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Energy Efficient Collaborative Beamforming in
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Abstract—Energy efficiency is a major design issue in the con-
text of Wireless Sensor Networks (WSN). If the acquired data is
to be sent to a far-away base station, collaborative beamforming
performed by the sensors may help to distribute the communica-
tion load among the nodes and to reduce fast battery depletion.
However, collaborative beamforming techniques are far from opti-
mality and in many cases we might be wasting more power than re-
quired. We consider the issue of energy efficiency in beamforming
applications. Using a convex optimization framework, we propose
the design of a virtual beamformer that maximizes the network
lifetime while satisfying a pre-specified Quality of Service (QoS) re-
quirement. We derive both centralized and distributed algorithms
for the solution of the problem using convex optimization and con-
sensus algorithms. In order to account for other sources of battery
depletion different from that of communications beamforming, we
consider an additional random energy term in the consumption
model. The formulation then switches to a probabilistic design that
generalizes the deterministic case. Conditions under which the gen-
eral problem is convex are also provided.

Index Terms— Wireless sensor networks, energy efficiency, op-
timization, distributed processing, antenna arrays.

I. INTRODUCTION

HE use of multi-antenna systems is well motivated by the

increasing demand of reliable, high data-rate communi-
cations. Beamforming techniques adjust the antenna weights in
order to mitigate fading channel or interference effects, thus en-
hancing the quality of the signal of interest. In the context of a
Wireless Sensor Network (WSN), it may happen that the area
of interest to be sensed is located in a remote region with diffi-
cult access. To overcome the problem of retrieving the gathered
data, nodes can cooperate to form a virtual beamformer in order
to send the acquired data to a far-away base station, where fur-
ther processing and analysis could be done. At the same time,
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a certain Quality of Service (QoS) measure must be imposed at
the receiver side (i.e., base station) that allows reliable signal
decoding.

One possible solution to this end is the concept of collabora-
tive beamforming [1], where nodes synchronize their phases to
add constructively at the base station. The statistical properties
of the average radiation pattern have been analyzed for the case
of uniformly distributed nodes over a disc of a certain radius [1].
It is demonstrated that as the number of nodes increases, the av-
erage directivity of the virtual array approaches its maximum.
In the same direction, the works in [2] and [3] show that better
properties in terms of sidelobe level can be obtained if nodes are
deployed following a Gaussian distribution over the disc. Obvi-
ously, this comes at the expense of some degradation in terms
of directivity. An alternative selection mechanism is proposed
in [4], where it is shown that if nodes are chosen within a disc
of an appropriate radius the beamwidth can be reduced and, at
the same time, connectivity of the network is easily preserved
and energy consumption may be reduced.

Although the average properties of the radiation pattern are in-
sightful they only hold asymptotically when the number of nodes
is very large. There are several issues regarding the collaborative
beamforming strategy that should be pointed out. The first one
is that channel effects are usually ignored and the only source of
signal attenuation considered is due to propagation losses. This
is an important modeling limitation since the effect of the wire-
less channel can change the radiation pattern drastically. Another
point is that in many situations we may be wasting more power
than necessary (far from optimality) or even we might be vio-
lating some spatial radiation power constraints such as interfer-
ence level caused to coexisting systems. In order to meet some
QoS atthereceiver, it would be more energy-efficient to optimize
the individual antenna weights so as to maximize the network’s
lifetime (i.e., the time that the network is going to be operative),
using the more mature beamforming technology for centralized
scenarios, otherwise we may cause rapid energy depletion at the
nodes, shortening their time of activity.

In the last few years, the application of convex optimization
techniques to beamforming problems has been proven very suc-
cessful, see [5], [6] and references therein. The use of convex
optimization can help to produce optimal or close-to-optimal
solutions in many beamforming problems. When designing a
beamformer, two common approaches are found in the litera-
ture that either try to maximize the SNR subject to (individual
or total) power constraints or that consider energy minimiza-
tion while ensuring a specified QoS. In the context of WSN,
energy efficiency is a major design issue that should be looked
at carefully. It is desirable for such networks to be autonomous
and capable of working for long periods of time without battery
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replacement. There has been little attention to this issue in the
context of beamforming applications. In [7] they consider en-
ergy-efficiency when collaborative beamforming is used. How-
ever, the work in [7] is oriented towards routing optimization
instead of energy efficient beamforming. A routing scheduling
policy has been recently proposed in [8] that helps to extend
the network’s lifetime. Again, in [7], [8], collaborative beam-
forming is considered with no weight optimization; therefore,
the network may be using more energy than strictly required. It
becomes clear that the development of distributed optimization
techniques that take into account energy efficiency are of para-
mount importance in the context of sensor networks. Several
distributed beamforming approaches have been proposed for the
network relay-beamforming scenario [9]-[14]. However, these
are based on centralized optimization and reduced feedback be-
tween the relay network and the transmitter/receiver pair. In our
context of WSNs, such approaches may have limited applica-
bility since they require constant feedback between sensors and
base station (e.g., battery level and channel state information).
It is therefore preferable to devise distributed algorithms that do
not require any communication with the base station. Another
differentiating aspect to the relay-beamforming scenario is that,
in the context of sensor networks, nodes are battery-powered
devices with finite energy resources.

In this paper, we consider the distributed beamforming
problem with QoS constraints where the metric to be optimized
is the network’s lifetime (e.g., the time that the network can
guarantee the specified QoS requirement). This work repre-
sents a major extension of [15] where only an idealized sensing
scenario was considered. We derive closed-form expressions
for the optimal beamformer and provide iterative algorithms
for its numerical computation. Using only local information
about battery status and channel conditions, we use consensus
algorithms [16] to propose fully distributed solutions to the
problem that only require local communication among nodes.

In the last part of the paper we consider the case where the
energy consumption at the nodes is not deterministic. It has been
shown that the energy consumption in a wireless sensor network
can be modeled as random quantity [17] that depends on several
parameters related to data processing and sensing characteristics,
node to node communication, transmission rate, duty cycle,
MAC layer protocol, etc. In order to account for other sources of
battery depletion different from far-away transmission to the base
station we consider an additional random energy consumption
term in our formulation. The problem then switches to a proba-
bilistic design that generalizes the original problem. Conditions
under which the general problem is convex are also provided. In
some specific scenarios, the more general problem is amenable
for its solution in a distributed fashion. However, this is not the
case in general and further work needs to be done in that direction.

The paper is organized as follows: We first provide some
general definitions and describe the problem in Section II. In
Section III we formulate the energy-efficient beamforming
problem and derive simple expressions for its computation.
Section IV provides both centralized and distributed algorithms
for the computation of the optimal beamvector. Section V
extends the results for the case of random energy consumption.
Numerical simulations are provided in Section VI and conclu-
sions are drawn in Section VII.
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Fig. 1. Beamforming scenario between the nodes and the far-away base station.

Notation: Vector-valued quantities are denoted using bold
lower-case letters. The optimal value of a variable x in an opti-
mization problem is denoted by x*. The symbols C, R, and R
denote the set of complex, real, and non-negative real numbers,
respectively. For a scalar «a, its complex-conjugate is denoted
by a*. For vectors, x| denotes transposition while x" = (xT)"
denotes complex-conjugate transposition.

