions, based on so-
lution analysis of VIs [19].

Lemma 4: Given the GNEP G , suppose that: i)
conditions in Lemma 2 are satisfied; and ii) the strategy sets
and are bounded. Then, the GNEP has variational solutions.

In the next section, we build on the game theoretical pricing-
based interpretation (25) (cf. Lemma 3) to design distributed
algorithms that converge to a variational solution of the GNEP.

B. Distributed Algorithms

We focus on the class of totally asynchronous best-response
algorithms, where some users may update their strategies more
frequently than others and they may even use outdated infor-
mation about the strategy profiles adopted by the other users.
Let T T be the set of times at which user

updates his own strategy , denoted by at the th it-
eration.We use to denote the most recent time at which the
strategy of user is perceived by the central unit at the th itera-
tion. We assume that some standard conditions in asynchronous
convergence theory (see (A1)–(A3) in [15, Sec III-C]), which
are fulfilled in any practical implementation, hold for T and

, .
According to the asynchronous scheduling, each user updates

his strategy by minimizing his cumulative expense over the day
period, given the most recently available value of the per-slot
aggregate bid energy load

(26)

that considers the bid energy loads of the other users as per-
ceived by the central unit, which can possibly be outdated
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when computation occurs. Each user then obtains

, with .
We can compute the variational solutions of the GNEP (22)

by solving the augmented NEP (25). This can be done using the
recent framework in [31], which leads to the asynchronous prox-
imal decomposition algorithm (PDA) described in Algorithm 1,
and whose convergence conditions are given in Theorem 1.

Algorithm 1: Asynchronous PDA with Coupling Constraints

: Set and the initial centroids

and . Given , ,
, and any feasible starting point

with :

: a suitable termination criterion is satisfied: .

, each user computes as

if T
otherwise

The central unit computes as

: the NE is reached, then each user sets
and updates

his centroid: ; likewise, the central unit
sets and updates
the centroid: .

: ; .

Theorem 1: Given the GNEPG , suppose that:
(a.1) Conditions (a)–(b) in Lemma 2 are satisfied;

(a.2) and in (2) are chosen such that
the pdf of the per-slot net energy consumption satisfies

(27)

, for all ;

(a.3) The penalty parameters are such that
;

(b) The regularization parameter satisfies

(28)

(c) , with .

Then, any sequence generated by Algorithm 1
converges to a variational solution of the GNEP.

Proof: See Appendix II-C.

Remark 2 (On Algorithm 1): Algorithm 1 is a double-loop
algorithm in nature. The inner loop requires the solution of the
regularized game in (S.3) via asynchronous best-response al-
gorithms. In the outer loop, all users and the central
unit, which acts as the -th player, update the centroids

and proceed to solve the inner game again, until
an equilibrium is reached. Observe that the update of
is performed locally by the users at the cost of no signaling ex-
change with the central unit.

Remark 3 (On Theorem 1): The regularization parameter
determines the trade-off between the convergence stability and
the convergence speed [31]. The peculiarity of the expression
of provided in (28) is that it can be calculated by the central
unit a priori without interfering with the privacy of the users.

At the beginning of the optimization process, is computed
as in (28) and broadcast, together with the grid coefficients and
the penalty parameters , to the demand-side.
At each iteration, any active user can update his strategy by
minimizing his objective function (18) based on the most re-
cent values of the aggregate bid energy loads ,
which are calculated by the central unit referring to the (pos-
sibly outdated) individual demands. At the same time, the cen-
tral unit updates the price variable and broadcasts it to the de-
mand-side. When the equilibrium in (S.3) is reached, the central
unit initiates a new iteration. Observe that it is not necessary to
compute the Nash equilibrium in the inner loop exactly; indeed,
inexact solutions do not affect the convergence of Algorithm 1
as long as the error bound goes to zero as the number of itera-
tions grows [17], [20]. This process is repeated until some con-
vergence criterion established by the central unit is fulfilled.
Note that, if we omit Constraint 1 (cf. (8)), the GNEP (22) re-

duces to a classical NEP, where the coupling among the players
occurs only at the level of the objective functions (as addressed
in [32]). Of course, the framework and algorithm proposed in
the present paper contain this formulation as special case.