II. SYSTEM MODEL

Consider a WSN composed of M nodes scattered over a cer-
tain area. Nodes are battery-powered elements equipped with a
single-antenna whose purpose is to sense and retrieve informa-
tion from the environment. The information sensed is to be sent
to a far-away base station where the data is further processed
and analyzed. In order to reach the base station, nodes need to
cooperatively form a virtual beamformer for transmitting the ac-
quired data to the base station, see Fig. 1. At the base station, a
minimum QoS requirement must be fulfilled that allows reliable
decoding of the received signal. We aim to maximize the time
that the network remains operative without human intervention
(i.e., battery replacement). The problem is then to design a vir-
tual beamformer that meets the required QoS at the base station
while maximizing the network’s lifetime. It is further assumed
that all elements (nodes and base station) lie on the same plane.

Consider a scenario where all nodes of the network have ac-
cess to a (possibly) noisy version of the signal to be transmitted
(e.g., they may measure independently the same quantity or
they might have obtained it through a joint estimation process).
We assume that the network has two distinct modes of opera-
tion, namely sensing (data harvesting) and data reporting. Once
enough measurements have been acquired, it is necessary to re-
port those to the base station through a noisy wireless communi-
cation channel. Let s,, [k] denote the discrete-time signal avail-
able at the mth node that needs to be transmitted at time %

sulk] = 5[] + ek, (1)
where s[k] is the true signal to be transmitted and ¢, [k] corre-
sponds to the observation noise at node m, which is assumed
to be independent and identically distributed (i.i.d.) with zero-
mean and variance o2

€
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Let w,[k] denote the complex antenna weight of the mth
node at the kth sampling instant. Each node multiplies its mea-
sured signal by its corresponding weight in order to send it to
the base station. The received signal y[k] at the base station can
be expressed as

M

ylk]= Z honwl [k] i [K]+ 0 k]

m=1
M M

=" bl [Ks[k]+ Y by, [Ken[k]+nlk],  (2)
m=1 m=1

where h,, # 0 is the channel coefficient (assumed flat during
the transmission) between the mth node and the base sta-
tion, and n[k] represents the discrete-time measurement noise
process. The noise samples n[k] are assumed to be i.i.d. dis-
tributed random variables, also independent of ¢,,[k], with zero
mean and variance o2.

The (instantaneous) received Signal to Noise Ratio (SNR) at
destination is then given by

M . l?
‘Zm:l h’m,wm [k]‘ PS

Tk :
" SM s, K] 02 + 02
2
= WH[k}h| Po )
" [Fding( o B jwlHo? + 1
where B = [y, T, w/] = [wilH], . (1], and

where the expectation is taken over the noise n[k] and the sym-
bols s[k], with P, = E[|s[k]|?], E[s[k]] = 0. The symbol ®
denotes element-wise product, pg = P, /02 and 02 = 02 /02 is
the ratio between the observation noise power and the commu-
nication channel noise power.

We will use the instantaneous received SNR in (3) as our QoS
measure, i.e., we want to design our beamformer in order to en-
sure that the received SNR is above some threshold. Besides,
we also seek to maximize the network’s lifetime so that it can
be operative for the longest period of time. Several measures of
network’s lifetime have been proposed in the literature (see [18]
and references therein) attending to different criteria such as per-
centage of alive nodes, coverage area, or connectivity, among
others. In our problem, a natural measure of the network’s life-
time is the time that the network can satisfy the QoS constraint.
We will show later that, in some cases, such lifetime criterion is
equivalent to maximizing the time that takes for the first node
to deplete its battery.

It is important to mention that, since our discretized transmis-
sion model is an approximation of a continuous-time transmis-
sion, we will consider the network’s lifetime as a real-valued
variable in the optimization process.

III. ENERGY-EFFICIENT BEAMFORMING

The energy consumption at a node varies according to its
mode of operation (e.g., idle, sleep, transmitting, receiving,
sensing, etc) [19]. When it comes to data transmission, a
common model for the energy consumption is to have a cost
associated with circuitry consumption plus a term that is
proportional to the power put into the antenna [19]-[22]. For
low-range, node to node communications, the necessary power
is dependent on the distance between the nodes (propagation

losses). However, for far-away communications, the required
power will be determined by the propagation channel. Further-
more, it is well known that when nodes are transmitting the
dominant term in energy consumption is the one that corre-
sponds to data transmission [19].

Since we are concerned about energy consumption related
with the process of communicating with the base station, let us
start considering a simple model where battery depletion is only
due to far-away communication with the base station. There-
fore, the amount of energy consumed during the kth sampling
period at node m would be proportional to the power put into
the antenna, that is

em[k] = T [wn k][, 4)
where 7' is some proportionality constant (e.g., the sampling
period). Later in Section V we will consider the more general
case where additional energy is dedicated to other tasks different
from far-away transmissions.

In order to allow for a reliable signal decoding at the base sta-
tion we want to satisfy a minimum QoS constraint. Such con-
straint can be expressed in terms of the instantaneous SNR of
(3) as

. Wk po
FlE = wh[k]diag(h ® h*)w[k]o2 + 1 =P

)

where p is the target SNR at destination.

As stated in the previous section, a natural measure of the
network’s lifetime is the longest time (or maximum time) that
we can guarantee the QoS constraint (5) to be fullfilled. We then
consider the following definition of network lifetime:

Definition 1 (Deterministic Network Lifetime): The lifetime
of the network is the longest time (or maximum time) that the
QoS constraint (5) can be satisfied.

Our goal is then to find the sequence of beamforming vectors
{wl[k]} that maximizes the network lifetime given in Defini-
tion 1. Since nodes are battery-equipped elements with limited
power resources, we also constrain the maximum transmission
power at node m to be less than or equal to p,,,, m =1,..., M.

Let denote K* as the maximum time that the QoS constraint
(5) can be satisfied, then the problem of finding the optimal

beamvectors {w([1],..., w[K*]} can be expressed as
find {w[1],...,w[K*]} e CM
2
o |w[k]h| P
subject to > —. Vk

wh[k]diag(h ® h*)w(k]o2 + 1

|wm[kt]|2 < P, forall m, k
K*

TZ|'I,Um[k]|2 <E,n,m=1,....M (6)
k=1

Po "

where the last constraint ensures that no node can waste more
energy than its actual battery level F,,,.

Note that in order to constructively add at the receiver
side, the phase of the beamformer must be matched to that
of the channel. Therefore, we can get rid of the phase and
reduce problem (6) to a power allocation problem. Let
W [k] = |wn[K]| and R, = |A.m|, denote the magnitude of the
rnith beamweight and the rnth channel coefficient, respectively.
We can fix the phase of the beamvectors {w[1],..., w[K*]}
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to match that of the channel and replace problem (6) by the
following real-valued feasibility power allocation problem

find [Kﬂ}eRM
(W)

, p
subject to W Hdiag(h © b)WkoZ + 1 2 o’ vk
@2 [k] < pm, for allm, k

o
TS W’k <E, m=1,....M @)
k=1
where Wk] = [w1[k], ..., wp[k]]" and b = [hq,... ~has]".

Note that problem (7) is not convex due to the SNR constraint.
However, the set of SNR constraints can be equivalently
expressed as a set of Second Order Cone (SOC) constraints.
Therefore, we can reformulate (7) as the following (equivalent)
convex feasibility power allocation problem

find (wlil,.... wK*]} € RM
subject to  [h7” 0][ 1““]] > ‘D[wl[kq

; V’] < pm, forallm, k

TZU)

where the matrix D is given by

_ [p Jo.diagth) 0
A

Since the problem at hand is convex we can now show that
a constant beamformer (independent of time) suffices to opti-
mally solve problem (8).