V. REAL-TIME ADJUSTMENTS OF THE PRODUCTION AND
STORAGE STRATEGIES

In real-time, active users reasonably know the values of
their net energy consumption for the upcoming time-slot
with much less uncertainty than during the day-ahead bidding
process. In this section, we describe how the users can profit
from this fact and perform real-time adjustments to the calcu-
lated production and storage strategies in order to reduce the
impact of the day-ahead uncertainty.
After the day-ahead bidding process, the prices per unit of

energy are fixed as a result of the energy
bid loads of the active users obtained with Algorithm 1. Then,
active users are charged in real-time based on such prices, while
the differences between their actual energy requirements and
the negotiated day-ahead amounts are subject to the penalties
described in Section III-B (cf. (11)). In this setting, at each ,
active user can exploit the reduced uncertainty about his
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TABLE I
DISPATCHABLE ENERGY GENERATION AND STORAGE MODELS ADOPTED IN

SECTION VI (ALSO EXTENSIVELY DESCRIBED IN [14])

net energy consumption to independently adjust his pro-
duction and storage strategies so as to min-
imize his expected expense for the remaining time-slots

. At the same time, we can guarantee the following in-
dividual constraints on the per-slot energy load.

Constraint 2 (on the per-slot energy load). Due to physical
constraints on the user’s individual distribution infrastructure,
the per-slot energy load in (1) is bounded as

(29)

where and are the outgoing and the
incoming capacities of user ’s energy link, respectively.
For modeling simplicity, we assume that, right before each

time-slot , each user has perfect knowledge of .
Nonetheless, he still needs to satisfy the requirements given
by his production and storage strategy sets and : in
this regard, if the strategies over different time-slots are cou-
pled (see, e.g., the constraints in Table I), the users have to take
into account the strategies adopted in the previous time-slots.
With this objective in mind, let denote

the real-time strategy for each time-slot , and let

and express the production and storage strategies
already fixed in the past time-slots . Then, the
real-time strategy set for user at is defined as in (30),
shown at the bottom of the page.
Hence, the price paid by user for purchasing energy

from the grid at time-slot (conditioned on the bid load )
is given by

(31)

where is defined in (13), , and where
we have conveniently redefined . Likewise, the ex-
pected expense for each time-slot is

(32)

which can be easily calculated in closed-form using Lemma 1.
Therefore, at each time-slot , each user uses the value
of and the reduced uncertainty about to
solve

(33)

It is straightforward to observe that in (31)
and in (32) are both convex in , while

is convex under the assumptions of Lemma 2. Hence,
the optimization problem (33) is convex in and
can be solved using efficient convex optimization techniques
[33, Ch. 11].

VI. NUMERICAL RESULTS AND DISCUSSIONS

In this section, we illustrate numerically the performance of
the DSM mechanisms described in Sections IV and V.
We consider a smart grid of active users and
passive users over a day period of time-slots of

one hour each. With the same setup of [32], all demand-side
users have randomly generated average energy con-
sumption curves with daily average of ,
with higher consumption during day-time hours (from 08:00 to
24:00) than during night-time hours (from 00:00 to 08:00) and
reaching its peak between 16:00 and 24:00. The grid coefficients
are chosen such that and

, with as in [10], [14], [15], [32], so
as to obtain an initial price of € when real-time
penalties are neglected. Furthermore, we set

and , with : this choice
penalizes overconsumption during day-time hours and under-
consumption during night-time hours.
We model as a normal random variable with mean

and standard deviation , and we choose
and to satisfy Theorem 1(a.2). For the sake of
simplicity, we assume that all active users are subject to the

(30)
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Fig. 3. Results of Algorithm 1: (a) Difference between average consumption and bid consumption for a generic user with three different ; (b) Aggregated
average consumption and bidding, production, and storage strategies.

same dispatchable production and storage models summa-
rized in Table I. Here, denotes the maximum energy
production capability and represents the maximum
amount of energy that user can generate during the pe-
riod of analysis; as for the energy storage model,
indicates the maximum charging rate, represents the
leakage rate, denotes the storage capacity, and
expresses the charge level at time-slot , with being
the initial charge level. Furthermore, all dispatchable gen-
erators are characterized by the production cost function

, resembling a combustion engine working
in the linear region, with .6 Lastly, we
consider Constraint 1 with and

.

A. Day-Ahead DSM for Expected Cost Minimization

Here, we evaluate the performance of the Day-Ahead DSM
method proposed in Section IV. For Algorithm 1, we im-
pose and the fulfillment of
Constraint 1 as termination criteria in (S.1), and .
Let us first analyze the results produced by Algorithm 1.