Lemma 1 (Constant Beamformer): Assume that the feasi-
bility problem (8) is feasible. Then, there exist an optimal so-

, Vk

1< En, m=1,....M (8)

lution {W*[1],..., W*[K*]} to (8) such that w*[i] = Ww* for all
1=1,....K *.

Proof: We prove it using a convexity argument. As-
sume {W*[1],..., w*[K*]} is a solution to the feasibility

problem (8). Then any permutation of the optimal sequence
{w*[1],...,w*[K*]} is also optimal. Since the problem is
convex, any convex combination of optimal solutions is also
optimal. Take for example, the mean over all permutations,
eg., W = & Zk 1 W[k]. Therefore, we have found a con-
stant beamvector that optimally solves the problem. [ |

Using the result in Lemma 1, feasibility problem (7) simpli-
fies to

find w

(w'h)”
wldiaglh ®h)wo2 +1 —
YT)?H <pm.m=1,....M

TK*w2 < Ep.m=1,....M

m

subject to

(10)
and thus, the lifetime maximization problem can be expressed
as

maximize K
w. K

(w'h)” p
wldiag(h ® h)wo2 + 1 2 0o
@2 < pm.m=1,.... M
KT@2, <En,m=1,....M

subject to

Q)
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Alternatively, we can reformulate the optimal power allocation
problem (11) as an equivalent minimization problem by the
change of variables t = 1/K. This way, the last set of con-
straints become a set of convex SOC constraints, too. The equiv-
alent lifetime maximization problem reads

minimize ¢
w,t

_ Tl’_l 2
subject to T (w b > s
wldiag(h ® h)wo2 +1 = po
mfn <P, m=1,..., M

Twm <tE,,m=1,....M (12)
Intuitively, one would expect that in order to maximize the life-
time of the network, the SNR constraint must hold with equality.
Otherwise, we would be wasting more power than necessary.
This intuition is formalized in Lemma 2.

Lemma 2 (SNR With Equality): Assume that the problem (12)
is solvable. Then, at the optimum, the SNR constraint must hold
with equality.

Proof: We prove it by contradiction. Assume W™ is an op-

timal solution to problem (12) such that 'lea‘iv(hh}vlh)v:v e >

£ Letw = \/ew, with/z € (0,1). Since the function flz) =
is monotone increasing for positive a, b and ¢, then there
ew ' hh'w —
EWledg(h( h)woZ+1
Therefore, we have found a vector w that is feasible and al-
{ows for a reduction in the objective function. We conclude then
that w* cannot be optimal and that the only possibility is that
the SNR constraint holds with equality. [ |
As we mentioned earlier, it turns out that in our particular
setting, the QoS lifetime maximization criterion given in Def-
inition 1 coincides with maximizing the time that takes for the
first node to deplete its battery (i.e., 1st node depletion criterion).
Lemma 3 (Lifetime and First Node): The maximum time that
the network can satisfy the QoS constraint (5) is equal to the
maximum time that takes for the first node to deplete its battery.
Proof: In order to prove the claim, we need to show that
problem (12) is equivalent to maximizing the time for the first
node to deplete its battery. For that purpose, let’s define the fore-
cast longevity of node m (i.e., expected node lifetime) as

I = u_i_mT m=1,...,M.

m

rh+
ex1st a positive number € < 1 such that

(13)

Maximizing the time for the first node to deplete its battery can
be then expressed as the maximization of the minimum of /,,,.
Alternatively, it could be expressed as the minimization of the
maximum of 1/I,,. If we follow the latter approach we can ex-
press the Ist node lifetime maximization problem as the fol-
lowing minmax optimization problem:

L wiT w31
minimaize max g ..
w Ey " Eu
1.2
(h)

. P
subject tc —— > =
HbJect 1o wldiaglh @ h)wo24+1 ~ p

Wy < Py = 1,..., M. (14)

It can be easily verified that problem (12) is the epigraph form
of problem (14). [ |

It is clear that we can express problem (12) in convex form
by expressing the SNR constraints as SOC constraints as in (8).
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Therefore, it can be solved efficiently using any general pur-
pose optimization software. However, problem (12) allows the
derivation of simple expressions for the computation of the op-
timal solution. These expressions, in turn, can be used to de-
vise very efficient algorithms for the computation of the optimal
solution.

Proposition 1 (Optimal Power Allocation): Suppose problem
(12) is solvable, then the optimal power allocation is given by

E'Hl
wr, = min (t*\/ T 7\/1’_m> , (15)
with
g = VAeleo + d)(f;2 — 9+ b —ab 16
a —c
where
a = Z Tr "L b = Z h”“ /p"L
meM mgM
2 4 2 Em 2 /)
=0 - h b2 pm (17
C [epm 20 m T Z mP ( )

mQ./\/l

and M = {m | w2, < p,,} is the set of nodes not transmitting
at their maximum power.

Proof: In order to prove the result let us rewrite problem
(12) in convex form as

minimize ¢
Wt

subject to

m < Dm
n <

\/E /T m=1,...,M.

In order to get rid of the /T term we will consider the following
problem

(18)

minimize ¢
w,t

subject to

Po
Wr, < v/ Pros '"L:L""/M
Wm <t En/T, m=1,..., M. (19)

which can be easily shown to yield to the same optimal power
allocation as (18). The Lagrangian of (19) is given by

L (tv {'mm}§ A {Hm}-, {O'm})

M
=14+ A ;0 (1 + 02 ”;1 h2 w2 ) ,; P W
M
+ Z P \ Win 7t E?n/T)
1
M

+ Zo'm W m)

m=1

(20)

where A, pty,, 0, € R4 are the Lagrange multipliers associated
with the constraints of the problem. The Karush-Kuhn-Tucker
(KKT) optimality conditions are then given by

Feasibility:

w'h > <1+Jzzh w2> A >0

m
7T)’m - t\/Em/T S ()7
VPm <0,

fon >0

lem - Tm Z 0

Complementary Slackness:

M
A (1 +02) hZ, wzn> — > i, | =0 (21)

m m=1
E./T)=0 (22)
—Vpm) =0 (23)

Nm(wnz - t

Om, (U_)m

Zero gradient of the Lagrangian: By differentiating (20)
with respect to ¢ and w,,, and equating to zero we get

24

> 1B /T =1

A 2 r 'V /’/POB?”YT)m
\/1 + 023 h2 w2,

- ] Y,

+ o, + o = 0 (25)

Note that (20) is differentiable everywhere in its domain since

D[w' l]T > 1 > 0.Recall that by Lemma 2 the SNR constraint
must hold with equality, that is

P
14+02Y h2w2 = '”—mm (26)
\/ Z p/po
Therefore, we can rewrite (25) as
Mty — Dy + floy, + 0 = 0, 27
_ 2p , _ Bm Wy : :
where oo = o P and u,, = S o Solving for A in (27)
leads to '
/1’771 + O-IIL

A=— > 0, (28)

(@, — 1) Py,

where the last inequality follows from the feasibility conditions
of A. Consider now the complementary slackness conditions of
the individual transmission power constraints (22) and (23). As-
sume that @, < \/p,, for somem € {1,..., M}, which im-
plies by (23) that o,,, = 0. Consider now the two possibilities
U = 0and p,,, > 0. 1If pi,, = 0, then we have by (27) that
A = 0. From (28) it would follow that, o,,, = 0 and g,,, = 0
for all 7n, which is not a valid solution since (24) wouldn’t be
satisfied. Therefore, it must be the case that z,,, > 0, and thus,
Wy, = t+/ E,, /T. The other possibility is that m?n = Dm, 1.€.,
the node transmits at its maximum power. Using the fact that,
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at the optimum, the SNR constraint must hold with equality we
can now write

L1+ 202 > hm———+wﬂ > R2pm

Po meM mgM
=t hm + 3 B/, (29)
meM mgM

where M = {m | w2, < p,,} is the set of nodes not transmitting
at their maximum power.

In order to simplify notation, let us denote
— Em —
a - Zme/\/l P T > b = ng/\/( Do o Pms

c= a—?piu EmeM hZ, £ En andd = 02 L gt [P - With
these definitions in mmd and by takmg the square at both sides
of (29) we get
L 2t d=(at+b)>
o

Solving for the above quadratic equation yields that its only pos-
itive solution ¢* is given by

V{e/po +d)(a® — ) +b%c —ab

M
a? —c

(30)

t* =

(€2))

which completes the proof. ]
Corollary 2: Under the same assumptions as in Proposition
1, the optimal beamformer is then given by

e e
w* = |wy Tl W oo (32)
where @}, is given by (15), (16) and (17).

Proof: The result follows directly from Proposition 1 and
from the fact that the phase of the beamformer must be matched
to that of the channel. ]

There is one caveat with Proposition 1 and it is the fact that it
does not tell you how to find the optimal set M. In Section IV
we will come back to that issue and will present an iterative
procedure that allows to determine the set M and converges to
the optimal solution stated in Proposition 1.

It is important to note that under the assumptions of Propo-
sition 1 and taking into account the expressions (15) and (16)
it is easy to see that, at the optimum, all nodes must be active
(i.e., Wy, > 0 for all m). Further, since all nodes transmitting
below its maximum allowed transmission power have the same
ratio %, /|w,|*>, m € M (i.e., share the same value of #*),
then they will deplete their batteries at the same time. These
results have important implications since the most energy effi-
cient policy (when it comes to far-away transmissions) requires
the collaboration of all nodes in the network.

Ideal Sensing: One special case of problem (12) is that when
all nodes have perfect knowledge about the signal to be trans-
mitted to the base station. This situation may be considered as
a special case of high SNR scenario with respect to the sensing
channel or it may correspond to a situation where the nodes have
previously agreed on the information to be sent to the base sta-
tion, e.g., by flooding or by an aggregation mechanism as in [23].
We refer to this situation as ideal sensing since all nodes have
common knowledge about the information to be transmitted.
Such assumption has been commonly employed in collabora-
tive beamforming problems [1]-[4].
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Assuming a noiseless sensing model is equivalent to say that
a2 = 0. Hence, problem (12) simplifies to:

minimize ¢
Wt

w'h > \/p/po

—2

Wy, < P

_2

w,, <tE,/T

subject to
m=1,....M

m=1,....M. (33)

which is nothing but problem (12) particularized for
2

a,, = 0. From Proposition 1 it is easy to see that the op-

timal power allocation of problem (33) can be computed as

wX, = min(t*/E /T, /Pm) with

V p/PU - Z7rL€/\/l Bn]’ \/p_m
ZmEJM hm V Em/T

where M is, as previously defined, the set of nodes not trans-
mitting at maximum power.

= 34)

IV. ALGORITHMS

So far we have analyzed the lifetime maximization problem
(12) providing simple expressions for the computation of the
optimal beamweights. In this section we develop algorithms for
the computation of the solution both in a centralized and in
a distributed way. First, we consider an iterative (centralized)
method based on Proposition 1. We then consider a distributed
version of the iterative algorithm that allows the computation
of the optimal beamforming weights by means of local node to
node communication only (using a consensus algorithm).

A. Centralized Iterative Algorithm

From (16), (17) we can devise an iterative (centralized) algo-
rithm that allows the computation of the optimal beamformer of
problem (12) in a number of iterations that is at most the number
of nodes in the network. We use the superscript (~)(’“) to denote
the kth iteration of the algorithm. The algorithm works as fol-
lows: At the first stage of the algorithm, all nodes are initial-
ized to belong to the set M) that is, they are all assumed to
be transmitting below their maximum power. Then we enter a
loop where we compute the power allocation [w< ), . (13)]
using (15) and (16), and update the set A1(*) accordlngly We
keep iterating until there are no changes in the set M *) with re-
spect to the previous iteration. Once we have converged to the
optimal power allocation, the optimal beamformer is obtained
by setting the phase of each node to match that of its respective
channel coefficient. The process is summarized in Algorithm 1.

Algorithm 1: Iterative Centralized Algorithm

k=0, MO 1,
: repeat
E—Ek+1

1 M}
2

3

4. Compute (%) using (16) and (17) with M = ME=D)
50wl — 1®) = forallm=1,...,. M
6:

7:

8

M(k) — {m |’1Um < \/pm}
until M%) = pqE-D

. : _ (k) h
D W — min( @y, /D) B = 1,...

M
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Proposition 3: Assume that problem (12) is feasible. Then,
Algorithm 1 converges to the optimal solution of the problem
in at most M iterations.

Proof: Let denote t* and M* the optimal values for the
solution of problem (12) according to Proposition 1. At the first
iteration (K = 1) of the algorithm #(!) is computed assuming
that none of the nodes is transmitting at maximum power, which
means M) = {1,...,M}. From (') we can compute the
optimal power allocation as per (15) and the corresponding set
MDY IfF MDD = MO then by Proposition 1 it must be the
case that t* = +(1) In that case the algorithm stops and we have
found the optimal power allocation. The other possibility is that
M MO which implies that ¥ # +(1). The fact that we
are assuming that none of the nodes is transmitting at maximum
power means that (1) would be the solution to problem (12) but
where the individual power constraints have been increased so
that none of them is attained. Since this is equivalent to say that
we are enlarging the search space it must hold that (1) < ¢*,
We can then conclude that * > #(1) which also implies that
M* € M) Following a similar argument at every iteration it
can be shown that the algorithm produces sequences of the form

AP TP P P A (35)
with corresponding sets
MO cmBDecmMP ... c MB c mMED = A (36)

In order to keep the iterations going, it is necessary that at least
one of the elements in the current set M*) is removed for the
next iteration. It is clear then that the maximum number of itera-
tions that the algorithm can perform is M. In particular, M iter-
ations would only happen in the case where all nodes transmit at
maximum power (M = §}). Since, by assumption, the problem
is feasible, there exist k& < M such that ¢* = t() otherwise it
would imply that ¢* > ¢(*), [ |

B. Consensus-Based Distributed Implementation

The computation of the optimal solution to problem (12) via
Algorithm 1 requires a central entity with full knowledge about
channels, battery levels, and power constraints. This implies that
the information should be transferred to a central node that per-
forms the computation of the optimal beamforming weights as
per (15). This approach is not practical in the context of WSNss.
Instead, it would be preferable to arrive at the same solution
through a distributed procedure where each node uses only local
information. We now present an approach for arriving at the
same centralized solution of (12) in a distributed way. The ap-
proach is based on direct observation of the solution via the it-
erative Algorithm 1 and how to distribute it by means of con-
sensus [24].