Fig. 3(a) illustrates the per-slot bid net consumptions
with respect to the average per-slot net consumptions for
a generic active user, using three different standard deviations.
Predictably, is greater than when since
the user is more likely to avoid severe penalties for surpassing
the agreed load, and vice versa. Evidently, such displacement
becomes greater as the standard deviation (i.e., the uncertainty)
increases. Using , Fig. 3(b) plots the

6The benefit of employing DG and DS is strictly related to the specific pa-
rameters of the adopted dispatchable source and storage device. A comparison
of the impact produced by DG, DS, and a combination of the two is given in
[14], [15]; furthermore, [32] provides some insight on the relative effect of the
bidding strategies with respect to DG and DS strategies.

aggregate bidding, production, and storage strategies obtained
from Algorithm 1. As expected, the storage devices are charged
at the valley of the energy cost and are discharged at peak
hours; likewise, the dispatchable production is concentrated
during day-time hours when the grid prices are higher.
Now, let us compare Algorithm 1 with the PDA in

[32, Alg. 2], which is equivalent to the former but only
considers local constraints. From Fig. 4(a), it is evident that the
aggregate load produced by the PDA does not satisfy Constraint
1 during several hours (namely, ). Let
us examine the resulting average expected cumulative expense:
from Fig. 4(b), it is straightforward to see that active users
achieve consistent savings using Algorithm 1. In particular,
the average expected cumulative expense decreases from the
initial value of € to € (51.1% less). However,
these savings are predictably lower than those produced by
[32, Alg. 2] due to the enforcement of Constraint 1. This is
shown clearly by Fig. 5, which compares the convergence of
the two algorithms. The PDA in [32, Alg. 2] converges after
just 3 iterations; on the other hand, choosing the starting point

, where is the optimal strategy profile
calculated through [32, Alg. 2],7 Algorithm 1 converges after
29 iterations. In this respect, we can observe as the average
expected cumulative expense increases after about 7 iterations
as a result of the imposition of Constraint 1.

Comparison with ECS Approaches. Algorithm 1 is designed
to be applied specifically to the pricing model in Section III-B.
Although it cannot be compared with alternative existing
schemes other than [32, Alg. 2] (of which Algorithm 1 is a
nontrivial generalization), it can be easily adjusted to accom-
modate other DSM approaches within said pricing model: this
adaptability represents a remarkable feature of our framework.

7This can be easily implemented by forcing the value of in [32, Th. 4(b.1)]
and until the optimal strategies without Constraint 1 are reached.
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Fig. 4. Comparison between [32, Alg. 2] (PDA) and Algorithm 1 (PDA with Coupling) with and , : (a) Aggregated
bid energy loads; (b) Average per-slot expected expenses.

Fig. 5. Comparison between [32, Alg. 2] (PDA) and Algorithm 1 (PDA with
Coupling) with and , : Conver-
gence in terms of average expected expense.

In particular, we extend Algorithm 1 to incorporate ECS, per-
haps the most popular among the plethora of DSM techniques
(see, e.g., [9]–[11]), into the day-ahead bidding process. In the
following, we provide a comparison between ECS and DS: the
former consists in shifting flexible load to off-peak hours (as
discussed in Section I), whereas the latter allows to store cheap
energy during off-peak hours for later use.
Again, we consider active users and

passive users with the same average consumption curves
used above; furthermore, we impose Constraint 1 with

and
. We assume that ECS enables each active user to shift

4 kWh from peak-hours, i.e., during , to other
time-slots; on the other hand, we consider the same setup in
Table I for the energy storage (note that the amount of shiftable
load and the storage device’s capacity are the same). Observing
Fig. 6(a), it is evident that Algorithm 1 allows to achieve
similar aggregate load curves with ECS and DS. Nonetheless,
from Fig. 6(b), it emerges that the expected expense obtained
with ECS is slightly lower than that resulting from DS (23.6%
and 16.9%, respectively, less than when no DSM approach is
used). This difference can be mainly ascribed to the leakage
of the storage device, which is only partially compensated by
the fact that the stored energy can be sold to the grid during
peak hours. On the other hand, the discomfort produced by
the rescheduling of activities and the capital costs associated
to controllable appliances and storage devices have not been
considered here, although they are important issues to be taken
into account when comparing the two methods.