It is clear from Proposition 1 that in order to arrive to the op-
timal solution in a distributed way, it will suffice to compute the
optimal value ¢* in a distributed fashion. By direct inspection
of Algorithm 1 it is easy to realize that a distributed counter-
part based on consensus is possible provided that the number of
nodes in the network is known. The idea is very simple and is
based on the observation that £(*) in step 4 of Algorithm 1 is a
function of four terms, each of which can be computed by means
of consensus. To that end, consider four variables per node a,,,

B, Ym and 1,,, each one contributing to a, b, ¢ and d of (16),
respectively. Initially, we assume that all nodes are transmitting
below their maximum power (the same as in Algorithm 1) so
that &l = b /B /T and 75 = 62(p/ po)h2, Ep /T while
[7’7(,?) and 7753 ) are set to zero. If we perform an average consensus

over these initial quantities, they converge to % > aS? and

e Zm 'y([ ) at each node [24]. By multiplying by M these two
average quantities we recover a and ¢ of (17). Using these two
quantities we can arrive at the same initial value of +(©) as in
the centralized Algorithm 1. After that, each node computes its
power allocation 7175,?) asin (15). If anode is required to transmit
at its maximum power then, it sets aﬁn 0, 6(1) = hp /P

7,(n> 0 and r}m = 02(p/po)h2,pm for the next iteration.
After the nodes have reached a consensus, they scale their local
variables by multiplying them by M in order to recover a, b, ¢
and d of (17). The process is then repeated until convergence
(e.g., the change in the optimal ¢ does not change significantly).
The complete algorithm is shown in Algorithm 2. It is easy to

see that both Algorithms 1 and 2 yield to the same solution.

Algorithm 2: Consensus-based Iterative Algorithm

Ik — 0
2: (1’57(1)) - Em, v Em/T 6(0) — O forallm = 1’ e ’M
39 = 02(p/ o), /T, i) — O forallm =1,..., M

4: repeat
5. k—k+1
6: begin consensus
k M k—1) ,(k M E—1
T o) \11 m=1% o H() u Zm:1ﬂ7(n )
k M k—1 2 M k—1
8 ’y"( ) ’tll m= 17’(’7 )’ 775 ) 1M Zm:l ( )
9: end consensus

10: Locally, at everynode m = 1, ..., M compute:

11: [e,b,¢,d] — M [(x£k> /i(k) ¢ ) ’ (k)]

12 4% — (o 0 F @ = )+ P — ab) /(@ - o)
13: wgn) — min(tg:) \/Em/T, VPm)

14: if ol == /P then

15: y, — 0, ,@,(,]f> — Em\/[m

160 Y — 0,58 = 02(p/po)h2,pm
17: end if
18: until () —

19: w,, — u_J,(ﬂ) M’”

tk=1) <e
forallm =1,.... M

V. BEAMFORMING WITH ADDITIONAL RANDOM
ENERGY CONSUMPTION

So far we have considered that energy consumption at the
nodes is only due to the communication process with the far-
away base station. However, there are other tasks that cause bat-
tery depletion such as sensing, data processing, or node to node
communication, among others. In this section we analyze the
beamforming problem also considering the energy demands of
processes other than communications beamforming. We do it by
adding an extra random energy term in the consumption model
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that allows us to abstract the communications part (e.g., beam-
forming) from the rest of the of the tasks. We follow a fairly
general approach and do not assume any specific distribution of
the random energy term since it may vary depending on the ap-
plication, the hardware used, the protocol characteristics or the
connectivity of the network [17]. We first consider that the ad-
ditional energy consumption is random among nodes but fixed
over time (e.g., following the general model of fix cost associ-
ated with circuitry consumption plus a term corresponding to
the power dissipated through the antenna [19]-[22]) and then
we look at the more general case where energy consumption is
a stochastic process on every node [17]. Due to the introduc-
tion of randomness into the problem, we have to switch from a
deterministic to a probabilistic design. We will provide condi-
tions under which the problem is convex and can be efficiently
solved. Additionally, we will also consider distributed imple-
mentations for a restricted class of problems using dual decom-
position methods and consensus.

A. Random Energy Consumption Among the Nodes

Assume that each node has a fixed energy consumption due
to non-beamforming communications but that this energy con-
sumption is random among the nodes. We denote the additional
energy consumed per sampling period at node v as &,,. The
total energy consumed in one sampling period at node 7 is

o () = Emn + T@2,. (37)

After K time samples, the battery level at node . will be re-
duced by an amount of K¢, (w,, ) units of energy. Our goal is
then to design a beamformer that maximizes the time that the
network will be operative with a certain probability.

Definition 2 (Probabilistic Network Lifetime): The 6-lifetime
of the network (0 < & < 1) is the longest time (or maximum
time) after which the network will have all its nodes active with
probability no less than 6.

Let denote 6 as the probability that the network is operating
after K sampling periods and, assuming independence of the
energy consumption at each node, we can formulate the problem
as

maximize K

w,

subject to  [h™ 0] RV] >

o]l
1
< Pm, forallm=1,...,. M

M
11 Pr(Em — Kén(wn) > 0] > 6. (38)
m=1

We also assume a constant beamvector over time in problem
(38). It can be shown that if the underlying pdf’s of &,,, are log-
concave, then a constant beamvector maximizes the lifetime of
the network.

Note that the above problem is a generalization of the original
problem (11) and that both problems coincide if,,, = 0 (i.e., no
randomness). Consider now the change of variables t = 1/K
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and take the log(+) in the last constraint so that we can express
problem (38) as the following equivalent minimization problem

min_ilglize t
subject to  [h” 0] [vlv] > HD [‘ﬂ H

’II}?H < pm, forallm=1,....M
me T 2
Y logPr [E - wa > 0] > log .

(39

The new problem (39) can be shown to be convex under certain
conditions on the random variables &,,. Let pe, (&,,,) denote the
probability density function (pdf) of &,,.

Lemma 4: If the family of probability density functions
pe,. (&m), m = 1,..., M are log-concave, then problem (39)
is convex.

Proof: In order to show convexity of (39) it suffices to
show that the last constraint in (39) is, indeed, convex. For that
purpose recall from [25] that the Cumulative Distribution Func-
tion (CDF) of a random variable with log-concave pdf is also
log-concave. We also have that the composition of a non-de-
creasing concave function with a concave function is also con-
cave [25]. Keeping in mind these results, note that

Pr[Ew — ém(wp)/t > 0] = Pr [, < tE,, — Tw},]
=F, (tE,, — Tw;

m)

where Fp, (-) is the CDF of &,,. We can now rewrite the last
inequality in (39) as

(40)

M

> log (Fg,, (tEw — Tw,)) > logé (41)
m=1

Since, by assumption, pe, (&n) is log-concave, so it is
F,.(&n). Note that the argument of Fy (-} is concave in
t (actually, affine) and w,, and note also that log F¢  (-) is
concave and non-decreasing since it is a CDF. Then, applying
the composition rule of concave functions we conclude that
log(Fe, (LE,, — Tw2)) is concave. The addition of concave
functions is also concave and therefore the above constraint
defines a convex set (i.e., it is a convex constraint). [ |

The result in Lemma 4 is very useful since many common dis-
tributions (i.e., Gaussian, exponential, uniform) have log-con-
cave pdf’s, see Fig. 2.

Example—Uniform Case: We provide here an illustrative ex-
ample where we consider that the additional random energy
consumption due to non-beamforming task &, follows a uni-
form distribution on some interval. More precisely, assume that
Em ~ U(€min; emax); then, it is easy to check that

&m

Fe (§m) = pe,, (z)dx

¢ 0 €m < €min
m—e
= p " ,:m.] €min < gm, < €max
>max ~ €min
1 gm, > €max

(42)
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—— Gaussian
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Fig. 2. Examples of log-concave CDFs, Uniform (left) and Gaussian (right).

So we can write the last constraint in (39) as

M ‘
Z log (111111 < ,1)) >logd (43)

m=1
together with the additional set of constraints

52
Em, — Tw'm

— €min

€max — €min

tE,, — T, w 2 eminm=1,.... M. (44)

Observe that, as expected from Lemma 4, the expression in (43)
defines a convex set. In particular, the left-hand-side (LHS) of
(43) is the sum of concave functions (note that the log of a con-
cave function is also concave).

Example—Gaussian Case: Assume that &, follows a
Gaussian distribution of mean u,, and variance &, , that is
Em ~ N(ptm,02,). Let the CDF of a normalized Gau551an be
defined as

Y
P(r) = — et 45
@=—= | @)
Then, the last constraint in (39) can be written as
M
tErn =T 02
Y log® (7“’") > log 6, (46)
Om

m=1

whose LHS is concave as it is the sum of concave functions
(note that ®(x) is log-concave [25]).

B. Stochastic Energy Consumption

If the network has no fixed way of operation, the amount of
energy consumed on each node for non-beamforming tasks may
vary over time. In this section we consider the more general case
where &,,, is a stochastic process [17] (i.e., &, is a random vari-
able at each time instant). Denote &,,, [£] as the random energy
consumption at time instant /& then, the battery level at node m
after K transmissions will be equal to

K K
|=FEm— Z Emlk] — TZ m?n,[k]
k=1 k=1

Again, we aim to maximize the network lifetime using Defini-
tion 2 (i.e., the longest time that guarantees that all nodes will

E.[K (47)

be alive with a certain probability). As a result we end up with
a family of power allocation problems indexed by K:

find w[K]} € RM

o [*M|l v
"l

07, [k] < pm, VY, k

M K

> logPr [Ep — > &ulk]
k=1

K

m=1
~TY @), [k] >0
k=1

subject to  [h” 0}1[ 1%]] >

> log 8, Vk.

(48)

The feasibility problem (48) need not to be convex in general,
but under some relaxed conditions it is.

Lemma 5: 1If the family of probability density functions
ve,, (Em), m = 1,..., M are log-concave, then the feasibility
problem (48) is convex.

Proof: The first constraint set of constraints are SOC
convex constraints, while the second set of constraints define
a set of balls and therefore, are convex, too. It only remains
to show that the last constraint defines a convex set. Let
Nin, Zk 1 € [k] and denote p,,,, (n..) and F, (n.,) its
probablhty density function and cumulative distribution func-
tion, respectively. Note that p,,_(#m) is the convolution of a
set of log-concave functions. Since log-concavity is preserved
under convolution [25], p,,, (7m) is log-concave and so it is
F,,. (nm). Now rewrite the last constraint in (48) as

M K
> logF,, (E T Wy, [k]) > logé.  (49)

m=1 k=1

Since log F;,, (+) is concave and non-decreasing (since it is a
CDF)and I, — T Zle w2,[k] is concave in 1y, [k], then ap-
plying the composition rule of concave functions we conclude
that the functions log F, (E,, — T Z v @2, [k]) are concave
and, hence, the last constraint deﬁnes a convex set. [ ]

Note that, the pdf’s pg,, (-) could vary from time to time as
long as they are log-concave.

We have seen that if the involved density functions are log-
concave the problem is convex. However, problem (48) can be
shown to be convex asymptotically even when log-concavity
does not hold.

Lemma 6: Assume, without loss of generality, that fm[ ] are
i.i.d. random variables with E[¢,,[k]] = 0 and E[&2[k]] =
1. As the number of slots A tends to infinity, the feasibility
problem (48) is asymptotically convex regardless of the distri-
bution of &,,.

Proof: In order to show convexity of (48) for K sufficiently
large, it only suffices to show that the third constraint is asymp-
totically convex as K increases. Rewrite the last constraint in
(48) as

M

Z log Pr

m=1

M—Zsm

~TY @), [k] > 0] > logé. (50)
k=1
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Let ¢, = \/LF Zf’:l &m[k]. As the number of slots K increases
and, by virtue of the Central Limit Theorem, ¢, can be well
approximated by a Gaussian distribution (¢,,, ~ N (0,1)). We
can now approximate (50) by

Z log ® (w_ (Em Tzw;iz[/c]» >logé.  (51)
k=1

m=1

Since, for fixed K, the function \/K( ' — TZk L W2 K] is
concave in @,,[k], k = 1,..., K, and the Gaussian distribution
®(x) is log-concave [25] and non-decreasing, we have by the
composition rule of concave functions [25] that (51) defines a
convex set. Therefore, the feasibility problem (48) is convex. ®

If problem (48) is convex we can further show that a constant
power allocation (independent of the slot index %) can be built
to solve for (48).

Lemma 7: Assume that the last constraint in (48) is convex
then, there exist an optimal solution {w*[1],..., w*[K]} to
(48) such that w*[i] = w* foralli = 1,..., K. In particular,
as K goes to infinity and for &, [k] i.i.d. such a solution always
exist.

Proof: If the last constraint in (48) is convex then the
problem is convex. Then, the same argument as in Lemma 1
applies. ]

Proposition 4: Assume, without loss of generality, that &,,, [k]
are i.i.d. with zero mean and unit variance. For K sufficiently
large, feasibility problem (48) can be well-approximated by the
following problem:

m=1,...,

find w

subject to [hT ][ ]

m, = prn7

Zlog<1><

T

—,2
m ) >logé. (52
\/? ) > log (52)

Proof: The result follows directly from Lemmas 6 and 7.1
Note that feasibility problem (52) is convex. Then, we can
approximately find the beamformer that maximizes the network
lifetime by first finding the optimal power allocation and then
setting the phase to match that of the channel. The optimal
power allocation can be obtained by solving a sequence of fea-
sibility problems by performing a bisection search over K. A
lower bound on the optimal value of K can be easily obtained
as

£y ﬂ) ) (53)

Koyin = l min <—, R

T 1 PM

An upper bound can be obtained as follows: If we assume that

there is no additional energy consumption (i.e., &, = O for all

m = 1,..., M)then, finding the optimal beamformer is equiva-

lent to solving the original problem (11). Then, the optimal value

of (11) will give an upper bound on the value of X'. We can now

run a bisection search over K between these two values in order
to find the optimal beamformer.