B. Real-Time Adjustments of the Production and Storage
Strategies

After implementing the day-ahead optimization based on Al-
gorithm 1, we test the real-time adjustments of the production
and storage strategies described in Section V. Here, the less
uncertainty about the users’ consumption corresponds to a re-
duced standard deviation with respect to that characterizing the
day-ahead optimization. The standard deviation perceived by
user at each hour for the upcoming time-slots

is thus modeled as ,
with corresponding to the day-ahead.
We use the Monte Carlo method and simulate 1000 normally

distributed random consumption curves of a generic active user.
Hence, in Fig. 7 we plot the histogram of the cumulative ex-
penses obtained through the real-time adjustments and we com-
pare these results with the case where the user simply follows
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Fig. 6. Algorithm 1 (PDA with Coupling) applied to ECS and DS, with and , : (a) Aggregated bid energy loads;
(b) Average per-slot expected expenses.

Fig. 7. Histogram of the cumulative expenses of a generic user: (a) With day-
ahead strategies from Algorithm 1; (b) With additional real-time adjustments.

his day-ahead production and storage strategies. In this case,
the average expense decreases from € to € (i.e.,
10.3% less); on the other hand, the associated variance (i.e., the
risk intended as a dispersion measurement [2, Ch. 4.3.1]), de-
creases from 0.114 to 0.088 (i.e., 22.8% less). Observe that this
procedure can be even more beneficial in a practical case, where
the consumption statistics are estimated by the user and they do
not accurately match the actual distribution.

VII. CONCLUSIONS

In this paper, we propose a noncooperative DSM mechanism
based on a pricing model with real-time penalties, which opti-

mizes the users’ bidding, production, and storage strategies at
two different time granularities, i.e., day-ahead and real-time.
In the day-ahead, we consider coupling constraints on the ag-
gregate load: the grid optimization is thus formulated as a gen-
eralized Nash equilibrium problem and its main properties are
studied using the general framework of variational inequality.
We devise a distributed algorithm that allows to compute the
variational solutions of the GNEP with limited information ex-
change between the central unit and the demand-side of the grid.
Furthermore, in real-time, the users exploit the reduced uncer-
tainty about their energy consumption and renewable generation
to adjust their strategies, alleviating the impact of their real-time
deviations with respect to the day-ahead schedule. Numerical
results show that our day-ahead DSM method consistently di-
minishes the users’ expected monetary expenses while fulfilling
the global constraints. On the other hand, the real-time adjust-
ments reduce both the average value and the variance of the
user’s actual monetary expense.

APPENDIX I
ENERGY COST AND PRICING MODEL

A. Energy Pricing for Passive Users

In order to stimulate the demand-side users to participate in
the day-ahead bidding process, passive users may be penalized
with respect to the active ones by paying an overprice on the
purchased energy as

(34)

where for users , since we assume that only
active users are allowed to sell energy to the grid.
A procedure to calculate the overprice parameter is to

guarantee that is greater than the expected cumulative
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expense when user resembles an active user who simply
bids his expected loads . It is not difficult to show
that this condition holds whenever

(35)

B. Expected Cost Minimization: Proof of Lemma 1

The expected cumulative expense of active user ,
with per-slot bid energy loads , is given by (18), where

is defined in (15) and developed as in (36),
shown at the bottom of the page, with .
Finally, using defined in (17) and observing that

(37)

the expression for in (16) readily follows.

APPENDIX II
DAY-AHEAD DSM FOR EXPECTED COST MINIMIZATION

A. Proof of Lemma 2

The lemma follows from the application of the results in [17],
[28], [29] to the specific GNEP G in (22). More
specifically, a solution of the is a solution of the
GNEP if the following conditions hold [17, Lem. 4.2],[28]: (a)
the strategy sets in (5) are closed and convex; (b) the ob-
jective functions in (18) are convex on for any
feasible ; (c) the coupling function is (jointly) convex
in . Condition (a) is immediately satisfied if the sets and

are closed and convex (note that in (2) is convex by
definition). Likewise, condition (c) is also fulfilled for
and defined as in (19). Hence, we only need to verify
(b), i.e., the convexity of .
Observe that its Hessian matrix is obtained as

(38)

with block elements
given by (39), shown at the bottom of the page, de-
fined in (16), and

(40)

(41)

Hence, is convex if the partial Hessian matrices
are positive semidefinite. Assuming that

is convex, i.e., that , the smallest eigenvalue
of (disregarding the null eigenvalue) is given by

(42)

It thus follows that if

(43)

Finally, since and

(see Constraint 1), (43) is satisfied whenever and
are chosen as in Lemma 2(c).