C. Distributed Computation

Contrary to the case with no random energy consumption,
problems (39) and (52) are not easily solved in a distributed
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fashion due to the SOC SNR coupling constraints. However,
under the ideal sensing scenario we would like to argue that
a distributed implementation is possible. Observe first that
under the assumption of ideal sensing, the SOC SNR con-
straint becomes a linear constraint consisting of the addition
of quantities computable at each node. Note also that the last
constraint in both problems (39) and (52) can also be formed
by the addition of node-dependent quantities. Using similar
ideas as in [26]-[29] and using primal-dual decomposition
methods it is possible to formulate the problem in such a way
that each node has to solve a small optimization problem while
the master problem for the dual updates can be computed by
means of consensus. In particular, consider problem (39) under
the ideal sensing assumpmtion. It is clear that the problem can
be written as

minimize ¢

Ww.t>0
w'h > /p/po

Um < /Pm, m=1,...,. M

> logFe,, (tEn — Tw

subject to

2) >logé.  (54)

Consider now the replication of variable ¢ at every node keeping
a global constraint that makes all of them equal. If we do so, then
the optimal power allocation can be computed as the solution of
the following problem

nunnnlze E tm

Wt >0

subject to Z Wb > 0/ Po

e

M

> log Fy,, (tmEm — Tw},) > logé
m=1

Win < /Dm, m=1,...,M

tp=t, m=1,..., M. (55)

As shown in [26], [28] it is not necessary for all the nodes to
agree on a common variable since it suffices for every node to
agree with its neighbors (provided that the graph is strongly con-
nected). Therefore, we can write the power allocation problem
as

M

HllIllHllZ(, g tm

M

subject to Z Wb > A/ P/ Po
m
M
> log Fe,, (tmEm — T},) > logé
m=1
Wm < /Pm>m=1,.... M
t'm :tl* 7 GJV"HH m = 17'-'7M7 (56)

where A, is the set of neighbors of node m. Consider now the
equivalent problem where a quadratic penalty term on the values
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of't,, is also included in the objective so that we end up with the
following problem

M
IIllIllHllZ(, E 1- + C E E 177 - ”-
m m jCN,,

M
subject to E Wy Py, 2>

m

M
> log Fe,, (tmEm — T},

m=1

Wm £ /Pm, m=1,.... M
t =5, 7 ENp, m=1,..., M,

p/po

) >logé

(57)

where ¢ is a parameter. Note that for any feasible point, the
quadratic term in the objective function of problem (57) equals
zero and does not affect the optimal value of the problem. The
only purpose of the quadratic term is to make the cost function
strictly convex allowing the computation of its solution in a dis-
tributed way [26], [28]. The Lagrangian of problem (57) can be
written as

{fm

DD N

m m jEN,.

([ o, ,,,)+zam B /)

M
+ 1 <10g6 — Z log Fy,, (t,,,LE,m - Twm))

m=1

+3 D Bmgltm — 1)

m JEN,

(58)

It is clear from the Lagrangian that problem (56) is amenable
to be solved in a distributed fashion using dual decomposition
techniques together with consensus. Using the ideas in [26], [28]
it can be easily shown that the above problem can be solved by
the following updates:

i) Each node computes fg,ﬁ ) and w$n Y as the solution to
minimizc ton+ /3,,,, o — ATy P,
Wy <P st 20

—plog Fe (me,n —T?TJ2 )

+c Z ( b, — ( f,’?—i—#”))

FEN.,

(59)

where f3,,, are equivalent Lagrange multipliers that re-
place /3,,,; as described in [28].

ii) Neighboring nodes exchange their values tgfjﬂ) and up-
date their multipliers
% 5 ; E+1
B =B+ e > (0 ) (60)

FEN.

iii) Nodes agree on the value of the coupling constraints (e.g.,
by consensus and assuming that A is known)

Z @kt

2
> logFy, (tgf“)Em -T (wfffH)) )

iv) Global multiplier update at every node

A=A + €x (\/ [)//)0 - Z YUVS,I:"FI)hm) (61)

m

p=pte, (log 6—2 log Py, <t$7’:+1)E -7 (’w(k+1)) >)
(62)

where €, and ¢, are the step-sizes for the updates of the
multipliers A and p, respectively. At the beginning of the
algorithm all multipliers are initially set to zero.

VI. NUMERICAL SIMULATIONS

In this section we provide some numerical results in order
to illustrate the proposed solution and algorithms. We will start
considering a centralized scenario, providing a comparison of
the proposed method versus collaborative beamforming with
uniform power allocation among the nodes. We will then show
how the distributed consensus-based method of Algorithm 2
provides the same solution as its centralized counterpart, i.e.,
Algorithm 1. The last set of experiments will consider the case
with random energy consumption. We will explore the addi-
tional energy consumption term affects the optimal beamformer
as compared to the deterministic case.

1) Centralized and Distributed Algorithms: In order to illus-
trate the benefits of the proposed approach, we have generated
a random network of M = 20 nodes over the unit square. The
channel coefficients have been generated at random following
a circularly symmetric complex Gaussian distribution of zero
mean and unit variance (i.e., Rayleigh fading). The proportion-
ality constant 7' has been set to one for all experiments.

In our first experiment, we want to quantify the degradation
in terms of SNR when the observation noise is neglected. For
that purpose, we run a simulation where we have varied the ob-
servation noise power (equivalently the observation to measure-
ment noise power ratio 2). The battery levels of the nodes have
been generated at random from a uniform distribution ¢£(0.5, 1)
while the maximum transmission power of the nodes has been
set to p.,, = 1 for all m. The measurement noise power is set to
ai = 0.1, P; = 1 and the target SNR has been setto p = 20dB.
Under this setup, we have computed the optimal beamformers
using the iterative Algorithm 1 for different values of o2. We
have also computed the optimal beamformers as is there were no
observation noise (ideal sensing). In Fig. 3 we have depicted the
achieved SNR at the base station for the two considered cases.
As it can be observed, there is a fast degradation in terms of
SNR when neglecting the observation noise while the optimal
beamformer always achieves the target SNR.

In Fig. 4 we have illustrated the battery depletion over time
when using the optimal power allocation of Proposition 1. In the
top plot of Fig. 4 we have depicted the optimal power allocation.
Note that, in this particular example, there are a few nodes trans-
mitting at maximum power (dashed lines). In the bottom plot of
Fig. 4 we have illustrated the corresponding battery level over
time of each of the nodes. It is easy to see that, at the optimum,
all nodes that are transmitting below their maximum power de-
plete their batteries at the same time. Those nodes with favor-
able channel conditions could be operative for a longer period
of time (thus they can transmit at maximum power). This figure
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a network of 20 nodes.

also serves to illustrate that, in our particular scenario the first
node depletion criterion for lifetime maximization and the one
of Definition 1 are equivalent.

In order to quantify the benefits of the proposed methodology
we have performed several simulations to compare against more
conventional collaborative beamforming strategies. We com-
pare our approach to a more efficient version of the CB strategy
that we call “Greedy CB”. The way it works is as follows: At the
beginning all nodes participate in the transmission and they scale
their power (the same for all nodes) so that the SNR constraint is
achieved with equality. Every time a node depletes its battery,
the transmission power is recalculated again. This procedure is
repeated until the SNR constraint cannot be met. We have run
1000 realizations of the experiment with the following parame-
ters: pg = p = 20dB, 02 = 02 = 0.0l and E,,, ~ U(0.5,1),
Pm = 1 form = 1,...,20. We have plot the empirical CDFs
of the greedy CB approach for the time that takes for the first
node to deplete its battery as well as the time that the QoS SNR
constraint can be satisfied. In Fig. 5 we can compare the CDFs
of the “Greedy CB” versus the optimized solution “Optimized
CB”. It can be appreciated that the optimized beamforming
weights outperform the greedy approach. We can also observe
that there is a gap between the times resulting from the first node
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TABLE 1
AVERAGE AND STANDARD DEVIATION OF THE NETWORK’S LIFETIME FOR
DIFFERENT APPROACHES

Feng et. al. [8] Greedy CB Optimized CB
1st QoS 1st QoS
Avg.  5.77 6.14 156.84  199.43 222.41
Std. 0.52 0.47 37.10 47.49 52.72

depletion criterion of “Greedy CB” versus the QoS criterion of
Definition 1. On contrast, in “Optimized CB” there is no such gap
since both times coincide. We have also performed a comparison
with the selection mechanism proposed in [8]. Since, we assume
that nodes can adjust their phases to add constructively at the
receiver, the selection mechanism is based on the remaining
battery level of the nodes and their channel coefficient. In [8]
only battery level is considered since all nodes are assumed to
experience the same attenuation. However, in our case different
nodes see different channels. Therefore, we select the nodes ac-
cording to their battery levels and their channels. This approach
gives better results than considering the batteries only. In Table I
we have displayed the mean and standard deviation values of the
network’s lifetime based on 1000 realizations for the considered
approaches. As it can be seen from Table I, the selection mech-
anism of [8] does not give good results and performs far from
the other considered approaches. This result is not surprising
since, as stated before, at the optimum all nodes must be active.
Therefore, considering only a small subset of nodes does not
help to improve the network’s lifetime. Also note that the SNR
increases as the square of the sum of individual powers, which
means better efficiency as more nodes participate.

In order to illustrate the convergence of the proposed dis-
tributed algorithm, in Fig. 6 we have depicted the evolution of
the consensus-based iterative algorithm (Algorithm 2) as a func-
tion of the number of consensus rounds. In the top plot of Fig. 6
we observe the evolution of the SNR at the base station as the
number of iterations increases. In the bottom plot, we have dis-
played the difference between the optimal beamformer weights
and the weights at each iteration. As it can be observed, the dis-
tributed consensus-based algorithm reaches the same solution
as in the centralized case.
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Continuing with the analysis of Algorithm 2 we have ran-
domly generated different networks of A7 = 20 nodes with dif-
ferent connectivities. We varied the average degree from 4 to
12 and generated 1000 realizations for each case. For each real-
ization, the number of iterations required to converge has been
evaluated. The information is mixed in the consensus part using
a weighting matrix equal to W = I — «L, where I is the iden-
tity matrix and L is the Laplacian of the graph. We have set
@ = 0.9/0.x(L), where ¢, is the maximum singular value
of the Laplacian matrix. Although not optimal, such a simple
choice of the weighting matrix can be shown to converge [30].
We decide that the algorithm has converged when the standard
deviation of the relative error between the nodes and the central-
ized solution is smaller than some threshold. In Fig. 7 we have
plotted the results for different values of the threshold (TOL
curves). As expected, higher precision (smaller TOL values) re-
quire a higher number of iterations. Similarly, increasing the av-
erage degree of the network reduces the averaging time since
nodes can reach a larger number of neighbors at every itera-
tion. We would like to point out that the results presented in
Fig. 7 can be substantially improved by appropriately choosing
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Fig. 8. Empirical CDF of the network lifetime using the static random model
where there is an extra energy consumption term that is fix over time but random
among the nodes.

the weights (the W matrix) for mixing the information in the
consensus part as described in [30].

2) Random Energy Consumption Model: We now proceed to
show some simulations when considering that there is an addi-
tional random energy consumption term due to tasks other than
beamforming for communications such as sensing, local (node
to node) communication, and data processing. Consider first the
case where nodes have an additional random (but fixed over the
optimization period) energy consumption due to the aforemen-
tioned additional tasks. We provide here an illustrative example
of such situation by assuming that the distribution of &,,, is uni-
form on some interval. For the simulations we have set a target
probability of 6 = 0.8 that is, we want to find the maximum
time that our network is going to be alive at least in § x 100%
of the realizations. We set the target SNR to s = 20 dB and per-
form a simulation over 1000 realizations. The random energy
consumption is drawn from a uniform distribution Z/(0,0.01)
units of energy. In Fig. 8 we can see the CDF of the optimized
network lifetime when we take into account the presence of
an additional energy consumption (Probabilistic) compared to
the case where no additional consumption is considered (De-
terministic). We obtain through the solution of the optimization
problem that the maximum time that the network will be alive
& x 100% of the time is 51.48. As it can be seen in the figure the
results are in agreement with the empirical CDF.

A similar simulation has been performed but, in this case,
we consider that the energy consumption varies from slot to
slot (stochastic model). The energy consumption has been mod-
eled as a stochastic process with &,,[k] ~ U(0,7 x 1073). We
have computed the empirical CDF’s using three different ap-
proaches: deterministic (no random consumption considered),
static (random but fixed over the optimization period with uni-
form distribution) and using the Gaussian approximation (52).
As expected, taking into account the random energy term pro-
vides an improvement in the network lifetime as compared to
the deterministic case. Also observe that the Gaussian approxi-
mation outperforms the assumption that the additional random
energy term follows the wrong distribution.

Finally, we have included in Fig. 10 an illustration on how
the outlined procedure in Section V-C converges to the central-
ized solution under the assumption of ideal sensing. We would
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lution for the case with ideal sensing and random energy consumption.

like to point out that the convergence speed of the algorithm will
depend on several parameters such as the choice of the penalty
parameter c, the step-sizes of the global Lagrange multiplier up-
dates ¢y and ¢,,, the weighs used for the consensus part, the
degree of the nodes, etc. Depending on the network’s character-
istics the optimal choices of these parameters will change and a
significant speed-up in convergence time can be achieved by an
appropriate choice of them.

VII. CONCLUSIONS

We have presented a new approach to energy efficient beam-
forming in sensor networks using convex optimization tools and
consensus algorithms. The proposed strategy takes into account
the remaining battery level at each node in order to optimize for
the network lifetime while guaranteeing a specified QoS require-
ment. We have provided analytical expressions for the computa-
tion of the optimal solution and have devised both centralized
and distributed (consensus-based) algorithms for its computa-
tion. We have validated by means of simulations that the pro-
posed scheme outperforms existing collaborative beamforming
strategies and that the distributed consensus-based algorithm
converges to the same centralized solution of the problem.

In order to account for other possible causes of energy de-
pletion like sensing, local communications, or data processing,
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we have added an additional random energy term into the en-
ergy consumption model. We have shown that the problem is
convex under certain general assumptions on the distributions of
the additional energy waste and therefore, it can still be solved
efficiently using general purpose convex optimization software.
Furthermore, we have provided asymptotic conditions under
which the problem is convex regardless the distribution of the
additional energy consumption due to non-beamforming tasks.
We have shown that accounting for the additional energy waste
results in a significant improvement of the network’s lifetime.

Limitations and Future Directions: One of the assumptions
of our model is that the information to be transmitted is common
to all nodes in the network. This means that the nodes have ac-
quired the signal either through a joint estimation process (e.g.,
joint localization of a source) or that they have spread the in-
formation to be transmitted. Therefore, our framework is more
suitable for applications where data transmission can be done
offline after enough data have been collected. In our formula-
tion, we have assumed that the channel conditions don’t change
during the transmission. Whenever channel conditions change,
it would be necessary to update the optimal beamformer. Since
our approach uses consensus, it requires some iterations to con-
verge to the optimal solution, therefore our approach will be
applicable depending on on how fast the channel conditions
change and on the particular size and topology of the network
(i.e., how fast information is fused).

In order to address these issues, as future directions we
could study the effect on varying channel conditions into the
problem and try to simultaneously track the channel and update
the beamformer weights. Alternatively, one could use a robust
formulation where only the statistics of the channel are con-
sidered. Assuming that all nodes share the same information
might become unrealistic when the network is very large. In
such cases, it might be more convenient to cluster the nodes
and form several beamformers rather than a single one.

Finally we have observed that when we include randomness
into the problem, finding a distributed strategy to solve itbecomes
more challenging. For some scenarios, we were still able to pro-
vide a distributed algorithm for solving the problem. In the more
general case further work needs to be done into that direction, too.
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