B. Bidding Strategy Set for Multimodal Distributions

When the pdf of the per-slot net energy consumption is mul-
timodal, there may be multiple intervals in which Lemma 2(c)
is satisfied. In this appendix, we present a heuristic method to
determine the best values of and , while
guaranteeing the convexity of the bidding strategy sets.
Let us assume that user is a price taker, i.e., his

load profile does not significantly affect the resulting energy
prices [21]. Under this premise, the only variable term in

in (18) is given, at each time-slot , by
in (16), where we have omitted the production and storage
strategies. It is straightforward to see that is convex

and has a minimum at , where is such that
. At this point, we either have

that: i) satisfies condition (24), and

and are chosen as the limit points around
that fulfill (24); or ii) does not satisfy condition

(24), and and can be found heuristically
by searching intervals in the neighborhood of such that
(24) holds. In this case, when , it can be easily shown
that increases for any and, hence,
it is always better to chose the interval on the right-hand side of

. Unfortunately, when , we do not have such
clue.

(36)

(39)
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C. Proof of Theorem 1

The proof of the convergence of Algorithm 1 is based on the
connection between the augmented NEP (25) and VIs, and on
recent results on monotone VIs [31]. Next, we first establish the
connection with VIs, and then we prove the theorem.
In the setting of Lemma 2, the NEP (25) is equivalent to the

partitioned , with and
defined as

(44)

Solving the NEP is then equivalent to solving the .
Since, in the above setup, the is monotone, we
can hinge on distributed regularization techniques for monotone
partitioned VIs [31]. More specifically, instead of solving the
original VI directly, one can more easily solve, in a distributed
fashion, a sequence of regularized strongly monotone VIs in the
form with . In fact,
Algorithm 1 is an instance of the PDA algorithm in [32, Alg. 1]
applied to the aforementioned sequence of strongly monotone
regularized VIs. According to [17, Th. 4.3], its convergence is
guaranteed if the following conditions are satisfied: (a) the map-
ping function in (44) is monotone on ; (b) the reg-
ularization parameter is chosen such that the
matrix

(45)

is a -matrix [17, Cor. 4.2], where is given by

if
if

(46)

(47)

(48)

where denotes the smallest eigenvalue of the ma-
trix argument, and are the partial Jacobian
matrices defined next in (50) and (51), respectively, and

; (c) is chosen such
that , with .

Proof of Theorem 1(a): The mapping function is
monotone on if is so on [17, Prop. 4.4].
We have that is monotone on if the symmetric

part of its Jacobian is positive semidefinite on , i.e.,
, . We write the symmetric

part of as

(49)

with block elements given by

(50)

(51)

where is given in (39) and is defined
as in (52), shown at the bottom of the page. In order to guar-
antee that , we decompose the vector
as , where

and ; then, we can write
as

(53)

with . Now, the proof reduces

to ensuring that , , .
For the sake of notation, in the following we omit the time-

slot index in the components of the auxiliary variable .
After some manipulations, it holds that

(54)

where we have introduced . Recall that,
under Lemma 2(b), , , so that the term

can be ignored.
Now, observe that , which implies

, and let us define
(55)

(56)

(52)
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(57)

and the sets and

. Hence, it holds that

(58)

(59)

and

(60)

(61)

Now, if , we obtain

(62)

Consequently, if

(63)

Otherwise, if , we have that

(64)

and, therefore, if both the following
conditions are fulfilled, :

(65)

(66)

Note that condition (63) is more restrictive than (65) and, since
(from Constraint 1), we readily obtain the

lower bound in (27). On the other hand, the condition in The-
orem 1(a.3) comes from substituting the definitions (55)–(57)
into (66).

Proof of Theorem 1(b): Here, we determine the value of
that ensures the -matrix property of in (45).
In Appendix II-A, we have shown that, under the conditions

of Lemma 2, is convex on : this implies that
, and . Hence, we can already

state that (cf. (47)). Let us thus examine
, with

and defined as in (52): it holds that

(67)

where denotes the largest eigenvalue of the matrix ar-
gument. Hence, we have that

(68)

with defined in (40), and, using (56)–(57), we obtain

(69)

(70)

Therefore, combining the previous results, we have that

(71)

(72)

Now, observe that ,
where means , with and

defined as in (19). Now, let us introduce
, where and

are -dimensional vectors with elements

if

if
(73)

if

if .
(74)
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Since , we have that .
Hence, we can state that , where

if
if and
otherwise.

(75)
By [17, Prop. 4.3], the matrix , and thus , is a -matrix
if, for some , the following conditions hold:

(76)

(77)

Evidently, the value of that minimizes satisfies

(78)

and, substituting the obtained back into (76), the value of
in (28) follows, as stated in Theorem 1(b).
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